3dcam/3dcam-tri-quads.c

1929 lines
86 KiB
C
Raw Normal View History

2021-02-28 11:14:02 +01:00
// 3dcam
// With huge help from @NicolasNoble : https://discord.com/channels/642647820683444236/646765703143227394/796876392670429204
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
// bpy. app. debug = True
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
#include <stdint.h>
2021-03-06 11:45:25 +01:00
#include <stddef.h>
2021-02-28 11:14:02 +01:00
// Precalculated sin/cos values
//~ #include "psin.c"
//~ #include "pcos.c"
#include "atan.c"
// Sample vector model
2021-03-06 11:45:25 +01:00
#include "coridor2.c"
2021-02-28 11:14:02 +01:00
//~ #include "tst-quads.c"
//~ #include "gnd.c"
//~ #include "startcube.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
// pixel > cm : used in physics calculations
#define SCALE 4
#define FNT_POS_X 960
#define FNT_POS_Y 0
2021-03-06 11:45:25 +01:00
#define OT2LEN 8
2021-02-28 11:14:02 +01:00
#define OTLEN 256 // Maximum number of OT entries
2021-03-15 15:58:21 +01:00
#define PRIMBUFFLEN 4096 * sizeof(POLY_GT4) // Maximum number of POLY_GT3 primitives
2021-02-28 11:14:02 +01:00
// atantable
#define SWAP(a,b,c) {(c)=(a); (a)=(b); (b)=(c);} // swap(x, y, buffer)
// dotproduct of two vectors
#define dotProduct(v0, v1) \
(v0).vx * (v1).vx + \
(v0).vy * (v1).vy + \
(v0).vz * (v1).vz
// min value
#define min(a,b) \
(a)-(b)>0?(b):(a)
// max
#define max(a,b) \
(a)-(b)>0?(a):(b)
#define subVector(v0, v1) \
(v0).vx - (v1).vx, \
(v0).vy - (v1).vy, \
(v0).vz - (v1).vz
//~ extern ushort rcossin_tbl[];
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
2021-03-06 11:45:25 +01:00
// OT for BG/FG discrimination
u_long otdisc[2][OT2LEN] = {0};
// Main OT
2021-02-28 11:14:02 +01:00
u_long ot[2][OTLEN] = {0}; // Ordering table (contains addresses to primitives)
2021-03-06 11:45:25 +01:00
2021-02-28 11:14:02 +01:00
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
//~ int primcnt=0; // Primitive counter
char * nextpri = primbuff[0]; // Primitive counter
char db = 0; // Current buffer counter
CVECTOR BGc = {50, 50, 75, 0}; // Far color
2021-03-19 15:40:51 +01:00
VECTOR BKc = {128, 128, 128, 0}; // Back color
2021-02-28 11:14:02 +01:00
// Local color matrix
//~ static MATRIX cmat = {
//~ /* light source #0, #1, #2, */
//~ ONE, 0, 0, /* R */
//~ 0, ONE, 0, /* G */
//~ 0, 0, ONE, /* B */
//~ };
//~ // local light matrix : Direction and reach of each light source.
//~ // Each light is aligned with the axis, hence direction is in the same coordinate system as the PSX (Y-axis down)
//~ // One == 4096 is reach/intensity of light source
//~ static MATRIX lgtmat = {
//~ // X Y Z
//~ ONE, 0, 0, // Light 0
//~ 0,0,0, // Light 1
//~ 0,0,0 // Light 2
//~ };
// Light
//~ MATRIX rottrans;
MATRIX rotlgt;
SVECTOR lgtang = {0, 0, 0};
MATRIX light;
//~ SVECTOR lgtang = {1024, -512, 1024};
static int m_cosTable[512]; // precalc costable
static const unsigned int DC_2PI = 2048; // this is from gere : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
static const unsigned int DC_PI = 1024;
static const unsigned int DC_PI2 = 512;
short vs;
typedef struct{
int x, xv; // x: current value += xv : new value
int y, yv; // x,y,z, vx, vy, vz are in PSX units (ONE == 4096)
int z, zv;
int pan, panv;
int tilt, tiltv;
int rol;
VECTOR pos;
SVECTOR rot;
SVECTOR dvs;
MATRIX mat;
} CAMERA;
CAMERA camera = {
0,0,
0,0,
0,0,
0,0,
0,0,
0,
{0,0,0},
{0,0,0},
{0,0,0}
};
// physics
long time = 0;
const int gravity = 10;
//~ //vertex anim
//~ typedef struct {
//~ int nframes; // number of frames e.g 20
//~ int nvert; // number of vertices e.g 21
//~ SVECTOR data[]; // vertex pos as SVECTORs e.g 20 * 21 SVECTORS
//~ } VANIM;
//Pad
int pressed = 0;
u_short timer = 0;
// Cam stuff
2021-03-19 15:40:51 +01:00
int camMode = 0;
2021-02-28 11:14:02 +01:00
long timeB = 0;
int lerping = 0;
2021-03-15 15:58:21 +01:00
// Inverted Cam coordinates for Forward Vector calc
VECTOR InvCamPos = {0,0,0,0};
VECTOR fVecActor = {0,0,0,0};
2021-02-28 11:14:02 +01:00
u_long triCount = 0;
// Prototypes
// Stolen from grumpycoder
// Sin/Cos Table
void generateTable(void);
int ncos(u_int t);
int nsin(u_int t);
// Atan table
2021-03-15 15:58:21 +01:00
long long patan(long x, long y);
2021-02-28 11:14:02 +01:00
//sqrt
u_int psqrt(u_int n);
//~ typedef unsigned int uint32_t;
//~ typedef int int32_t;
// fixed point math
static inline int32_t dMul(int32_t a, int32_t b);
static inline uint32_t lerpU(uint32_t start, uint32_t dest, unsigned pos);
static inline int32_t lerpS(int32_t start, int32_t dest, unsigned pos);
static inline int32_t lerpD(int32_t start, int32_t dest, int32_t pos);
static inline long long lerpL(long long start, long long dest, long long pos);
// PSX setup
void init(void);
void display(void);
// Utils
void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
int cliptest3(short * v1);
int lerp(int start, int end, int factor); // FIXME : not working as it should
SVECTOR SVlerp(SVECTOR start, SVECTOR end, int factor); // FIXME
2021-03-15 15:58:21 +01:00
VECTOR getVectorTo(VECTOR actor, VECTOR target);
int alignAxisToVect(VECTOR target, short axis, int factor);
2021-02-28 11:14:02 +01:00
// Camera
void getCameraXZ(int * x, int * z, int actorX, int actorZ, int angle, int distance);
void applyCamera(CAMERA * cam);
void setCameraPos(VECTOR pos, SVECTOR rot);
// Physics
VECTOR getIntCollision(BODY one, BODY two);
VECTOR getExtCollision(BODY one, BODY two);
void ResolveCollision( BODY * one, BODY * two );
VECTOR angularMom(BODY body); // Not yours ;)
void applyAcceleration(BODY * actor);
void callback();
int main() {
// Mesh stuff
int i;
long t, p, OTz, OTc, Flag, nclip; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 * poly;
POLY_GT4 * poly4;
SPRT * sprt;
DR_TPAGE * tpage;
// Poly subdiv
2021-03-15 15:58:21 +01:00
DIVPOLYGON4 div4 = { 0 };
div4.pih = SCREENXRES;
div4.piv = SCREENYRES;
div4.ndiv = 2;
//~ DIVPOLYGON3 div3 = { 0 };
//~ div3.pih = SCREENXRES;
//~ div3.piv = SCREENYRES;
//~ div3.ndiv = 1;
2021-02-28 11:14:02 +01:00
MATRIX Cmatrix = {0};
init();
generateTable();
VSyncCallback(callback);
//~ SetLightMatrix(&LLM);
SetColorMatrix(&cmat);
SetBackColor(BKc.vx,BKc.vy,BKc.vz);
//~ SetFarColor(BGc.r, BGc.g, BGc.b);
SetFogNearFar(1200, 1600, SCREENXRES);
for (int k = 0; k < sizeof(meshes)/sizeof(TMESH *); k++){
LoadTexture(meshes[k]->tim_data, meshes[k]->tim);
}
2021-03-06 11:45:25 +01:00
//~ camPtr = &camAngle_camPath_001;
if (camPtr->tim_data){
LoadTexture(camPtr->tim_data, camPtr->BGtim);
}
2021-02-28 11:14:02 +01:00
// physics
short physics = 1;
long dt;
VECTOR col_lvl, col_sphere, col_sphere_act = {0};
// Cam stuff
2021-03-15 15:58:21 +01:00
VECTOR posToActor = {0, 0, 0, 0}; // position of camera relative to actor
VECTOR camAngleToAct = {0, 0, 0, 0}; // rotation angles for the camera to point at actor
// Sprite sustem
VECTOR posToCam = {0, 0, 0, 0};
VECTOR objAngleToCam = {0, 0, 0, 0};
2021-02-28 11:14:02 +01:00
int angle = 0; //PSX units = 4096 == 360° = 2Pi
int dist = 0; //PSX units
short timediv = 1;
int atime = 0;
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
triCount += meshes[k]->tmesh->len;
}
2021-03-06 11:45:25 +01:00
// Pre-calc bg test
setCameraPos(camPtr->campos->pos, camPtr->campos->rot);
2021-02-28 11:14:02 +01:00
//~ camera.rot.vz = 100;
// Main loop
while (1) {
2021-03-06 11:45:25 +01:00
// Clear the main OT
ClearOTagR(otdisc[db], OT2LEN);
// Clear Secondary OT
ClearOTagR(ot[db], OTLEN);
2021-02-28 11:14:02 +01:00
// timeB = time;
time ++;
// atime is used for animations timing
timediv = 1;
if (time % timediv == 0){
atime ++;
}
// Angle between camera and actor
// using atantable (faster)
2021-03-15 15:58:21 +01:00
camAngleToAct.vy = (patan(-posToActor.vx, -posToActor.vz) / 16) - 3076 ;
camAngleToAct.vx = patan(dist, posToActor.vy) >> 4;
//~ posToCam = getVectorTo(*meshPlan.pos, camera.pos);
//~ posToCam = getVectorTo(camera.pos, *meshPlan.pos);
//~ objAngleToCam.vy = ( (patan(meshPlan.pos->vx, meshPlan.pos->vz) - patan(camera.pos.vx > 0 ? camera.pos.vx : camera.pos.vx, camera.pos.vz) ) >> 4) - 1024;
//~ objAngleToCam.vy = ( (patan(meshPlan.pos->vx > 0 ? meshPlan.pos->vx : 4096 + meshPlan.pos->vx, meshPlan.pos->vz) - patan(camera.pos.vx > 0 ? camera.pos.vx : 4096 + camera.pos.vx, camera.pos.vz) ) >> 4) - 1024;
//~ objAngleToCam.vx = ratan2(posToCam.pad, posToCam.vy);
//~ meshPlan.rot->vy = objAngleToCam.vy;
//~ meshPlan.rot->vx = objAngleToCam.vy;
// Actor Forward vector
fVecActor = *actorPtr->pos;
fVecActor.vx = actorPtr->pos->vx + (nsin(actorPtr->rot->vy/2));
fVecActor.vz = actorPtr->pos->vz - (ncos(actorPtr->rot->vy/2));
2021-02-28 11:14:02 +01:00
if(camMode != 2){
2021-03-15 15:58:21 +01:00
camera.rot.vy = camAngleToAct.vy;
2021-02-28 11:14:02 +01:00
// using csin/ccos, no need for theta
//~ camera.rot.vy = angle;
2021-03-15 15:58:21 +01:00
camera.rot.vx = camAngleToAct.vx;
2021-02-28 11:14:02 +01:00
}
if(camMode < 4 ){
lerping = 0;
}
// Camera follows actor with lerp for rotations
if(camMode == 0){
dist = 150;
camera.pos.vx = -(camera.x/ONE);
//~ camera.pos.vy = -(camera.y/ONE);
camera.pos.vz = -(camera.z/ONE);
2021-03-15 15:58:21 +01:00
//~ InvCamPos.vx = camera.x/ONE;
//~ InvCamPos.vz = camera.z/ONE;
//~ applyVector(&InvCamPos, -1,-1,-1, *=);
angle = -actorPtr->rot->vy / 2;
//~ angle = actorPtr->rot->vy;
2021-02-28 11:14:02 +01:00
getCameraXZ(&camera.x, &camera.z, actorPtr->pos->vx, actorPtr->pos->vz, angle, dist);
// FIXME! camera lerping to pos
//~ angle += lerp(camera.rot.vy, -actorPtr->rot->vy, 128);
//~ angle = lerpD(camera.rot.vy << 12, actorPtr->rot->vy << 12, 1024 << 12) >> 12;
}
// Camera rotates continuously around actor
if (camMode == 1){
dist = 150;
camera.pos.vx = -(camera.x/ONE);
//~ camera.pos.vy = -(camera.y/ONE);
camera.pos.vz = -(camera.z/ONE);
2021-03-15 15:58:21 +01:00
//~ fVecActor = *actorPtr->pos;
//~ fVecActor.vx = actorPtr->pos->vx + (nsin(actorPtr->rot->vy));
//~ fVecActor.vz = actorPtr->pos->vz - (ncos(actorPtr->rot->vy));
2021-02-28 11:14:02 +01:00
getCameraXZ(&camera.x, &camera.z, actorPtr->pos->vx, actorPtr->pos->vz, angle, dist);
angle += 10;
}
// Fixed Camera with actor tracking
if (camMode == 3){
// Using libgte sqrt ( slower)
//~ dist = SquareRoot0( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
// Using precalc sqrt
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz) );
camera.pos.vx = 190;
camera.pos.vz = 100;
camera.pos.vy = 180;
}
// Fixed Camera angle
if (camMode == 2){
2021-03-06 11:45:25 +01:00
// Load BG image in two SPRT since max width == 256
if (camPtr->tim_data){
// left part
sprt = (SPRT *) nextpri;
setSprt(sprt);
setRGB0(sprt, 128,128,128);
setXY0(sprt, 0, 0);
setWH(sprt, 256, 240);
setUV0(sprt, 0, 0);
setClut(sprt, camPtr->BGtim->crect->x, camPtr->BGtim->crect->y);
addPrim(&otdisc[db][OT2LEN-1], sprt);
nextpri += sizeof(SPRT);
tpage = (DR_TPAGE *) nextpri;
setDrawTPage(tpage, 0, 1,
getTPage(camPtr->BGtim->mode & 0x3, 0,
camPtr->BGtim->prect->x, camPtr->BGtim->prect->y));
addPrim(&otdisc[db][OT2LEN-1], tpage);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
nextpri += sizeof(DR_TPAGE);
// right part
sprt = (SPRT *) nextpri;
setSprt(sprt);
setRGB0(sprt, 128,128,128);
setXY0(sprt, 320-(320-256), 0);
setWH(sprt, 320-256, 240);
setUV0(sprt, 0, 0);
setClut(sprt, camPtr->BGtim->crect->x, camPtr->BGtim->crect->y);
addPrim(&otdisc[db][OT2LEN-1], sprt);
nextpri += sizeof(SPRT);
tpage = (DR_TPAGE *) nextpri;
setDrawTPage(tpage, 0, 1,
getTPage(camPtr->BGtim->mode & 0x3, 0,
camPtr->BGtim->prect->x + 128, camPtr->BGtim->prect->y));
addPrim(&otdisc[db][OT2LEN-1], tpage);
nextpri += sizeof(DR_TPAGE);
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
setCameraPos(camPtr->campos->pos, camPtr->campos->rot);
2021-02-28 11:14:02 +01:00
}
// Flyby mode with LERP from camStart to camEnd
if (camMode == 4){
// If key pos exist for camera
if (camPath.len) {
// Lerping sequence has not begun
if (!lerping){
// Set cam start position ( first key pos )
camera.pos.vx = camPath.points[camPath.cursor].vx;
camera.pos.vy = camPath.points[camPath.cursor].vy;
camera.pos.vz = camPath.points[camPath.cursor].vz;
// Lerping sequence is starting
lerping = 1;
// Set cam pos index to 0
camPath.pos = 0;
}
// Pre calculated sqrt ( see psqrt() )
2021-03-15 15:58:21 +01:00
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz));
2021-02-28 11:14:02 +01:00
// Fixed point precision 2^12 == 4096
int precision = 12;
camera.pos.vx = lerpD(camPath.points[camPath.cursor].vx << precision, camPath.points[camPath.cursor+1].vx << precision, camPath.pos << precision) >> precision;
camera.pos.vy = lerpD(camPath.points[camPath.cursor].vy << precision, camPath.points[camPath.cursor+1].vy << precision, camPath.pos << precision) >> precision;
camera.pos.vz = lerpD(camPath.points[camPath.cursor].vz << precision, camPath.points[camPath.cursor+1].vz << precision, camPath.pos << precision) >> precision;
//~ FntPrint("Cam %d, %d\n", (int32_t)camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx);
2021-03-06 11:45:25 +01:00
//~ FntPrint("Cam %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
//~ FntPrint("Theta y: %d x: %d\n", theta.vy, theta.vx);
//~ FntPrint("Pos: %d Cur: %d\nTheta y: %d x: %d\n", camPath.pos, camPath.cursor, theta.vy, theta.vx);
2021-02-28 11:14:02 +01:00
// Linearly increment the lerp factor
camPath.pos += 20;
// If camera has reached next key pos, reset pos index, move cursor to next key pos
if (camPath.pos > (1 << precision) ){
camPath.pos = 0;
camPath.cursor ++;
}
// Last key pos is reached, reset cursor to first key pos, lerping sequence is over
if ( camPath.cursor == camPath.len - 1 ){
lerping = 0;
camPath.cursor = 0;
}
} else {
// if no key pos exists, switch to next camMode
camMode ++; }
}
// Camera "on a rail" - cam is tracking actor, and moving with constraints on all axis
if (camMode == 5) {
// track actor. If theta (actor/cam rotation angle) is above or below an arbitrary angle,
// move cam so that the angle doesn't increase/decrease anymore.
if (camPath.len) {
// Lerping sequence has not begun
if (!lerping){
// Set cam start position ( first key pos )
camera.pos.vx = camPath.points[camPath.cursor].vx;
camera.pos.vy = camPath.points[camPath.cursor].vy;
camera.pos.vz = camPath.points[camPath.cursor].vz;
// Lerping sequence is starting
lerping = 1;
// Set cam pos index to 0
camPath.pos = 0;
}
// Pre calculated sqrt ( see psqrt() )
2021-03-15 15:58:21 +01:00
dist = psqrt( (posToActor.vx * posToActor.vx ) + (posToActor.vz * posToActor.vz));
2021-02-28 11:14:02 +01:00
// Fixed point precision 2^12 == 4096
short precision = 12;
camera.pos.vx = lerpD(camPath.points[camPath.cursor].vx << precision, camPath.points[camPath.cursor + 1].vx << precision, camPath.pos << precision) >> precision;
camera.pos.vy = lerpD(camPath.points[camPath.cursor].vy << precision, camPath.points[camPath.cursor + 1].vy << precision, camPath.pos << precision) >> precision;
camera.pos.vz = lerpD(camPath.points[camPath.cursor].vz << precision, camPath.points[camPath.cursor + 1].vz << precision, camPath.pos << precision) >> precision;
//~ FntPrint("Cam %d, %d\n", (int32_t)camPath.points[camPath.cursor].vx, camPath.points[camPath.cursor+1].vx);
//~ FntPrint("Cam %d, %d, %d\n", camera.pos.vx, camera.pos.vy, camera.pos.vz);
//~ FntPrint("Pos: %d Cur: %d\nTheta y: %d x: %d\n", camPath.pos, camPath.cursor, theta.vy, theta.vx);
2021-03-15 15:58:21 +01:00
if ( camAngleToAct.vy < -50 ) {
2021-03-06 11:45:25 +01:00
camPath.pos += 40;
2021-02-28 11:14:02 +01:00
}
2021-03-15 15:58:21 +01:00
if ( camAngleToAct.vy > 50 ) {
2021-03-06 11:45:25 +01:00
camPath.pos -= 40;
2021-02-28 11:14:02 +01:00
}
// If camera has reached next key pos, reset pos index, move cursor to next key pos
if (camPath.pos > (1 << precision) ){
camPath.pos = 0;
camPath.cursor ++;
//~ camPath.dir = 1;
}
if (camPath.pos < -100 ){
camPath.pos = 1 << precision;
camPath.cursor --;
//~ camPath.dir *= -1;
}
// Last key pos is reached, reset cursor to first key pos, lerping sequence is over
if ( camPath.cursor == camPath.len - 1 || camPath.cursor < 0 ){
lerping = 0;
camPath.cursor = 0;
}
} else {
// if no key pos exists, switch to next camMode
camMode ++; }
}
//~ dt = time/180+1 - time/180;
2021-03-16 16:18:36 +01:00
// Spatial partitioning
for (int msh = 0; msh < curNode->siblings->index; msh ++){
if ( !getIntCollision( *actorPtr->body , *curNode->siblings->list[msh]->plane->body).vx &&
!getIntCollision( *actorPtr->body , *curNode->siblings->list[msh]->plane->body).vz )
{
FntPrint("%d", msh );
curNode = curNode->siblings->list[msh];
2021-03-19 15:40:51 +01:00
//~ //levelPtr = curNode->siblings->list[plane]->curPlane;
2021-03-16 16:18:36 +01:00
}
}
2021-02-28 11:14:02 +01:00
// Physics
2021-03-16 16:18:36 +01:00
2021-02-28 11:14:02 +01:00
if (physics){
2021-03-16 16:18:36 +01:00
2021-02-28 11:14:02 +01:00
if(time%1 == 0){
2021-03-16 16:18:36 +01:00
2021-02-28 11:14:02 +01:00
for ( int k = 0; k < sizeof(meshes)/sizeof(meshes[0]);k ++){
2021-03-19 15:40:51 +01:00
if ( ( *meshes[k]->isRigidBody == 1 ) ) {
2021-02-28 11:14:02 +01:00
applyAcceleration(meshes[k]->body);
// Get col with level ( modelgnd_body )
2021-03-15 15:58:21 +01:00
2021-03-19 15:40:51 +01:00
col_lvl = getIntCollision( *meshes[k]->body , *levelPtr->body );
2021-03-15 15:58:21 +01:00
2021-03-19 15:40:51 +01:00
//~ col_lvl = getIntCollision( *actorPtr->body , *curNode->plane->body );
2021-03-15 15:58:21 +01:00
2021-03-19 15:40:51 +01:00
col_sphere = getIntCollision( *propPtr->body, *levelPtr->body );
//~ col_sphere = getIntCollision( *propPtr->body, *curNode->plane->body );
2021-02-28 11:14:02 +01:00
col_sphere_act = getExtCollision( *actorPtr->body, *propPtr->body );
// If !col, keep moving
if ( !col_lvl.vx ){ meshes[k]->pos->vx = meshes[k]->body->position.vx; }
if ( !col_lvl.vy ){ meshes[k]->pos->vy = meshes[k]->body->position.vy; };//meshes[k]->body->gForce.vy = 0;} // FIXME : Why the 15px offset ?
if ( !col_lvl.vz ){ meshes[k]->pos->vz = meshes[k]->body->position.vz; }
// If no col with ground, fall off
if ( col_lvl.vy ) {
if (!col_lvl.vx && !col_lvl.vz){actorPtr->body->position.vy = actorPtr->body->min.vy;}
}
if (col_sphere.vy){
if (!col_sphere.vx && !col_sphere.vz){propPtr->body->position.vy = propPtr->body->min.vy; }
}
if (col_sphere_act.vx && col_sphere_act.vz ){
propPtr->body->velocity.vx += actorPtr->body->velocity.vx;// * ONE / propPtr->body->restitution ;
propPtr->body->velocity.vz += actorPtr->body->velocity.vz;// * ONE / propPtr->body->restitution ;
if (propPtr->body->velocity.vx){
VECTOR L = angularMom(*propPtr->body);
2021-03-15 15:58:21 +01:00
propPtr->rot->vz -= L.vx;
2021-02-28 11:14:02 +01:00
}
if (propPtr->body->velocity.vz){
VECTOR L = angularMom(*propPtr->body);
propPtr->rot->vx -= L.vz;
}
}
if (!col_sphere_act.vx){
propPtr->body->velocity.vx = 0;
}
meshes[k]->pos->vx = meshes[k]->body->position.vx;
meshes[k]->pos->vy = meshes[k]->body->position.vy ;
meshes[k]->pos->vz = meshes[k]->body->position.vz;
}
meshes[k]->body->velocity.vy = meshes[k]->body->velocity.vx = meshes[k]->body->velocity.vz = 0;
}
}
}
// Camera setup
// position of cam relative to actor
posToActor.vx = actorPtr->pos->vx + camera.pos.vx;
posToActor.vz = actorPtr->pos->vz + camera.pos.vz;
posToActor.vy = actorPtr->pos->vy + camera.pos.vy;
2021-03-15 15:58:21 +01:00
// position of object relative to cam
2021-02-28 11:14:02 +01:00
// Clear the current OT
// ClearOTagR(ot[db], OTLEN);
// Polygon drawing
for (int k = 0; k < sizeof(meshes)/sizeof(meshes[0]); k++){
// loop on each mesh
t=0;
// If rigidbdy, apply rot/transform matrix
if (*meshes[k]->isRigidBody | *meshes[k]->isStaticBody){
//~ PushMatrix(); // Push current matrix on the stack (real slow -> dma transfer )
RotMatrix_gte(meshes[k]->rot, meshes[k]->mat); // Apply rotation matrix
TransMatrix(meshes[k]->mat, meshes[k]->pos);
// Apply translation matrix
CompMatrix(&camera.mat, meshes[k]->mat, meshes[k]->mat); // Was using &PolyMatrix instead of meshes[k]->mat
SetRotMatrix(meshes[k]->mat); // Set default rotation matrix - Was using &PolyMatrix instead of meshes[k]->mat
SetTransMatrix(meshes[k]->mat); // Was using &PolyMatrix instead of meshes[k]->mat
}
// mesh is POLY_GT3 ( triangle )
if (meshes[k]->index[t].code == 4) {
//~ t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (meshes[k]->tmesh->len * 3); i += 3) {
2021-03-06 11:45:25 +01:00
// if mesh is not part of BG, draw them, else, discard
2021-03-15 15:58:21 +01:00
if (!*meshes[k]->isBG || camMode != 2) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
poly = (POLY_GT3 *)nextpri;
2021-03-15 15:58:21 +01:00
// FIXME : Polygon subdiv - is it working ?
//~ OTc = *meshes[k]->OTz>>4;
//~ FntPrint("OTC:%d", OTc);
//~ if (OTc < 15) {
//~ if (OTc > 5) div3.ndiv = 1; else div3.ndiv = 1;
//~ DivideGT3(
//~ // Vertex coord
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ],
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz ],
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ],
//~ // UV coord
//~ meshes[k]->tmesh->u[i+0],
//~ meshes[k]->tmesh->u[i+2],
//~ meshes[k]->tmesh->u[i+1],
//~ // Color
//~ meshes[k]->tmesh->c[i],
//~ meshes[k]->tmesh->c[i+1],
//~ meshes[k]->tmesh->c[i+2],
//~ // Gpu packet
//~ poly,
//~ &ot[db][*meshes[k]->OTz],
//~ &div3);
// Increment primitive list pointer
//~ nextpri += ( (sizeof(POLY_GT3) + 3) / 4 ) * (( 1 << ( div3.ndiv )) << ( div3.ndiv ));
//~ triCount = ((1<<(div3.ndiv))<<(div3.ndiv));
//triCount = ( (sizeof(POLY_GT3) + 3) / 4 ) * (( 1 << ( div3.ndiv )) << ( div3.ndiv ));
//~ }
2021-03-06 11:45:25 +01:00
// Vertex Anim
if (*meshes[k]->isAnim){
// with interpolation
if(meshes[k]->anim->interpolate){
// ping pong
//~ if (meshes[k]->anim->cursor > 4096 || meshes[k]->anim->cursor < 0){
//~ meshes[k]->anim->dir *= -1;
//~ }
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
short precision = 12;
//~ // next keyframe
if (meshes[k]->anim->cursor > (1 << precision)) {
if ( meshes[k]->anim->lerpCursor < meshes[k]->anim->nframes - 1 ) {
meshes[k]->anim->lerpCursor ++;
meshes[k]->anim->cursor = 0;
}
if ( meshes[k]->anim->lerpCursor == meshes[k]->anim->nframes - 1 ) {
//~ else {
meshes[k]->anim->lerpCursor = 0;
meshes[k]->anim->cursor = 0;
}
}
//~ FntPrint("%d %d %d\n",meshes[k]->anim->lerpCursor, meshes[k]->anim->nframes, meshes[k]->anim->cursor );
// overflows somewhere ?
//~ for (int v = 0; v <= 1; v++){
//~ meshes[k]->tmesh->v[* &meshes[k]->index[t].order.vx + v].vx = lerpD( meshes[k]->anim->data[0 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vx << 12 , meshes[k]->anim->data[10 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vx << 12, meshes[k]->anim->cursor << 12) >> 12;
//~ meshes[k]->tmesh->v[* &meshes[k]->index[t].order.vx + v].vz = lerpD( meshes[k]->anim->data[0 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vz << 12 , meshes[k]->anim->data[10 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vz << 12, meshes[k]->anim->cursor << 12) >> 12;
//~ meshes[k]->tmesh->v[* &meshes[k]->index[t].order.vx + v].vy = lerpD( meshes[k]->anim->data[0 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vy << 12 , meshes[k]->anim->data[10 * meshes[k]->anim->nvert + * &meshes[k]->index[t].order.vx + v].vy << 12, meshes[k]->anim->cursor << 12) >> 12;
//~ }
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Let's lerp between keyframes
meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vx << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vx << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vz << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vz << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vy << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vy << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vz].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vx << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vx << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vz].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vz << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vz << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vz].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vy << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vy << precision, meshes[k]->anim->cursor << precision) >> precision;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes[k]->tmesh->v[meshes[k]->index[t].order.vy].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vx << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vx << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vy].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vz << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vz << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vy].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vy << precision , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vy << precision, meshes[k]->anim->cursor << precision) >> precision;
meshes[k]->anim->cursor += 2 * meshes[k]->anim->dir;
//~ FntPrint("%d %d\n", meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vx, meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vz);
//~ FntPrint("%d %d\n", *&meshes[k]->index[t].order.vx, *(&meshes[k]->index[t].order.vx+1));
//~ FntPrint("Anim fps : %d\n", meshes[k]->anim->cursor);
// Coord transformation
2021-02-28 11:14:02 +01:00
nclip = RotAverageNclip3(
2021-03-06 11:45:25 +01:00
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
meshes[k]->p,
meshes[k]->OTz,
&Flag
);
} else {
// No interpolation : just take the vertices coordinates from the anim data
nclip = RotAverageNclip3(
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx],
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz],
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
meshes[k]->p,
meshes[k]->OTz,
&Flag
);
}
} else {
// No animation
// Use model's regular vertex pos
nclip = RotAverageNclip3(
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2,
meshes[k]->p,
meshes[k]->OTz,
&Flag
2021-02-28 11:14:02 +01:00
);
}
2021-03-06 11:45:25 +01:00
if (nclip > 0 && *meshes[k]->OTz > 0 && (*meshes[k]->p < 4096) ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
SetPolyGT3(poly);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Transparency effect
if (*meshes[k]->isPrism){
// Use current DRAWENV clip as TPAGE
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
draw[db].clip.x,
draw[db].clip.y
);
//~ setShadeTex(poly, 1);
// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224
setUV3(poly, (poly->x0 < 0? 0 : poly->x0 > 255? 255 : poly->x0),
(poly->y0 < 0? 0 : poly->y0 > 224? 224 : poly->y0),
(poly->x1 < 0? 0 : poly->x1 > 255? 255 : poly->x1),
(poly->y1 < 0? 0 : poly->y1 > 224? 224 : poly->y1),
(poly->x2 < 0? 0 : poly->x2 > 255? 255 : poly->x2),
(poly->y2 < 0? 0 : poly->y2 > 224? 224 : poly->y2)
);
} else {
// Use regular TPAGE
((POLY_GT3 *)poly)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
meshes[k]->tim->prect->x,
meshes[k]->tim->prect->y
);
//~ if (!meshes[k]->isBG) {
//~ setShadeTex(poly, 1);
//~ setSemiTrans(poly, 1);
//~ }
setUV3(poly, meshes[k]->tmesh->u[i].vx , meshes[k]->tmesh->u[i].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y);
//~ }
//~ else {
//~ // Use model UV coordinates
//~ setUV3(poly, 255 , 255,
//~ 255 , 255,
//~ 255 , 255);
//~ }
}
// If tim mode == 0 | 1, set CLUT coordinates
if ((meshes[k]->tim->mode & 0x3) < 2){
setClut(poly,
meshes[k]->tim->crect->x,
meshes[k]->tim->crect->y);
}
// If vertex anim has updated normals
//~ if (*meshes[k]->isAnim){
2021-03-15 15:58:21 +01:00
// &meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx],
2021-03-06 11:45:25 +01:00
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t]], &meshes[k]->tmesh->c[meshes[k]->index[t]], *meshes[k]->p, &outCol);
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+1]], &meshes[k]->tmesh->c[meshes[k]->index[t+1]], *meshes[k]->p, &outCol1);
//~ NormalColorDpq(&meshes[k]->anim->normals[ atime%19 * modelCylindre_anim.nvert + meshes[k]->index[t+2]], &meshes[k]->tmesh->c[meshes[k]->index[t+2]], *meshes[k]->p, &outCol2);
//~ } else {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// using precalc BG, default to black
CVECTOR outCol ={128,128,128,0};
CVECTOR outCol1 ={128,128,128,0};
CVECTOR outCol2 ={128,128,128,0};
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
//~ if ( !camPtr->tim_data ) {
// default to neutral grey
//~ outCol.r , outCol.g , outCol.b = 128;
//~ outCol1.r, outCol1.g, outCol1.b = 128;
//~ outCol2.r, outCol2.g, outCol2.b = 128;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vx ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vx ], *meshes[k]->p, &outCol);
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vz ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vz ], *meshes[k]->p, &outCol1);
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vy ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vy ], *meshes[k]->p, &outCol2);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
//~ }
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if (*meshes[k]->isPrism){
// Use un-interpolated (i.e: no light, no fog) colors
setRGB0(poly, meshes[k]->tmesh->c[i].r, meshes[k]->tmesh->c[i].g, meshes[k]->tmesh->c[i].b);
setRGB1(poly, meshes[k]->tmesh->c[i+1].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+1].b);
setRGB2(poly, meshes[k]->tmesh->c[i+2].r, meshes[k]->tmesh->c[i+2].g, meshes[k]->tmesh->c[i+2].b);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
} else {
setRGB0(poly, outCol.r, outCol.g , outCol.b);
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
}
if ((*meshes[k]->OTz > 0) && (*meshes[k]->OTz < OTLEN) && (*meshes[k]->p < 4096)){
AddPrim(&ot[db][*meshes[k]->OTz-2], poly); // OTz - 2
}
nextpri += sizeof(POLY_GT3);
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
t+=1;
//~ if (*meshes[k]->isRigidBody){
//~ PopMatrix(); // Pull previous matrix from stack (slow)
//~ }
2021-02-28 11:14:02 +01:00
}
2021-03-15 15:58:21 +01:00
}
2021-02-28 11:14:02 +01:00
}
// mesh is POLY_GT4 ( quads )
if (meshes[k]->index[t].code == 8) {
t=0;
for (i = 0; i < (meshes[k]->tmesh->len * 4); i += 4) {
2021-03-06 11:45:25 +01:00
// if mesh is not part of BG, draw them, else, discard
2021-03-15 15:58:21 +01:00
if (!*meshes[k]->isBG || camMode != 2) {
2021-03-06 11:45:25 +01:00
poly4 = (POLY_GT4 *)nextpri;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// Vertex Anim
if (*meshes[k]->isAnim){
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
// with interpolation
if(meshes[k]->anim->interpolate){
// ping pong
//~ if (meshes[k]->anim->cursor > 4096 || meshes[k]->anim->cursor < 0){
//~ meshes[k]->anim->dir *= -1;
//~ }
short precision = 12;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if (meshes[k]->anim->cursor > 1<<precision) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( meshes[k]->anim->lerpCursor < meshes[k]->anim->nframes - 1 ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes[k]->anim->lerpCursor ++;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes[k]->anim->cursor = 0;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if ( meshes[k]->anim->lerpCursor == meshes[k]->anim->nframes - 1 ) {
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes[k]->anim->lerpCursor = 0;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
meshes[k]->anim->cursor = 0;
}
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vx << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vx << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vz << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vz << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vx].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vy << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx].vy << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vz].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vx << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vx << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vz].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vz << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vz << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vz].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vy << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz].vy << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vy].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vx << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vx << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vy].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vz << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vz << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.vy].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vy << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy].vy << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.pad].vx = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad].vx << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad].vx << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.pad].vz = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad].vz << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad].vz << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->tmesh->v[meshes[k]->index[t].order.pad].vy = lerpD( meshes[k]->anim->data[meshes[k]->anim->lerpCursor * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad].vy << 12 , meshes[k]->anim->data[(meshes[k]->anim->lerpCursor + 1) * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad].vy << 12, meshes[k]->anim->cursor << 12) >> 12;
meshes[k]->anim->cursor += 2 * meshes[k]->anim->dir;
// Coord transformations
nclip = RotAverageNclip4(
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.pad ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ],
(long*)&poly4->x0, (long*)&poly4->x1, (long*)&poly4->x2, (long*)&poly4->x3,
meshes[k]->p,
meshes[k]->OTz,
&Flag
);
} else {
// No interpolation, use all vertices coordinates in anim data
OTz = RotAverageNclip4(
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.pad ],
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vz ],
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vx ],
&meshes[k]->anim->data[ atime % meshes[k]->anim->nframes * meshes[k]->anim->nvert + meshes[k]->index[t].order.vy ],
(long*)&poly4->x0, (long*)&poly4->x1, (long*)&poly4->x2, (long*)&poly4->x3,
meshes[k]->p,
meshes[k]->OTz,
&Flag
);
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
} else {
// No animation
// Use regulare vertex coords
2021-02-28 11:14:02 +01:00
nclip = RotAverageNclip4(
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.pad ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ],
&meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ],
(long*)&poly4->x0, (long*)&poly4->x1, (long*)&poly4->x2, (long*)&poly4->x3,
meshes[k]->p,
2021-03-06 11:45:25 +01:00
meshes[k]->OTz,
2021-02-28 11:14:02 +01:00
&Flag
);
}
2021-03-06 11:45:25 +01:00
if (nclip > 0 && *meshes[k]->OTz > 0 && (*meshes[k]->p < 4096)) {
SetPolyGT4(poly4);
2021-02-28 11:14:02 +01:00
2021-03-15 15:58:21 +01:00
//~ // FIXME : Polygon subdiv - is it working ?
2021-02-28 11:14:02 +01:00
2021-03-15 15:58:21 +01:00
//~ OTc = *meshes[k]->OTz >> 4;
//~ FntPrint("OTC:%d", OTc);
2021-02-28 11:14:02 +01:00
2021-03-15 15:58:21 +01:00
//~ if (OTc < 4) {
//~ if (OTc > 1) div4.ndiv = 1; else div4.ndiv = 2;
2021-03-06 11:45:25 +01:00
2021-03-15 15:58:21 +01:00
//~ DivideGT4(
//~ // Vertex coord
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.pad ],
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vz ],
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vx ],
//~ &meshes[k]->tmesh->v[ meshes[k]->index[t].order.vy ],
//~ // UV coord
//~ meshes[k]->tmesh->u[i+3],
//~ meshes[k]->tmesh->u[i+2],
//~ meshes[k]->tmesh->u[i+0],
//~ meshes[k]->tmesh->u[i+1],
2021-03-06 11:45:25 +01:00
2021-03-15 15:58:21 +01:00
//~ // Color
//~ meshes[k]->tmesh->c[i],
//~ meshes[k]->tmesh->c[i+1],
//~ meshes[k]->tmesh->c[i+2],
//~ meshes[k]->tmesh->c[i+3],
//~ // Gpu packet
//~ poly4,
//~ &ot[db][*meshes[k]->OTz],
//~ &div4);
2021-03-06 11:45:25 +01:00
//~ // Increment primitive list pointer
2021-03-15 15:58:21 +01:00
//~ nextpri += ( (sizeof(POLY_GT4) + 3) / 4 ) * (( 1 << ( div4.ndiv )) << ( div4.ndiv ));
//~ triCount = ((1<<(div4.ndiv))<<(div4.ndiv));
2021-02-28 11:14:02 +01:00
2021-03-15 15:58:21 +01:00
//~ } else if (OTc < 48) {
2021-03-06 11:45:25 +01:00
// Transparency effect
if (*meshes[k]->isPrism){
// Use current DRAWENV clip as TPAGE
((POLY_GT4 *)poly4)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
draw[db].clip.x,
draw[db].clip.y
);
//SetShadeTex(poly4, 1);
// Use projected coordinates (results from RotAverage...) as UV coords and clamp them to 0-255,0-224
setUV4(poly4, (poly4->x0 < 0? 0 : poly4->x0 > 255? 255 : poly4->x0),
(poly4->y0 < 0? 0 : poly4->y0 > 224? 224 : poly4->y0),
(poly4->x1 < 0? 0 : poly4->x1 > 255? 255 : poly4->x1),
(poly4->y1 < 0? 0 : poly4->y1 > 224? 224 : poly4->y1),
(poly4->x2 < 0? 0 : poly4->x2 > 255? 255 : poly4->x2),
(poly4->y2 < 0? 0 : poly4->y2 > 224? 224 : poly4->y2),
(poly4->x3 < 0? 0 : poly4->x3 > 255? 255 : poly4->x3),
(poly4->y3 < 0? 0 : poly4->y3 > 224? 224 : poly4->y3)
);
} else {
// Use regular TPAGE
((POLY_GT4 *)poly4)->tpage = getTPage(meshes[k]->tim->mode&0x3, 0,
meshes[k]->tim->prect->x,
meshes[k]->tim->prect->y
);
// Use model UV coordinates
setUV4(poly4, meshes[k]->tmesh->u[i+3].vx, meshes[k]->tmesh->u[i+3].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+2].vx, meshes[k]->tmesh->u[i+2].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+0].vx, meshes[k]->tmesh->u[i+0].vy + meshes[k]->tim->prect->y,
meshes[k]->tmesh->u[i+1].vx, meshes[k]->tmesh->u[i+1].vy + meshes[k]->tim->prect->y);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
// If tim mode == 0 | 1, set CLUT coordinates
if ((meshes[k]->tim->mode & 0x3) < 2){
setClut(poly,
meshes[k]->tim->crect->x,
meshes[k]->tim->crect->y);
}
CVECTOR outCol = {128,128,128,0};
CVECTOR outCol1 = {128,128,128,0};
CVECTOR outCol2 = {128,128,128,0};
CVECTOR outCol3 = {128,128,128,0};
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.pad ] , &meshes[k]->tmesh->c[ meshes[k]->index[t].order.pad ], *meshes[k]->p, &outCol);
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vz ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vz ], *meshes[k]->p, &outCol1);
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vx ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vx ], *meshes[k]->p, &outCol2);
NormalColorDpq(&meshes[k]->tmesh->n[ meshes[k]->index[t].order.vy ], &meshes[k]->tmesh->c[ meshes[k]->index[t].order.vy ], *meshes[k]->p, &outCol3);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
if (*meshes[k]->isPrism){
// Use un-interpolated (i.e: no light, no fog) colors
setRGB0(poly4, meshes[k]->tmesh->c[i].r, meshes[k]->tmesh->c[i].g, meshes[k]->tmesh->c[i].b);
setRGB1(poly4, meshes[k]->tmesh->c[i+1].r, meshes[k]->tmesh->c[i+1].g, meshes[k]->tmesh->c[i+1].b);
setRGB2(poly4, meshes[k]->tmesh->c[i+2].r, meshes[k]->tmesh->c[i+2].g, meshes[k]->tmesh->c[i+2].b);
setRGB3(poly4, meshes[k]->tmesh->c[i+3].r, meshes[k]->tmesh->c[i+3].g, meshes[k]->tmesh->c[i+3].b);
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
} else {
setRGB0(poly4, outCol.r, outCol.g , outCol.b);
setRGB1(poly4, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly4, outCol2.r, outCol2.g, outCol2.b);
setRGB3(poly4, outCol3.r, outCol3.g, outCol3.b);
}
if ((*meshes[k]->OTz > 0) && (*meshes[k]->OTz < OTLEN) && (*meshes[k]->p < 4096)){
AddPrim(&ot[db][*meshes[k]->OTz-3], poly4); // OTz - 2
}
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
nextpri += sizeof(POLY_GT4);
2021-03-15 15:58:21 +01:00
//~ }
}
2021-03-06 11:45:25 +01:00
t+=1;
2021-02-28 11:14:02 +01:00
2021-03-06 11:45:25 +01:00
}
2021-02-28 11:14:02 +01:00
}
}
// Find and apply light rotation matrix
RotMatrix(&lgtang, &rotlgt);
MulMatrix0(&lgtmat, &rotlgt, &light);
SetLightMatrix(&light);
applyCamera(&camera);
2021-03-06 11:45:25 +01:00
2021-02-28 11:14:02 +01:00
}
2021-03-06 11:45:25 +01:00
// Add secondary OT to main OT
AddPrims(otdisc[db], ot[db] + OTLEN - 1, ot[db]);
2021-03-19 15:40:51 +01:00
//~ FntPrint("CurNode : %x\nIndex: %d", curNode, curNode->siblings->index);
2021-03-16 16:18:36 +01:00
2021-02-28 11:14:02 +01:00
//~ FntPrint("Time : %d %d dt :%d\n",time, atime, dt);
2021-03-06 11:45:25 +01:00
//~ FntPrint("CamMode: %d Slowmo : %d\nTricount: %d OTz: %d\nOTc: %d, p: %d\n", camMode, actorPtr->anim->interpolate, triCount, *meshes[9]->OTz, OTc, *meshes[9]->p);
2021-02-28 11:14:02 +01:00
//~ FntPrint("Fy: %d Vy:%d\n", actorPtr->body->gForce.vy, actorPtr->body->velocity.vy );
//~ FntPrint("Vy: %4d\n", actorPtr->body->gForce.vy );
2021-03-06 11:45:25 +01:00
//~ FntPrint("%d %d %d", meshes[0]->tim->mode & 0x3, meshes[0]->tim->crect->x, meshes[0]->tim->crect->y);
2021-02-28 11:14:02 +01:00
2021-03-16 16:18:36 +01:00
//~ FntPrint("%d %d %d %d\n", getVectorTo(InvCamPos, *actorPtr->pos));
//~ FntPrint("Tst : %d %d %d %d\n", getVectorTo(fVecActor, *actorPtr->pos));
2021-03-15 15:58:21 +01:00
//~ FntPrint("Cc %d Sc %d\n", ncos(camera.rot.vy), nsin(camera.rot.vy));
//~ FntPrint("CRot: %d\n", camera.rot.vy );
//~ FntPrint("AcRot: %d %d\n", actorPtr->rot->vy, angle);
2021-03-16 16:18:36 +01:00
//~ FntPrint("Cam pos: %d %d\n", -camera.pos.vx, -camera.pos.vz );
//~ FntPrint("Ac pos: %d %d\n", actorPtr->pos->vx, actorPtr->pos->vz );
//~ FntPrint("fVec pos: %d %d\n", fVecActor.vx, fVecActor.vz);
2021-03-15 15:58:21 +01:00
//~ FntPrint("pos2cam: %d %d \n", posToCam.vx, posToCam.vz );
//~ FntPrint("ang2cam: %d %d", objAngleToCam.vy, objAngleToCam.vx);
2021-02-28 11:14:02 +01:00
FntFlush(-1);
display();
//~ frame = VSync(-1);
}
return 0;
}
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], BGc.r, BGc.g, BGc.b);
setRGB0(&draw[1], BGc.r, BGc.g, BGc.b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(FNT_POS_X, FNT_POS_Y);
FntOpen(16, 180, 240, 96, 0, 512);
}
void display(void){
DrawSync(0);
vs = VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
2021-03-06 11:45:25 +01:00
// Main OT
DrawOTag(otdisc[db] + OT2LEN - 1);
// Secondary OT
//~ DrawOTag(ot[db] + OTLEN - 1);
2021-02-28 11:14:02 +01:00
db = !db;
nextpri = primbuff[db];
}
// Nic's function
void getCameraXZ(int * x, int * z, int actorX, int actorZ, int angle, int distance) {
// Using Nic's Costable : https://github.com/grumpycoders/Balau/blob/master/tests/test-Handles.cc#L20-L102
// https://godbolt.org/z/q6cMcj
2021-03-15 15:58:21 +01:00
*x = (actorX << 12) + (distance * nsin(angle));
*z = (actorZ << 12) - (distance * ncos(angle));
2021-02-28 11:14:02 +01:00
}
// @Will : you might want to use sin/cos to move the camera in a circle but you could do that by moving it along its tangent and then clamping the distance
void applyCamera(CAMERA * cam){
VECTOR vec; // Vector that holds the output values of the following instructions
RotMatrix_gte(&cam->rot, &cam->mat); // Convert rotation angle in psx units (360° == 4096) to rotation matrix)
ApplyMatrixLV(&cam->mat, &cam->pos, &vec); // Multiply matrix by vector pos and output to vec
TransMatrix(&cam->mat, &vec); // Apply transform vector
SetRotMatrix(&cam->mat); // Set Rotation matrix
SetTransMatrix(&cam->mat); // Set Transform matrix
}
void setCameraPos(VECTOR pos, SVECTOR rot){
camera.pos = pos;
camera.rot = rot;
};
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
int lerp(int start, int end, int factor){
// lerp interpolated cam movement
// InBetween = Value 1 + ( ( Value2 - Value1 ) * lerpValue ) ;
// lerpValue should be a float between 0 and 1.
// easeIn
return ( start ) + (( end - start ) * factor ) >> 12;
}
long long easeIn(long long i, int div){
return ((i << 7) * (i << 7) * (i << 7) / div ) >> 19;
//~ ((i << 7) * (i << 7) * (i << 7) / div ) >> 19
}
int easeOut(int i){
return (4096 >> 7) - ((4096 - (i << 7)) * (4096 - (i << 7))) >> 12;
}
int easeInOut(int i, int div){
return lerp(easeIn(i, div), easeOut(i) , i);
}
SVECTOR SVlerp(SVECTOR start, SVECTOR end, int factor){
SVECTOR output = {0,0,0,0};
output.vx = lerp(start.vx, end.vx, factor);
output.vy = lerp(start.vy, end.vy, factor);
output.vz = lerp(start.vz, end.vz, factor);
return output;
}
2021-03-15 15:58:21 +01:00
VECTOR getVectorTo(VECTOR actor, VECTOR target){
VECTOR direction = { subVector(target, actor) };
VECTOR Ndirection = {0,0,0,0};
//~ VECTOR distance = {0};
//~ copyVector(&distance, &direction);
//~ applyVector(&distance, distance.vx, distance.vy, distance.vz, *=);
u_int distSq = (direction.vx * direction.vx) + (direction.vz * direction.vz); // + distance.vy;
direction.pad = psqrt(distSq);
VectorNormal(&direction, &Ndirection);
//~ direction.pad = csqrt(distSq);
//~ FntPrint("%d ", distSq);
return Ndirection ;
}
int alignAxisToVect(VECTOR target, short axis, int factor){
}
2021-02-28 11:14:02 +01:00
VECTOR getIntCollision(BODY one, BODY two){
VECTOR d1, d2, col;
2021-03-15 15:58:21 +01:00
short correction = 50;
2021-02-28 11:14:02 +01:00
2021-03-16 16:18:36 +01:00
d1.vx = (one.position.vx + one.max.vx) - (two.position.vx + two.min.vx);
2021-02-28 11:14:02 +01:00
d1.vy = (one.position.vy + one.max.vy) - (two.position.vy + two.min.vy);
2021-03-15 15:58:21 +01:00
d1.vz = (one.position.vz + one.max.vz) - (two.position.vz + two.min.vz);
2021-02-28 11:14:02 +01:00
2021-03-16 16:18:36 +01:00
d2.vx = (two.position.vx + two.max.vx) - (one.position.vx - one.max.vx);
2021-02-28 11:14:02 +01:00
d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.min.vy);
2021-03-15 15:58:21 +01:00
d2.vz = (two.position.vz + two.max.vz) - (one.position.vz - one.max.vz);
2021-02-28 11:14:02 +01:00
col.vx = !(d1.vx > 0 && d2.vx > 0);
col.vy = d1.vy > 0 && d2.vy > 0;
col.vz = !(d1.vz > 0 && d2.vz > 0);
return col;
}
VECTOR getExtCollision(BODY one, BODY two){
VECTOR d1, d2, col;
d1.vx = (one.position.vx + one.max.vx) - (two.position.vx + two.min.vx);
d1.vy = (one.position.vy + one.max.vy) - (two.position.vy + two.min.vy);
d1.vz = (one.position.vz + one.max.vz) - (two.position.vz + two.min.vz);
d2.vx = (two.position.vx + two.max.vx) - (one.position.vx + one.min.vx);
d2.vy = (two.position.vy + two.max.vy) - (one.position.vy + one.min.vy);
d2.vz = (two.position.vz + two.max.vz) - (one.position.vz + one.min.vz);
col.vx = d1.vx > 0 && d2.vx > 0;
col.vy = d1.vy > 0 && d2.vy > 0;
col.vz = d1.vz > 0 && d2.vz > 0;
return col;
}
void applyAcceleration(BODY * actor){
short dt = 1;
VECTOR acceleration = {actor->invMass * actor->gForce.vx , (actor->invMass * actor->gForce.vy) + (gravity * ONE), actor->invMass * actor->gForce.vz};
//~ FntPrint("acc: %d %d %d\n", acceleration.vx, acceleration.vy, acceleration.vz );
actor->velocity.vx += (acceleration.vx * dt) >> 12;
actor->velocity.vy += (acceleration.vy * dt) >> 12;
actor->velocity.vz += (acceleration.vz * dt) >> 12;
//~ FntPrint("acc: %d %d %d\n", acceleration.vx / ONE, acceleration.vy / ONE, acceleration.vz / ONE );
actor->position.vx += (actor->velocity.vx * dt);
actor->position.vy += (actor->velocity.vy * dt);
actor->position.vz += (actor->velocity.vz * dt);
//~ FntPrint("vel: %d %d %d\n", actor->velocity.vx, actor->velocity.vy, actor->velocity.vz );
}
//~ // https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-the-basics-and-impulse-resolution--gamedev-6331
void ResolveCollision( BODY * one, BODY * two ){
//~ FntPrint("rv: %d, %d, %d\n", one->velocity.vx, one->velocity.vy, one->velocity.vz);
// Calculate relative velocity
VECTOR rv = { subVector( one->velocity, two->velocity) };
//~ FntPrint("rv: %d, %d, %d\n", rv.vx,rv.vy,rv.vz);
// Collision normal
VECTOR normal = { subVector( two->position, one->position ) };
// Normalize collision normal
normal.vx = normal.vx > 0 ? 1 : normal.vx < 0 ? -1 : 0 ;
normal.vy = normal.vy > 256 ? 1 : normal.vy < -256 ? -1 : 0 ;
normal.vz = normal.vz > 0 ? 1 : normal.vz < 0 ? -1 : 0 ;
//~ FntPrint("norm: %d, %d, %d\n", normal.vx,normal.vy,normal.vz);
// Calculate relative velocity in terms of the normal direction
long velAlongNormal = dotProduct( rv, normal );
//~ FntPrint("velN: %d\n", velAlongNormal);
// Do not resolve if velocities are separating
if(velAlongNormal > 0)
return;
// Calculate restitution
long e = min( one->restitution, two->restitution );
//~ FntPrint("e: %d\n", e);
//~ // Calculate impulse scalar
long j = -(1 + e) * velAlongNormal * ONE;
j /= one->invMass + two->invMass;
//~ j /= ONE;
//~ FntPrint("j: %d\n", j);
// Apply impulse
applyVector(&normal, j, j, j, *=);
//~ FntPrint("Cnormal %d %d %d\n",normal.vx,normal.vy,normal.vz);
VECTOR velOne = normal;
VECTOR velTwo = normal;
applyVector(&velOne,one->invMass,one->invMass,one->invMass, *=);
applyVector(&velTwo,two->invMass,two->invMass,two->invMass, *=);
//~ FntPrint("V1 %d %d %d\n", velOne.vx/4096,velOne.vy/4096,velOne.vz/4096);
//~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096,velTwo.vy/4096,velTwo.vz/4096);
applyVector(&one->velocity, velOne.vx/4096/4096, velOne.vy/4096/4096, velOne.vz/4096/4096, +=);
applyVector(&two->velocity, velTwo.vx/4096/4096, velTwo.vy/4096/4096, velTwo.vz/4096/4096, -=);
//~ FntPrint("V1 %d %d %d\n", velOne.vx/4096/4096,velOne.vy/4096/4096,velOne.vz/4096/4096);
//~ FntPrint("V2 %d %d %d\n", velTwo.vx/4096/4096,velTwo.vy/4096/4096,velTwo.vz/4096/4096);
}
VECTOR angularMom(BODY body){
// L = r * p
// p = m * v
VECTOR w = {0,0,0,0};
2021-03-15 15:58:21 +01:00
int r = (body.max.vx - body.min.vx) >> 1;
2021-02-28 11:14:02 +01:00
2021-03-15 15:58:21 +01:00
w.vx = (r * body.mass * body.velocity.vx) >> 2;
w.vy = (r * body.mass * body.velocity.vy) >> 2;
w.vz = (r * body.mass * body.velocity.vz) >> 2;
2021-02-28 11:14:02 +01:00
2021-03-16 16:18:36 +01:00
//~ FntPrint("v: %d, r:%d, w:%d\n", body.velocity.vz * r, r * r, w.vz);
2021-02-28 11:14:02 +01:00
return w;
}
// From : https://github.com/grumpycoders/pcsx-redux/blob/7438e9995833db5bc1e14da735bbf9dc78300f0b/src/mips/shell/math.h
static inline int32_t dMul(int32_t a, int32_t b) {
long long r = a;
r *= b;
return r >> 24;
}
// standard lerp function
// s = source, an arbitrary number up to 2^24
// d = destination, an arbitrary number up to 2^24
// p = position, a number between 0 and 256, inclusive
// p = 0 means output = s
// p = 256 means output = d
static inline uint32_t lerpU(uint32_t start, uint32_t dest, unsigned pos) { return (start * (256 - pos) + dest * pos) >> 8; }
static inline int32_t lerpS(int32_t start, int32_t dest, unsigned pos) { return (start * (256 - pos) + dest * pos) >> 8; }
// start, dest and pos have to be << x, then the result has to be >> x where x defines precision:
// precision = 2^24 - 2^x
// << x : 0 < pos < precision
// https://discord.com/channels/642647820683444236/646765703143227394/811318550978494505
// my angles are between 0 and 2048 (full circle), so 2^11 for the range of angles; with numbers on a 8.24 representation, a 1.0 angle (or 2pi) means it's 2^24, so to "convert" my angles from 8.24 to my internal discrete cos, I only have to shift by 13
static inline int32_t lerpD(int32_t start, int32_t dest, int32_t pos) { return dMul(start, 16777216 - pos) + dMul(dest, pos); }
static inline long long lerpL(long long start, long long dest, long long pos){ return dMul( (start << 12), 16777216 - (pos << 12) ) + dMul((dest << 12), (pos << 12) ) >> 12; }
// A few notes on the following code :
int ncos(unsigned int t) {
t %= DC_2PI;
int r;
if (t < DC_PI2) {
r = m_cosTable[t];
} else if (t < DC_PI) {
r = -m_cosTable[DC_PI - 1 - t];
} else if (t < (DC_PI + DC_PI2)) {
r = -m_cosTable[t - DC_PI];
} else {
r = m_cosTable[DC_2PI - 1 - t];
};
return r >> 12;
};
// sin(x) = cos(x - pi / 2)
int nsin(unsigned int t) {
t %= DC_2PI;
if (t < DC_PI2){
return ncos(t + DC_2PI - DC_PI2);
};
return ncos(t - DC_PI2);
};
// f(n) = cos(n * 2pi / 2048) <- 2048 is == DC_2PI value
// f(n) = 2 * f(1) * f(n - 1) - f(n - 2)
void generateTable(void){
m_cosTable[0] = 16777216; // 2^24 * cos(0 * 2pi / 2048) => 2^24 * 1 = 2^24 : here, 2^24 defines the precision we want after the decimal point
static const long long C = 16777137; // 2^24 * cos(1 * 2pi / 2048) = C = f(1);
m_cosTable[1] = C;
for (int i = 2; i < 512; i++){
m_cosTable[i] = ((C * m_cosTable[i - 1]) >> 23) - m_cosTable[i - 2];
m_cosTable[511] = 0;
}
};
// https://github.com/Arsunt/TR2Main/blob/411cacb35914c616cb7960c0e677e00c71c7ee88/3dsystem/phd_math.cpp#L432
2021-03-15 15:58:21 +01:00
long long patan(long x, long y){
long long result;
2021-02-28 11:14:02 +01:00
int swapBuf;
int flags = 0;
// if either x or y are 0, return 0
if( x == 0 && y == 0){
return 0;
}
if( x < 0 ) {
flags |= 4;
x = -x;
}
if ( y < 0 ) {
flags |= 2;
y = -y;
}
if ( y > x ) {
flags |= 1;
SWAP(x, y ,swapBuf);
}
result = AtanBaseTable[flags] + AtanAngleTable[0x800 * y / x];
if ( result < 0 ){
result = -result;
return result;
}
}
u_int psqrt(u_int n){
u_int result = 0;
u_int base = 0x40000000;
u_int basedResult;
for( ; base != 0; base >>= 2 ) {
for( ; base != 0; base >>= 2 ) {
basedResult = base + result;
result >>= 1;
if( basedResult > n ) {
break;
}
n -= basedResult;
result |= base;
}
}
return result;
}
int cliptest3(short *v1)
{
if( v1[0]<0 && v1[2]<0 && v1[4]<0 ) return 0;
if( v1[1]<0 && v1[3]<0 && v1[5]<0 ) return 0;
if( v1[0] > SCREENXRES && v1[2] > SCREENXRES && v1[4] > SCREENXRES) return 0;
if( v1[1] > SCREENYRES && v1[3] > SCREENYRES && v1[5] > SCREENYRES) return 0;
return 1;
}
void callback(){
u_short pad = PadRead(0);
static u_short lastPad;
static short forceApplied = 0;
int div = 4096 >> 7;
static int lerpValues[4096 >> 7];
static short cursor = 0;
2021-03-06 11:45:25 +01:00
static short curCamAngle = 0;
2021-02-28 11:14:02 +01:00
if(!lerpValues[0]){
for ( long long i = 0; i < div ; i++ ){
// lerp
//~ lerpValues[15-i] = lerp(-24, -224, (i << 8));
// lerp with easeOut : replace factor (i << 8) with (frame/duration)² : in fixed point math : ((i << 8) * (i << 8) / (4096 >> 8)) >> 8
lerpValues[(div-1)-i] = lerp(-24, -264, easeIn(i, div));
//~ FntPrint("%d, ", lerpValues[div-1-i] );
//~ FntPrint("%d , ", ((i << 8) / (4096 >> 8) / (4096 >> 8)));
//~ FntPrint("1: %d , ", ((i << 8) / (4096 >> 8) * (i << 8) / (4096 >> 8)) >> 4 );
//~ FntPrint("2: %d , ", ((i << 8) * (i << 8) / (4096 >> 8)) >> 8 );
}
}
//~ long long flip = 4096 - (32 << 7);
//~ return (4096 >> 7) - (flip * flip) >> 12;
//~ FntPrint("%d - ", (4096 >> 7) - ((4096 - (0 << 7)) * (4096 - (0 << 7))) >> 12 );
//~ FntPrint("%d - ", easeInOut(105, div));
//~ static short cursor = 0;
if(timer){timer--;}
if(cursor>0){cursor--;}
if (pad & PADR1 && !timer){
2021-03-06 11:45:25 +01:00
if (!camPtr->tim_data){
if(camMode < 6){
camMode ++;
lerping = 0;
} else {
setCameraPos(camPtr->campos->pos, camPtr->campos->rot);
camPath.cursor = 0;
camMode = 0;
lerping = 0;
}
//~ lastPad = pad;
//~ timer = 10;
//~ pressed = 1;
2021-02-28 11:14:02 +01:00
} else {
2021-03-06 11:45:25 +01:00
if (curCamAngle < 5) {
curCamAngle++;
camPtr = camAngles[curCamAngle];
LoadTexture(camPtr->tim_data, camPtr->BGtim);
} else {
curCamAngle = 0;
}
2021-02-28 11:14:02 +01:00
}
lastPad = pad;
timer = 10;
}
if (!(pad & PADR1) && lastPad & PADR1){
//~ pressed = 0;
}
if (pad & PADL2){
lgtang.vy += 32;
}
if (pad & PADL1){
lgtang.vz += 32;
}
if (pad & PADRup && !timer){
if (*actorPtr->isPrism){
*actorPtr->isPrism = 0;
} else {
*actorPtr->isPrism = 1;
}
timer = 10;
lastPad = pad;
}
if ( pad & PADRdown && !timer ){
//~ if (actorPtr->body->gForce.vy >= 0 && actorPtr->body->position.vy >= actorPtr->body->min.vy ){
//~ forceApplied -= 150;
//~ }
cursor = div - 15;
timer = 30;
lastPad = pad;
}
if ( !(pad & PADRdown) && lastPad & PADRdown){
//~ lastPad = pad;
}
if (pad & PADRleft && !timer){
if (actorPtr->anim->interpolate){
actorPtr->anim->interpolate = 0;
} else {
actorPtr->anim->interpolate = 1;
}
timer = 10;
lastPad = pad;
}
if (pad & PADLup){
2021-03-15 15:58:21 +01:00
//~ actorPtr->body->gForce.vz = (10 * ncos(actorPtr->rot->vy)) >> 12 ;
//~ actorPtr->body->gForce.vx = (10 * nsin(actorPtr->rot->vy)) >> 12 ;
// Cammode 0 :
//~ actorPtr->body->gForce.vz = getVectorTo(InvCamPos, *actorPtr->pos).vz >> 8 ;
//~ actorPtr->body->gForce.vx = getVectorTo(InvCamPos, *actorPtr->pos).vx >> 8 ;
// Others
actorPtr->body->gForce.vz = getVectorTo(fVecActor, *actorPtr->pos).vz >> 8 ;
actorPtr->body->gForce.vx = -getVectorTo(fVecActor, *actorPtr->pos).vx >> 8 ;
2021-02-28 11:14:02 +01:00
lastPad = pad;
}
if ( !(pad & PADLup) && lastPad & PADLup) {
actorPtr->body->gForce.vz = 0;
actorPtr->body->gForce.vx = 0;
}
if (pad & PADLdown){
2021-03-15 15:58:21 +01:00
//~ actorPtr->body->gForce.vz = -10 ;
//~ actorPtr->body->gForce.vx = -10 ;
// Cammode 0 :
//~ actorPtr->body->gForce.vz = -getVectorTo(InvCamPos, *actorPtr->pos).vz >> 8 ;
//~ actorPtr->body->gForce.vx = -getVectorTo(InvCamPos, *actorPtr->pos).vx >> 8 ;
// Others:
actorPtr->body->gForce.vz = -getVectorTo(fVecActor, *actorPtr->pos).vz >> 8 ;
actorPtr->body->gForce.vx = getVectorTo(fVecActor, *actorPtr->pos).vx >> 8 ;
2021-02-28 11:14:02 +01:00
lastPad = pad;
}
if ( !(pad & PADLdown) && lastPad & PADLdown) {
actorPtr->body->gForce.vz = 0;
actorPtr->body->gForce.vx = 0;
lastPad = pad;
}
if (pad & PADLleft){
2021-03-06 11:45:25 +01:00
//~ actorPtr->rot->vx = 0;
//~ actorPtr->rot->vz = 0;
2021-03-15 15:58:21 +01:00
actorPtr->rot->vy -= 32;
2021-02-28 11:14:02 +01:00
lastPad = pad;
}
if (pad & PADLright){
2021-03-06 11:45:25 +01:00
//~ actorPtr->rot->vx = 0;
//~ actorPtr->rot->vz = 0;
2021-03-15 15:58:21 +01:00
actorPtr->rot->vy += 32;
2021-02-28 11:14:02 +01:00
lastPad = pad;
}
//~ actorPtr->body->gForce.vy = forceApplied;
//~ if (actorPtr->body->gForce.vy < 0){
//~ forceApplied += gravity;
//~ }
if (cursor){
actorPtr->body->position.vy = lerpValues[cursor];}
2021-03-15 15:58:21 +01:00
//~ FntPrint("Mode : %d Angle: %d\n", camMode, curCamAngle);
2021-03-06 11:45:25 +01:00
2021-02-28 11:14:02 +01:00
//~ FntPrint("Curs: %d Vy: %d\n", cursor, actorPtr->body->position.vy );
2021-03-16 16:18:36 +01:00
//~ FntPrint("C %d S %d\n", ncos(actorPtr->rot->vy), nsin(actorPtr->rot->vy));
2021-02-28 11:14:02 +01:00
//~ FntPrint("%d\n", !(pad & PADRdown) && lastPad & PADRdown);
//~ FntPrint("sin: %d cos:%d\n", nsin(actorPtr->rot->vy), ncos(actorPtr->rot->vy));
//~ FntPrint("sin: %d cos:%d\n", 10 * nsin(actorPtr->rot->vy) >> 12, 10 * ncos(actorPtr->rot->vy) >> 12);
}