// 3dcam // With huge help from @NicolasNoble : https://discord.com/channels/642647820683444236/646765703143227394/796876392670429204 /* PSX screen coordinate system * * Z+ * / * / * +------X+ * /| * / | * / Y+ * eye */ #include #include #include #include #include // Precalculated sin/cos values //~ #include "psin.c" //~ #include "pcos.c" #include "atan.c" // Sample vector model #include "coridor.c" //~ #include "gnd.c" #define VMODE 0 #define SCREENXRES 320 #define SCREENYRES 240 #define CENTERX SCREENXRES/2 #define CENTERY SCREENYRES/2 #define OTLEN 256 // Maximum number of OT entries #define PRIMBUFFLEN 2260 * sizeof(POLY_GT3) // Maximum number of POLY_GT3 primitives // atantable #define SWAP(a,b,c) {(c)=(a); (a)=(b); (b)=(c);} // swap(x, y, buffer) // dotproduct of two vectors #define dotProduct(v0, v1) \ (v0).vx * (v1).vx + \ (v0).vy * (v1).vy + \ (v0).vz * (v1).vz // min value #define min(a,b) \ (a)-(b)>0?(b):(a) // max #define max(a,b) \ (a)-(b)>0?(a):(b) #define subVector(v0, v1) \ (v0).vx - (v1).vx, \ (v0).vy - (v1).vy, \ (v0).vz - (v1).vz //~ extern ushort rcossin_tbl[]; // Display and draw environments, double buffered DISPENV disp[2]; DRAWENV draw[2]; u_long ot[2][OTLEN] = {0}; // Ordering table (contains addresses to primitives) char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer //~ int primcnt=0; // Primitive counter char * nextpri = primbuff[0]; // Primitive counter char db = 0; // Current buffer counter CVECTOR BGc = {50, 50, 75, 0}; VECTOR BKc = {100, 100, 100, 0}; // Local color matrix //~ static MATRIX cmat = { //~ /* light source #0, #1, #2, */ //~ ONE, 0, 0, /* R */ //~ 0, ONE, 0, /* G */ //~ 0, 0, ONE, /* B */ //~ }; //~ // local light matrix : Direction and reach of each light source. //~ // Each light is aligned with the axis, hence direction is in the same coordinate system as the PSX (Y-axis down) //~ // One == 4096 is reach/intensity of light source //~ static MATRIX lgtmat = { //~ // X Y Z //~ ONE, 0, 0, // Light 0 //~ 0,0,0, // Light 1 //~ 0,0,0 // Light 2 //~ }; // Light //~ MATRIX rottrans; MATRIX rotlgt; SVECTOR lgtang = {0, 0, 0}; MATRIX light; //~ SVECTOR lgtang = {1024, -512, 1024}; static int m_cosTable[512]; // precalc costable static const unsigned int DC_2PI = 2048; // this is from gere : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102 static const unsigned int DC_PI = 1024; static const unsigned int DC_PI2 = 512; short vs; typedef struct{ int x, xv; // x: current value += xv : new value int y, yv; // x,y,z, vx, vy, vz are in PSX units (ONE == 4096) int z, zv; int pan, panv; int tilt, tiltv; int rol; VECTOR pos; SVECTOR rot; SVECTOR dvs; MATRIX mat; } CAMERA; CAMERA camera = { 0,0, 0,0, 0,0, 0,0, 0,0, 0, {0,0,0}, {0,0,0}, {0,0,0} }; //~ //vertex anim //~ typedef struct { //~ int nframes; // number of frames e.g 20 //~ int nvert; // number of vertices e.g 21 //~ SVECTOR data[]; // vertex pos as SVECTORs e.g 20 * 21 SVECTORS //~ } VANIM; //Pad int pressed = 0; // Cam stuff int camMode = 2; long timeB = 0; u_long triCount = 0; // Prototypes // Sin/Cos Table void generateTable(void); int ncos(u_int t); int nsin(u_int t); // Atan table int patan(int x, int y); //sqrt u_int psqrt(u_int n); // PSX setup void init(void); void display(void); // Utils void LoadTexture(u_long * tim, TIM_IMAGE * tparam); int cliptest3(short * v1); int lerp(int start, int end, int factor); // FIXME : not working as it should SVECTOR SVlerp(SVECTOR start, SVECTOR end, int factor); // FIXME // Camera void getCameraXZ(int * x, int * z, int actorX, int actorZ, int angle, int distance); void applyCamera(CAMERA * cam); void setCameraPos(VECTOR pos, SVECTOR rot); // Physics VECTOR getIntCollision(BODY one, BODY two); VECTOR getExtCollision(BODY one, BODY two); void ResolveCollision( BODY * one, BODY * two ); void applyAcceleration(BODY * actor); void callback(); int main() { // Mesh stuff int i; long t, p, OTz, OTc, Flag, nclip; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143 POLY_GT3 * poly; // Poly subdiv DIVPOLYGON3 div = { 0 }; div.pih = SCREENXRES; div.piv = SCREENYRES; //~ CVECTOR outCol ={0,0,0,0}; //~ CVECTOR outCol1 ={0,0,0,0}; //~ CVECTOR outCol2 ={0,0,0,0}; MATRIX Cmatrix = {0}; init(); generateTable(); VSyncCallback(callback); //~ SetLightMatrix(&LLM); SetColorMatrix(&cmat); SetBackColor(BKc.vx,BKc.vy,BKc.vz); //~ SetFarColor(BGc.r, BGc.g, BGc.b); SetFogNearFar(1200, 1600, SCREENXRES); for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){ LoadTexture(meshes[k]->tim_data, meshes[k]->tim); } // physics short physics = 1; long time = 0; long dt; VECTOR col_lvl, col_sphere = {0}; // Actor start pos //~ modelobject_body.position.vx = modelobject_pos.vx = 50; // Cam stuff VECTOR posToActor = {0, 0, 0, 0}; // position of camera relative to actor VECTOR theta = {0, 0, 0, 0}; // rotation angles for the camera to point at actor int angle = 0; //PSX units = 4096 == 360° = 2Pi int dist = 0; //PSX units int lerping = 0; // Vertex anim //~ SVECTOR interpCache[5]; SVECTOR a,b,c = {0,0,0,0}; short timediv = 1; int atime = 0; for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){ triCount += meshes[k]->tmesh->len; } // Main loop while (1) { //~ timeB = time; time ++; timediv = 2; if (time % timediv == 0){ atime ++; } //~ timediv = 1; //~ // Physics //~ if (time%2 == 0){ // using libgte ratan (slower) //~ theta.vy = -ratan2(posToActor.vx, posToActor.vz) ; //~ theta.vx = 1024 - ratan2(dist, posToActor.vy); // using atantable (faster) theta.vy = patan(posToActor.vx, posToActor.vz) / 16 - 1024 ; theta.vx = patan(dist, posToActor.vy)/16; if(camMode != 2){ camera.rot.vy = theta.vy; // using csin/ccos, no need for theta //~ camera.rot.vy = angle; camera.rot.vx = theta.vx; } if(camMode != 4){ lerping = 0; } if(camMode == 0){ // Camera follows actor with lerp for rotations dist = 150; camera.pos.vx = -(camera.x/ONE); //~ camera.pos.vy = -(camera.y/ONE); camera.pos.vz = -(camera.z/ONE); getCameraXZ(&camera.x, &camera.z, modelobject_pos.vx, modelobject_pos.vz, angle, dist); angle += lerp(camera.rot.vy, modelobject_rot.vy, 128); } if (camMode == 1){ // mode 1 : Camera rotates continuously dist = 150; camera.pos.vx = -(camera.x/ONE); //~ camera.pos.vy = -(camera.y/ONE); camera.pos.vz = -(camera.z/ONE); getCameraXZ(&camera.x, &camera.z, modelobject_pos.vx, modelobject_pos.vz, angle, dist); angle += 10; } if (camMode == 3){ // mode 3 : Fixed Camera with actor tracking // Using libgte sqrt ( slower) //~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) ); // Using precalc sqrt dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) ); camera.pos.vx = 290; camera.pos.vz = 100; camera.pos.vy = 180; } if (camMode == 2){ // mode 2 : Fixed Camera setCameraPos(camStartPos.pos, camStartPos.rot); } if(camMode == 4){ // Flyby mode from camStart to camEnd if (!lerping){ // Set cam start position camera.pos.vx = camPath.points[camPath.cursor].vx; camera.pos.vy = camPath.points[camPath.cursor].vy; camera.pos.vz = camPath.points[camPath.cursor].vz; lerping = 1; } // Pre calculated sqrt ( see psqrt() ) dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) ); short r = camPath.points[camPath.cursor+1].vx - camera.pos.vx; short s = camPath.points[camPath.cursor+1].vy - camera.pos.vy; short t = camPath.points[camPath.cursor+1].vz - camera.pos.vz; // FIXME : the lerp function is incorrect //~ camera.pos.vx += lerp(camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx, 64); //~ camera.pos.vy += lerp(camPath.points[camPath.cursor].vy, camPath.points[camPath.cursor+1].vy, 64); //~ camera.pos.vz += lerp(camPath.points[camPath.cursor].vz, camPath.points[camPath.cursor+1].vz, 64); // easeOut camera.pos.vx += lerp(camera.pos.vx, camPath.points[camPath.cursor+1].vx, 128); camera.pos.vy += lerp(camera.pos.vy, camPath.points[camPath.cursor+1].vy, 128); camera.pos.vz += lerp(camera.pos.vz, camPath.points[camPath.cursor+1].vz, 128); //~ if ( camera.pos.vx <= camPath.points[camPath.cursor+1].vx || //~ camera.pos.vy >= camPath.points[camPath.cursor+1].vy || //~ camera.pos.vz <= camPath.points[camPath.cursor+1].vz){ //~ camPath.cursor ++; //~ } if ( camera.pos.vx + r == camPath.points[camPath.cursor+1].vx && camera.pos.vy + s == camPath.points[camPath.cursor+1].vy && camera.pos.vz + t == camPath.points[camPath.cursor+1].vz){ camPath.cursor ++; } if ( camPath.cursor == camPath.len - 1 ){ lerping = 0; camPath.cursor = 0; } } //~ dt = time/180+1 - time/180; if (physics){ if(time%1 == 0){ for ( int k = 0; k < sizeof(meshes)/sizeof(meshes[0]);k ++){ if ( *meshes[k]->isRigidBody == 1 ) { applyAcceleration(meshes[k]->body); //~ VECTOR col_lvl, col_sphere = {0}; // Get col with level ( modelgnd_body ) col_lvl = getIntCollision( *meshes[k]->body , modelgnd_body ); col_sphere = getExtCollision( modelobject_body, modelSphere_body ); // If !col, keep moving if ( !col_lvl.vx ){ meshes[k]->pos->vx = meshes[k]->body->position.vx; } if ( !col_lvl.vy ){ meshes[k]->pos->vy = meshes[k]->body->position.vy; } // FIXME : Why the 15px offset ? if ( !col_lvl.vz ){ meshes[k]->pos->vz = meshes[k]->body->position.vz; } // If col with wall, change direction if ( col_lvl.vx ) { meshes[k]->body->gForce.vx *= -1; } if ( col_lvl.vy ) { //~ meshes[k]->body->gForce.vy *= -1; } if ( col_lvl.vz ) { meshes[k]->body->gForce.vz *= -1; } // If col, reset velocity //~ if ( col_lvl.vx || //~ col_lvl.vy || //~ col_lvl.vz //~ ) { //~ meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vz = 0; //~ } ResolveCollision( &modelobject_body, &modelSphere_body); //~ FntPrint("Vel: %d\n", modelSphere_body.velocity.vx); if (col_sphere.vx){ int w = (ONE / (( modelSphere_body.velocity.vx * ONE ) / ( (modelSphere_body.max.vx - modelSphere_body.min.vx) / 2 ))) ; if (modelSphere_body.velocity.vx){ //~ int w = (ONE / (( modelSphere_body.velocity.vx * ONE ) / ( (modelSphere_body.max.vx - modelSphere_body.min.vx) / 2 ))) * modelSphere_body.velocity.vx ; //~ FntPrint("W %d\n",w); FntPrint("Vel %d\n",modelSphere_body.velocity.vx); modelSphere_rot.vz += w; //~ if ( col_sphere.vx ) { //~ meshes[k]->body->gForce.vx *= -1; //modelSphere_body.gForce.vx = -meshes[k]->body->gForce.vx/4; //~ ResolveCollision(&modelobject_body, &modelSphere_body); //~ } } } if (!col_sphere.vx){ modelSphere_body.velocity.vx = 0; } //~ if (w && !modelSphere_body.velocity.vx) //~ { //~ FntPrint("W %d\n",w); //~ w --; //~ } //~ if ( col_sphere.vz ) { meshes[k]->body->gForce.vz *= -1; } //~ if ( col_sphere.vy ) { meshes[k]->body->gForce.vy *= -1; } //~ if (modelSphere_body.gForce.vx){modelSphere_body.gForce.vx -= 5;} meshes[k]->pos->vx = meshes[k]->body->position.vx; //~ meshes[k]->pos->vy = meshes[k]->body->position.vy ; meshes[k]->pos->vz = meshes[k]->body->position.vz; } meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vx = meshes[k]->body->velocity.vz = 0; } } } // Camera setup // position of cam relative to actor posToActor.vx = modelobject_pos.vx + camera.pos.vx; posToActor.vz = modelobject_pos.vz + camera.pos.vz; posToActor.vy = modelobject_pos.vy + camera.pos.vy; // find dist between actor and cam //~ dist = csqrt((posToActor.vx * posToActor.vx * 4096) + (posToActor.vz * posToActor.vz * 4096)); //~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) ); // find angles between cam and actor //~ theta.vy = ratan2(posToActor.vx, posToActor.vz); //~ theta.vx = 1024 - ratan2(dist, posToActor.vy); //~ camera.rot.vy = - theta.vy; // using csin/ccos, no need for theta // camera.rot.vy = angle; //~ camera.rot.vx = theta.vx; //~ applyCamera(&camera); // Clear the current OT ClearOTagR(ot[db], OTLEN); for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){ // Render the sample vector model t=0; // If rigidbdy, apply rot/transform matrix if (*meshes[k]->isRigidBody){ //~ PushMatrix(); // Push current matrix on the stack (real slow -> dma transfer ) RotMatrix_gte(meshes[k]->rot, meshes[k]->mat); // Apply rotation matrix TransMatrix(meshes[k]->mat, meshes[k]->pos); // Apply translation matrix CompMatrix(&camera.mat, meshes[k]->mat, meshes[k]->mat); // Was using &PolyMatrix instead of meshes[k]->mat SetRotMatrix(meshes[k]->mat); // Set default rotation matrix - Was using &PolyMatrix instead of meshes[k]->mat SetTransMatrix(meshes[k]->mat); // Was using &PolyMatrix instead of meshes[k]->mat } // modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ... if (meshes[k]->index[t].code == 4) { for (i = 0; i < (meshes[k]->tmesh->len * 3); i += 3) { poly = (POLY_GT3 *)nextpri; // If Vertex Anim flag if (*meshes[k]->isAnim){ // FIXME : SLERP VERTEX ANIM //~ SVECTOR a,b,c = {0,0,0,0}; //~ for (int f = 0; f < 5; f++){ //~ interpCache[f] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048); //~ interpCache[f+1] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048); //~ interpCache[f+2] = SVlerp( (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048); //~ } //~ SVECTOR start = meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]]; //~ SVECTOR end = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]]; //~ if (a.vx != 0 && b.vx != 0 && c.vx != 0){ //~ SVECTOR d,e,f; //~ d = SVlerp( (SVECTOR) a, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]], 2048); //~ e = SVlerp( (SVECTOR) b, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], 2048); //~ f = SVlerp( (SVECTOR) c, (SVECTOR) meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], 2048); //~ addVector( &a , &d ); //~ addVector( &b , &e ); //~ addVector( &c , &f ); //~ } else { //~ a = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]]; //~ b = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]]; //~ c = (SVECTOR) meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]]; //~ } //~ a.vx = lerp(start.vx, end.vx, 2048); //~ a.vy = lerp(meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vy, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vy, 2048); //~ a.vz = lerp(meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, 2048); //~ b = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]]; //~ c = meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]]; //~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t]],64, a); //~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t+1]],64, b); //~ SVlerp(meshes[k]->anim->data[ 0 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], meshes[k]->anim->data[ 10 * modelCylindre_anim.nvert + meshes[k]->index[t+2]],64, c); //~ FntPrint("%d %d %d\n", meshes[k]->anim->data[0 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, meshes[k]->anim->data[10 * modelCylindre_anim.nvert + meshes[k]->index[t]].vz, a.vz); //~ FntPrint("%d %d %d\n", c.vx, c.vy, c.vz); //~ FntPrint("%d %d %d\n", a.vx, b.vx, c.vx); // Rotate, translate, and project the vectors and output the results into a primitive //~ OTz = RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t]] , (long*)&poly->x0, meshes[k]->p, &Flag); //~ OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+1]], (long*)&poly->x1, meshes[k]->p, &Flag); //~ OTz += RotTransPers(&meshes[k]->tmesh->v[meshes[k]->index[t+2]], (long*)&poly->x2, meshes[k]->p, &Flag); // Use anim vertex's positions //~ nclip = RotAverageNclip3( //~ &meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]], //~ &meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], //~ &meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], //~ (long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, //~ meshes[k]->p, //~ &OTz, //~ &Flag //~ ); // Use anim vertex's positions nclip = RotAverageNclip3( &meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t].order.vx], &meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t].order.vz], &meshes[k]->anim->data[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t].order.vy], (long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, meshes[k]->p, &OTz, &Flag ); } else { // Use model's regular vertex pos nclip = RotAverageNclip3( &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ], &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz ], &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ], (long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, meshes[k]->p, &OTz, &Flag ); } //~ FntPrint("%d %d %d %d\n", meshes[k]->index[t].order.vx, meshes[k]->index[t].order.vy, meshes[k]->index[t].order.vz, meshes[k]->index[t].code); if (nclip > 0 && OTz > 0) { SetPolyGT3(poly); // Can use ? //~ RotMeshPrimS_GCT3(); if (*meshes[k]->isPrism){ // Use current DRAWENV clip as TPAGE ((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0, draw[db].clip.x, draw[db].clip.y ); // Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224 setUV3(poly, (poly->x0 < 0? 0 : poly->x0 > 255? 255 : poly->x0), (poly->y0 < 0? 0 : poly->y0 > 224? 224 : poly->y0), (poly->x1 < 0? 0 : poly->x1 > 255? 255 : poly->x1), (poly->y1 < 0? 0 : poly->y1 > 224? 224 : poly->y1), (poly->x2 < 0? 0 : poly->x2 > 255? 255 : poly->x2), (poly->y2 < 0? 0 : poly->y2 > 224? 224 : poly->y2) ); } else { // Use regular TPAGE ((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0, meshes[k]->tim->prect->x, meshes[k]->tim->prect->y ); // Use model UV coordinates setUV3(poly, meshes[k]->tmesh->u[i].vx , meshes[k]->tmesh->u[i].vy + meshes[k]->tim->prect->y, meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y, meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y); } // FIXME : Polygon subdiv //~ OTc = OTz>>4; //~ if (OTc < 15) { //~ if (OTc > 5) div.ndiv = 1; else div.ndiv = 2; //~ DivideGT3( //~ // Vertex coord //~ &meshes[k]->tmesh->v[meshes[k]->index[t]], //~ &meshes[k]->tmesh->v[meshes[k]->index[t+2]], //~ &meshes[k]->tmesh->v[meshes[k]->index[t+1]], //~ // UV coord //~ meshes[k]->tmesh->u[i], //~ meshes[k]->tmesh->u[i+2], //~ meshes[k]->tmesh->u[i+1], //~ // Color //~ meshes[k]->tmesh->c[i], //~ meshes[k]->tmesh->c[i+2], //~ meshes[k]->tmesh->c[i+1], //~ // Gpu packet //~ poly, //~ &ot[db][OTz], //~ &div); //~ // Increment primitive list pointer //~ nextpri += ( (sizeof(POLY_GT3) + 3) / 4 ) * (( 1 << ( div.ndiv )) << ( div.ndiv )); //~ triCount = ((1<<(div.ndiv))<<(div.ndiv)); //~ } // Interpolate a primary color vector and far color // If vertex anim has updated normals //~ if (*meshes[k]->isAnim){ //~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]], &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol); //~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol1); //~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol2); //~ } else { CVECTOR outCol ={0,0,0,0}; CVECTOR outCol1 ={0,0,0,0}; CVECTOR outCol2 ={0,0,0,0}; //~ NormalColorDpq(&meshes[k]->tmesh->n[meshes[k]->index[t]] , &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol); //~ NormalColorDpq(&meshes[k]->tmesh->n[meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol1); //~ NormalColorDpq(&meshes[k]->tmesh->n[meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol2); NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vx ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vx ], *meshes[k]->p, &outCol); NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vz ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vz ], *meshes[k]->p, &outCol1); NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vy ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vy ], *meshes[k]->p, &outCol2); //~ } // Other methods //~ NormalColorDpq3(&meshes[k]->tmesh->n[i], //~ &meshes[k]->tmesh->n[i+1], //~ &meshes[k]->tmesh->n[i+2], //~ &meshes[k]->tmesh->c[i], //~ *meshes[k]->p, //~ &outCol,&outCol1,&outCol2 //~ ); //~ DpqColor3(&meshes[k]->tmesh->c[i], //~ &meshes[k]->tmesh->c[i+1], //~ &meshes[k]->tmesh->c[i+2], //~ *meshes[k]->p, //~ &outCol,&outCol1,&outCol2 //~ ); if (*meshes[k]->isPrism){ // Use un-interpolated (i.e: no light, no fog) colors setRGB0(poly, meshes[k]->tmesh->c[i].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+2].b); setRGB1(poly, meshes[k]->tmesh->c[i+1].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+1].b); setRGB2(poly, meshes[k]->tmesh->c[i+2].r, meshes[k]->tmesh->c[i+2].g, meshes[k]->tmesh->c[i+2].b); } else { setRGB0(poly, outCol.r, outCol.g , outCol.b); setRGB1(poly, outCol1.r, outCol1.g, outCol1.b); setRGB2(poly, outCol2.r, outCol2.g, outCol2.b); } // Sort the primitive into the OT //~ OTz /= 3; // cliptest3((short *)&meshes[k]->tmesh->v[meshes[k]->index[t]]) //~ if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 2048)){ if ((OTz > 0) && (OTz < OTLEN) && (*meshes[k]->p < 4096)){ AddPrim(&ot[db][OTz-2], poly); // OTz - 2 } nextpri += sizeof(POLY_GT3); } t+=1; } //~ if (*meshes[k]->isRigidBody){ //~ PopMatrix(); // Pull previous matrix from stack (slow) //~ } } // Find and apply light rotation matrix RotMatrix(&lgtang, &rotlgt); MulMatrix0(&lgtmat, &rotlgt, &light); SetLightMatrix(&light); applyCamera(&camera); } //~ FntPrint("ColSphere: %d\n", (modelobject_body.position.vy + modelobject_body.max.vy) - (modelSphere_body.position.vy + modelSphere_body.min.vy) ); //~ FntPrint("ColSphere: %d\n", (modelSphere_body.position.vy + modelSphere_body.max.vy) - (modelobject_body.position.vy + modelobject_body.min.vy) ); //~ FntPrint("Col %d\n", col_sphere.vy ); //~ FntPrint("Obj: %d,%d,%d\n",modelobject_body.velocity.vx,modelobject_body.velocity.vy,modelobject_body.velocity.vz); //~ FntPrint("Sph: %d,%d,%d\n",modelSphere_body.velocity.vx,modelSphere_body.velocity.vy,modelSphere_body.velocity.vz); //~ FntPrint("%d, %d\n",modelobject_body.position.vx, modelobject_pos.vx); //~ FntPrint("Time : %d %d dt :%d\n",time, atime, dt); FntPrint("Tricount: %d OTz: %d\nOTc: %d, p: %d\n",triCount, OTz, OTc, *meshes[2]->p); //~ FntPrint("Sphr : %4d %4d %4d\n", modelSphere_body.gForce.vx, modelSphere_body.gForce.vy, modelSphere_body.gForce.vz); //~ FntPrint("isPrism: %d\n", *meshobject.isPrism); //~ FntPrint("L1: %d %d %d\n", light.m[0][0],light.m[0][1],light.m[0][2]); //~ FntPrint("L2: %d %d %d\n", light.m[1][0],light.m[1][1],light.m[1][2]); //~ FntPrint("L3: %d %d %d\n", light.m[2][0],light.m[2][1],light.m[2][2]); FntFlush(-1); display(); //~ frame = VSync(-1); } return 0; } void init(){ // Reset the GPU before doing anything and the controller PadInit(0); ResetGraph(0); // Initialize and setup the GTE InitGeom(); SetGeomOffset(CENTERX, CENTERY); // x, y offset SetGeomScreen(CENTERX); // Distance between eye and screen // Set the display and draw environments SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES); SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES); if (VMODE) { SetVideoMode(MODE_PAL); disp[0].screen.y += 8; disp[1].screen.y += 8; } setRGB0(&draw[0], BGc.r, BGc.g, BGc.b); setRGB0(&draw[1], BGc.r, BGc.g, BGc.b); draw[0].isbg = 1; draw[1].isbg = 1; PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); // Init font system FntLoad(960, 0); FntOpen(16, 180, 240, 96, 0, 512); } void display(void){ DrawSync(0); vs = VSync(0); PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); SetDispMask(1); DrawOTag(ot[db] + OTLEN - 1); db = !db; nextpri = primbuff[db]; } // Nic's function void getCameraXZ(int * x, int * z, int actorX, int actorZ, int angle, int distance) { // Using Nic's Costable : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102 // https://godbolt.org/z/q6cMcj *x = (actorX * ONE) + (distance * nsin(angle)); *z = (actorZ * ONE) - (distance * ncos(angle)); //~ *x = (actorX * ONE) + (distance * csin(angle)); //~ *z = (actorZ * ONE) - (distance * ccos(angle)); // Z is pointing away from the eye // @soapy https://discord.com/channels/642647820683444236/663664210525290507/797188403748929547 //~ *x = (actorX * ONE) + (distance * rcossin_tbl[(angle & 0xFFFU) * 2]); //~ *z = (actorZ * ONE) - (distance * rcossin_tbl[(angle & 0xFFFU) * 2 + 1]); // Z is pointing away from the eye // Using precalculated psin and pcos //~ *x = (actorX * ONE) + (distance * psin[angle]); //~ *z = (actorZ * ONE) - (distance * pcos[angle]); // Z is pointing away from the eye } // @Will : you might want to use sin/cos to move the camera in a circle but you could do that by moving it along it’s tangent and then clamping the distance void applyCamera(CAMERA * cam){ VECTOR vec; // Vector that holds the output values of the following instructions RotMatrix_gte(&cam->rot, &cam->mat); // Convert rotation angle in psx units (360° == 4096) to rotation matrix) ApplyMatrixLV(&cam->mat, &cam->pos, &vec); // Multiply matrix by vector pos and output to vec TransMatrix(&cam->mat, &vec); // Apply transform vector SetRotMatrix(&cam->mat); // Set Rotation matrix SetTransMatrix(&cam->mat); // Set Transform matrix } void setCameraPos(VECTOR pos, SVECTOR rot){ camera.pos = pos; camera.rot = rot; }; void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y DrawSync(0); // Wait for the drawing to end if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y DrawSync(0); // Wait for drawing to end } } int lerp(int start, int end, int factor){ // lerp interpolated cam movement // InBetween = Value 1 + ( ( Value2 - Value1 ) * lerpValue ) ; // lerpValue should be a float between 0 and 1. // This'll have to be a fixed point value between 0-4096 // easeOut //~ return ( ( start ) + ( end - start ) * factor ) / 4096; // easeIn return ( ( start ) + ( end - start ) * factor ) / 4096; // kinda linear //~ return (( start ) + ( end - start )) * factor / 4096; } SVECTOR SVlerp(SVECTOR start, SVECTOR end, int factor){ SVECTOR output = {0,0,0,0}; output.vx = lerp(start.vx, end.vx, factor); output.vy = lerp(start.vy, end.vy, factor); output.vz = lerp(start.vz, end.vz, factor); return output; } VECTOR getIntCollision(BODY one, BODY two){ VECTOR d1, d2, col; d1.vx = (one.position.vx - one.max.vx) - (two.position.vx + two.min.vx); d1.vy = (one.position.vy + one.min.vy) - (two.position.vy + two.min.vy); d1.vz = (one.position.vz - one.max.vz) - (two.position.vz + two.min.vz); d2.vx = (two.position.vx + two.max.vx) - (one.position.vx + one.max.vx); d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.max.vy); d2.vz = (two.position.vz + two.max.vz) - (one.position.vz + one.max.vz); col.vx = !(d1.vx > 0 && d2.vx > 0); col.vy = !(d1.vy > 0 && d2.vy > 0); col.vz = !(d1.vz > 0 && d2.vz > 0); return col; } VECTOR getExtCollision(BODY one, BODY two){ VECTOR d1, d2, col; d1.vx = (one.position.vx + one.max.vx) - (two.position.vx + two.min.vx); d1.vy = (one.position.vy + one.max.vy) - (two.position.vy + two.min.vy); d1.vz = (one.position.vz + one.max.vz) - (two.position.vz + two.min.vz); d2.vx = (two.position.vx + two.max.vx) - (one.position.vx + one.min.vx); d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.min.vy); d2.vz = (two.position.vz + two.max.vz) - (one.position.vz + one.min.vz); col.vx = d1.vx > 0 && d2.vx > 0; col.vy = d1.vy > 0 && d2.vy > 0; col.vz = d1.vz > 0 && d2.vz > 0; return col; } void applyAcceleration(BODY * actor){ short dt = 1; VECTOR acceleration = {actor->invMass * actor->gForce.vx , actor->invMass * actor->gForce.vy, actor->invMass * actor->gForce.vz}; actor->velocity.vx += (acceleration.vx * dt) / 4096; actor->velocity.vy += (acceleration.vy * dt) / 4096; actor->velocity.vz += (acceleration.vz * dt) / 4096; actor->position.vx += (actor->velocity.vx * dt); actor->position.vy += (actor->velocity.vy * dt); actor->position.vz += (actor->velocity.vz * dt); } //~ // https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-the-basics-and-impulse-resolution--gamedev-6331 void ResolveCollision( BODY * one, BODY * two ){ // Calculate relative velocity VECTOR rv = { subVector( one->velocity, two->velocity) }; //~ FntPrint("rv: %d, %d, %d\n", rv.vx,rv.vy,rv.vz); // Collision normal VECTOR normal = { subVector( two->position, one->position ) }; // Normalize collision normal normal.vx = normal.vx > 32 ? 1 : normal.vx < -32 ? -1 : 0 ; normal.vy = normal.vy > 256 ? 1 : normal.vy < -256 ? -1 : 0 ; normal.vz = normal.vz > 32 ? 1 : normal.vz < -32 ? -1 : 0 ; //~ FntPrint("norm: %d, %d, %d\n", normal.vx,normal.vy,normal.vz); // Calculate relative velocity in terms of the normal direction long velAlongNormal = dotProduct( rv, normal ); //~ FntPrint("velN: %d\n", velAlongNormal); // Do not resolve if velocities are separating if(velAlongNormal > 0) return; // Calculate restitution long e = min( one->restitution, two->restitution ); //~ FntPrint("e: %d\n", e); //~ // Calculate impulse scalar long j = -(1 + e) * velAlongNormal * ONE; j /= one->invMass + two->invMass; //~ j /= ONE; //~ FntPrint("j: %d\n", j); // Apply impulse applyVector(&normal, j, j, j, *=); //~ FntPrint("Cnormal %d %d %d\n",normal.vx,normal.vy,normal.vz); VECTOR velOne = normal; VECTOR velTwo = normal; applyVector(&velOne,one->invMass,one->invMass,one->invMass, *=); applyVector(&velTwo,two->invMass,two->invMass,two->invMass, *=); //~ FntPrint("V1 %d %d %d\n", velOne.vx/4096/4096,velOne.vy/4096/4096,velOne.vz/4096/4096); //~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096/4096,velTwo.vy/4096/4096,velTwo.vz/4096/4096); applyVector(&one->velocity, velOne.vx/4096/4096, velOne.vy/4096/4096, velOne.vz/4096/4096, -=); applyVector(&two->velocity, velTwo.vx/4096/4096, velTwo.vy/4096/4096, velTwo.vz/4096/4096, +=); //~ FntPrint("V1 %d %d %d\n", velOne.vx/4096/4096,velOne.vy/4096/4096,velOne.vz/4096/4096); //~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096/4096,velTwo.vy/4096/4096,velTwo.vz/4096/4096); } // A few notes on the following code : int ncos(unsigned int t) { t %= DC_2PI; int r; if (t < DC_PI2) { r = m_cosTable[t]; } else if (t < DC_PI) { r = -m_cosTable[DC_PI - 1 - t]; } else if (t < (DC_PI + DC_PI2)) { r = -m_cosTable[t - DC_PI]; } else { r = m_cosTable[DC_2PI - 1 - t]; }; return r >> 12; }; // sin(x) = cos(x - pi / 2) int nsin(unsigned int t) { t %= DC_2PI; if (t < DC_PI2){ return ncos(t + DC_2PI - DC_PI2); }; return ncos(t - DC_PI2); }; // f(n) = cos(n * 2pi / 2048) <- 2048 is == DC_2PI value // f(n) = 2 * f(1) * f(n - 1) - f(n - 2) void generateTable(void){ m_cosTable[0] = 16777216; // 2^24 * cos(0 * 2pi / 2048) => 2^24 * 1 = 2^24 : here, 2^24 defines the precision we want after the decimal point static const long long C = 16777137; // 2^24 * cos(1 * 2pi / 2048) = C = f(1); m_cosTable[1] = C; for (int i = 2; i < 512; i++){ m_cosTable[i] = ((C * m_cosTable[i - 1]) >> 23) - m_cosTable[i - 2]; m_cosTable[511] = 0; } }; // https://github.com/Arsunt/TR2Main/blob/411cacb35914c616cb7960c0e677e00c71c7ee88/3dsystem/phd_math.cpp#L432 int patan(int x, int y){ int result; int swapBuf; int flags = 0; // if either x or y are 0, return 0 if( x == 0 && y == 0){ return 0; } if( x < 0 ) { flags |= 4; x = -x; } if ( y < 0 ) { flags |= 2; y = -y; } if ( y > x ) { flags |= 1; SWAP(x, y ,swapBuf); } result = AtanBaseTable[flags] + AtanAngleTable[0x800 * y / x]; if ( result < 0 ){ result = -result; return result; } } u_int psqrt(u_int n){ u_int result = 0; u_int base = 0x40000000; u_int basedResult; for( ; base != 0; base >>= 2 ) { for( ; base != 0; base >>= 2 ) { basedResult = base + result; result >>= 1; if( basedResult > n ) { break; } n -= basedResult; result |= base; } } return result; } int cliptest3(short *v1) { if( v1[0]<0 && v1[2]<0 && v1[4]<0 ) return 0; if( v1[1]<0 && v1[3]<0 && v1[5]<0 ) return 0; if( v1[0] > SCREENXRES && v1[2] > SCREENXRES && v1[4] > SCREENXRES) return 0; if( v1[1] > SCREENYRES && v1[3] > SCREENYRES && v1[5] > SCREENYRES) return 0; return 1; } void callback(){ int pad = PadRead(0); if (pad & PADRright && !pressed){ if(camMode < 4){ camMode += 1; } else { setCameraPos(camStartPos.pos, camStartPos.rot); camPath.cursor = 0; camMode = 0; } pressed = 1; } if (!(pad & PADRright)){ pressed = 0; } if (pad & PADRdown){ lgtang.vy += 32; //~ lgtang.vx += 32; } if (pad & PADRup){ lgtang.vz += 32; //~ lgtang.vx += 32; } //~ RotMatrix(&lgtang, &rotlgt); //~ MulMatrix(&rotlgt, &rottrans); if (pad & PADLdown && !pressed){ if (*meshobject.isPrism){ *meshobject.isPrism = 0; } else { *meshobject.isPrism = 1; } pressed = 1; } if (!pad & PADLdown){ pressed = 0; } }