img2tim/main.cpp
2020-04-13 22:58:22 +03:00

869 lines
19 KiB
C++

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <unistd.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <limits.h>
#define MAX_PATH PATH_MAX
#endif
#include <FreeImage.h>
#include "tim.h"
#define VERSION "0.75"
namespace param {
char InputFile[MAX_PATH] = { 0 };
char OutputFile[MAX_PATH] = { 0 };
int BlackTrans = false; // Make black pixels transparent (STP bit off)
int ColorTrans = false; // Make non-black pixels translucent (STP bit on)
int UseAlphaMask = false; // Use alpha channel as transparency mask
int AlphaThresh = 127; // Alpha mask threshold
int TransColR = -1;
int TransColG = -1;
int TransColB = -1;
int TransCol = -1;
int OutputBpp = -1;
tim::PARAM tim = { 0 };
}
typedef struct {
int fmt; // 0 - 32-bit RGBA, 1 - 8-bit palletized, 2 - 4-bit palletized
short w,h;
void *pixels;
short numCols;
void *colors;
} IMGPARAM;
void ConvertImageToTim(IMGPARAM image, tim::PARAM* tim);
int SimpleQuantize(tim::PARAM* tim, int bitDepth);
int LoadImagePixels(const char* fileName, IMGPARAM* image, bool makeRGBA);
void FreeImageStruct(IMGPARAM* image);
int main(int argc, char *argv[]) {
FreeImage_Initialise(false);
printf("img2tim v%s - Converts most image files into PlayStation TIM files\n", VERSION);
printf("2016 Meido-Tek Productions (Lameguy64/TheCodingBrony)\n");
printf("Powered by FreeImage v%s\n\n", FreeImage_GetVersion());
// Print banner if no arguments were passed
if (argc <= 1) {
printf("Syntax:\n");
printf(" img2tim [options] [-o <outName>] <inFile>\n\n");
printf("Options:\n");
printf(" -b - Sets semi-transparent bit on fully black pixels\n");
printf(" (ignored when -usealpha is specified).\n");
printf(" -t - Set semi-transparent bit on non fully black pixels.\n");
printf(" -org <x y> - Specifies the VRAM offset of the image (Default: 640 0).\n");
printf(" -plt <x y> - Specifies the VRAM offset of the CLUT (Default: 0 480).\n");
printf(" -o <outFile> - Sets the name of the output file (Default: <inFile>.tim).\n");
printf("\nExtra options:\n");
printf(" -usealpha - Use alpha channel (if available) as transparency mask.\n");
printf(" -alpt <value> - Threshold value when alpha channel is used as transparency\n");
printf(" mask (Default: 127).\n");
printf(" -tindex <col> - Specify color index to be treated as transparent (ignored on\n");
printf(" non palletized images).\n");
printf(" -tcol <r g b> - Specify RGB color value to be treated as transparent.\n");
printf(" -bpp <bpp> - Specify color depth for the output TIM file\n");
printf(" (Default: Color depth of source image, 24 is never default).\n");
/*
printf(" -tc <r g b> - Specify color to be treated as transparent.\n");
printf(" -bc <r g b> - Specify blending color when converting alpha-blended pixels.\n");
printf(" -bg <r g b> - Specifies a background color for images with an alpha channel.\n");
printf(" -tc <r g b> - Sepecifies the color to be treated as transparent.\n");
printf(" -qm <method> - Sets the quantization method used for generating a CLUT when\n");
printf(" converting true-color images to 4-bit/8-bit.\n");
printf(" 0 - Simple 'color search' quantization (default)\n");
printf(" 1 - Median-cut quantization\n");
printf(" 2 - Median-cut quantization with dithering\n");
*/
printf("\nFor more info, please read img2tim.txt.\n");
return(0);
}
param::tim.imgXoffs = 640;
param::tim.imgYoffs = 0;
param::tim.clutXoffs = 0;
param::tim.clutYoffs = 480;
// Parse arguments
for(int i=1; i<argc; i++) {
char* arg = strdup(argv[i]);
for(int c=0; arg[c] != 0x00; c++)
arg[c] = tolower(arg[c]);
if (strcmp(arg, "-b") == 0) {
param::BlackTrans = true;
} else if (strcmp(arg, "-t") == 0) {
param::ColorTrans = true;
} else if (strcmp(arg, "-o") == 0) {
strcpy(param::OutputFile, argv[i+1]);
i++;
} else if (strcmp(arg, "-org") == 0) {
param::tim.imgXoffs = atoi(argv[i+1]);
param::tim.imgYoffs = atoi(argv[i+2]);
i += 2;
} else if (strcmp(arg, "-plt") == 0) {
param::tim.clutXoffs = atoi(argv[i+1]);
param::tim.clutYoffs = atoi(argv[i+2]);
i += 2;
} else if (strcmp(arg, "-usealpha") == 0) {
param::UseAlphaMask = true;
} else if (strcmp(arg, "-alpt") == 0) {
param::AlphaThresh = atoi(argv[i+1]);
i++;
} else if (strcmp(arg, "-tcol") == 0) {
param::TransColR = atoi(argv[i+1]);
i++;
param::TransColG = atoi(argv[i+1]);
i++;
param::TransColB = atoi(argv[i+1]);
i++;
} else if (strcmp(arg, "-tindex") == 0) {
param::TransCol = atoi(argv[i+1]);
i++;
} else if (strcmp(arg, "-bpp") == 0) {
param::OutputBpp = atoi(argv[i+1]);
if (!((param::OutputBpp == 4) || (param::OutputBpp == 8) || (param::OutputBpp == 16) || (param::OutputBpp == 24))) {
printf("Invalid color depth value specified.\n");
exit(1);
}
i++;
} else if (arg[0] == '-') {
printf("Unknown parameter: %s\n", argv[i]);
free(arg);
exit(1);
} else {
strcpy(param::InputFile, argv[i]);
}
free(arg);
}
// Check if an input file name is present
if (strlen(param::InputFile) == 0) {
printf("No input file specified.\n");
exit(1);
}
// Check and generate an output filename when necessary
if (strlen(param::OutputFile) == 0) {
if (strrchr(param::InputFile, '.') == NULL) {
printf("Cannot generate output filename, input has no extension.\n");
exit(1);
}
strcpy(param::OutputFile, param::InputFile);
strcpy(strrchr(param::OutputFile, '.'), ".tim");
}
printf("Input File : %s\n", param::InputFile);
printf("Output File : %s\n", param::OutputFile);
IMGPARAM image;
printf("Output Bpp : ");
if (param::OutputBpp == -1) {
if (!LoadImagePixels(param::InputFile, &image, false)) {
return(EXIT_FAILURE);
}
printf("Input Bpp (");
if (image.fmt == 0)
printf("24");
else if (image.fmt == 1)
printf("8");
else if (image.fmt == 2)
printf("4");
printf(")\n\n");
ConvertImageToTim(image, &param::tim);
} else {
printf("%d\n\n", param::OutputBpp);
if (!LoadImagePixels(param::InputFile, &image, true)) {
return(EXIT_FAILURE);
}
ConvertImageToTim(image, &param::tim);
if (param::OutputBpp <= 8) {
if (!SimpleQuantize(&param::tim, param::OutputBpp)) {
tim::FreeParam(&param::tim);
FreeImageStruct(&image);
exit(1);
}
}
}
tim::ExportFile(param::OutputFile, &param::tim);
tim::FreeParam(&param::tim);
FreeImageStruct(&image);
printf("Converted successfully...\n\n");
return(0);
}
void ConvertImageToTim(IMGPARAM image, tim::PARAM* tim) {
if (image.fmt == 0) {
if (param::OutputBpp == 24) { // Convert image from 32-bit RGBA to 24-bit RGB
tim->imgData = malloc(3*(image.w*image.h));
for(short py=0; py<image.h; py++) {
for(short px=0; px<image.w; px++) {
u_char r = ((u_char*)image.pixels)[4*(px+(image.w*py))];
u_char g = ((u_char*)image.pixels)[(4*(px+(image.w*py)))+1];
u_char b = ((u_char*)image.pixels)[(4*(px+(image.w*py)))+2];
((tim::PIX_RGB24*)tim->imgData)[px+(image.w*py)].r = r;
((tim::PIX_RGB24*)tim->imgData)[px+(image.w*py)].g = g;
((tim::PIX_RGB24*)tim->imgData)[px+(image.w*py)].b = b;
}
}
tim->format = 3;
tim->imgWidth = image.w;
tim->imgHeight = image.h;
} else { // Convert image from 32-bit RGBA to 16-bit RGBi
tim->imgData = malloc(2*(image.w*image.h));
for(short py=0; py<image.h; py++) {
for(short px=0; px<image.w; px++) {
u_char r = ((u_char*)image.pixels)[4*(px+(image.w*py))];
u_char g = ((u_char*)image.pixels)[(4*(px+(image.w*py)))+1];
u_char b = ((u_char*)image.pixels)[(4*(px+(image.w*py)))+2];
u_char a = ((u_char*)image.pixels)[(4*(px+(image.w*py)))+3];
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].r = r/8;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].g = g/8;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].b = b/8;
if (param::UseAlphaMask == false) {
// For fully-black pixels
if ((r == 0) && (g == 0) && (b == 0)) {
if (param::BlackTrans)
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 1;
else
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 0;
// For non-fully black pixels
} else {
if (param::ColorTrans)
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 1;
else
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 0;
}
} else {
if ((r == 0) && (g == 0) && (b == 0)) {
if (a >= param::AlphaThresh)
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 1;
else
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 0;
} else {
if (a < param::AlphaThresh) {
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].r = 0;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].g = 0;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].b = 0;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 0;
} else {
if (param::ColorTrans)
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 1;
else
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 0;
}
}
}
if ((param::TransColR == r) && (param::TransColG == g) && (param::TransColB == b)) {
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].r = 0;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].g = 0;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].b = 0;
((tim::PIX_RGB5*)tim->imgData)[px+(image.w*py)].i = 0;
}
}
}
tim->format = 2;
tim->imgWidth = image.w;
tim->imgHeight = image.h;
}
} else if (image.fmt == 1) { // Convert 8-bit palletized
if ((image.w%2) != 0)
printf("WARNING: Image width is not a multiple of 2, output may be broken.\n");
tim->clutData = malloc(2*256);
tim->clutWidth = 256;
tim->clutHeight = 1;
for(short c=0; c<256; c++) {
u_char r = ((RGBQUAD*)image.colors)[c].rgbRed;
u_char g = ((RGBQUAD*)image.colors)[c].rgbGreen;
u_char b = ((RGBQUAD*)image.colors)[c].rgbBlue;
if (param::TransCol == -1) {
if ((param::TransColR == r) && (param::TransColG == g) && (param::TransColB == b)) {
param::TransCol = c;
}
}
if (c != param::TransCol) {
((tim::PIX_RGB5*)tim->clutData)[c].r = r/8;
((tim::PIX_RGB5*)tim->clutData)[c].g = g/8;
((tim::PIX_RGB5*)tim->clutData)[c].b = b/8;
// For fully-black pixels
if ((r == 0) && (g == 0) && (b == 0)) {
if (param::BlackTrans)
((tim::PIX_RGB5*)tim->clutData)[c].i = 1;
else
((tim::PIX_RGB5*)tim->clutData)[c].i = 0;
// For non-fully black pixels
} else {
if (param::ColorTrans)
((tim::PIX_RGB5*)tim->clutData)[c].i = 1;
else
((tim::PIX_RGB5*)tim->clutData)[c].i = 0;
}
} else {
((tim::PIX_RGB5*)tim->clutData)[c].r = 0;
((tim::PIX_RGB5*)tim->clutData)[c].g = 0;
((tim::PIX_RGB5*)tim->clutData)[c].b = 0;
((tim::PIX_RGB5*)tim->clutData)[c].i = 0;
}
}
tim->imgData = malloc(image.w*image.h);
for(short py=0; py<image.h; py++) {
memcpy(&((u_char*)tim->imgData)[image.w*py], &((u_char*)image.pixels)[image.w*py], image.w);
}
tim->format = 1;
tim->imgWidth = image.w;
tim->imgHeight = image.h;
} else if (image.fmt == 2) { // Convert image for 4-bit TIM
if ((image.w%4) != 0)
printf("WARNING: Image width is not a multiple of 4, output may be broken.\n");
tim->clutData = malloc(2*16);
tim->clutWidth = 16;
tim->clutHeight = 1;
for(short c=0; c<16; c++) {
u_char r = ((RGBQUAD*)image.colors)[c].rgbRed;
u_char g = ((RGBQUAD*)image.colors)[c].rgbGreen;
u_char b = ((RGBQUAD*)image.colors)[c].rgbBlue;
if (param::TransCol == -1) {
if ((param::TransColR == r) && (param::TransColG == g) && (param::TransColB == b)) {
param::TransCol = c;
}
}
if (c != param::TransCol) {
((tim::PIX_RGB5*)tim->clutData)[c].r = r/8;
((tim::PIX_RGB5*)tim->clutData)[c].g = g/8;
((tim::PIX_RGB5*)tim->clutData)[c].b = b/8;
// For fully-black pixels
if ((r == 0) && (g == 0) && (b == 0)) {
if (param::BlackTrans)
((tim::PIX_RGB5*)tim->clutData)[c].i = 1;
else
((tim::PIX_RGB5*)tim->clutData)[c].i = 0;
// For non-fully black pixels
} else {
if (param::ColorTrans)
((tim::PIX_RGB5*)tim->clutData)[c].i = 1;
else
((tim::PIX_RGB5*)tim->clutData)[c].i = 0;
}
} else {
((tim::PIX_RGB5*)tim->clutData)[c].r = 0;
((tim::PIX_RGB5*)tim->clutData)[c].g = 0;
((tim::PIX_RGB5*)tim->clutData)[c].b = 0;
((tim::PIX_RGB5*)tim->clutData)[c].i = 0;
}
}
tim->imgData = malloc((image.w/2)*image.h);
for(short py=0; py<image.h; py++) {
for(short px=0; px<image.w/2; px++) {
u_char pix = ((u_char*)image.pixels)[px+((image.w/2)*py)];
((u_char*)tim->imgData)[px+((image.w/2)*py)] = ((pix&0xf)<<4)|((pix>>4)&0xf);
}
}
tim->format = 0;
tim->imgWidth = image.w;
tim->imgHeight = image.h;
}
}
int SimpleQuantize(tim::PARAM* tim, int bitDepth) {
u_short colTable[256] = { 0 };
int diffColors = 0;
bool newCol = true;
if (bitDepth == 8) {
if ((tim->imgWidth%2) != 0)
printf("WARNING: Image width is not a multiple of 2, output may be broken.\n");
} else {
if ((tim->imgWidth%4) != 0)
printf("WARNING: Image width is not a multiple of 4, output may be broken.\n");
}
for(int py=0; py<tim->imgHeight; py++) {
for(int px=0; px<tim->imgWidth; px++) {
u_short pix = ((u_short*)tim->imgData)[px+(tim->imgWidth*py)];
for(short c=0; c<diffColors; c++) {
if (colTable[c] == pix) {
newCol = false;
break;
} else {
newCol = true;
}
}
if (newCol) {
if (bitDepth == 8) {
if (diffColors >= 255) {
printf("ERROR: More than 256 colors found in image.\n");
return(0);
}
} else {
if (diffColors >= 16) {
printf("ERROR: More than 16 colors found in image.\n");
return(0);
}
}
colTable[diffColors] = pix;
diffColors++;
newCol = false;
}
}
}
u_short* srcImage = (u_short*)tim->imgData;
if (bitDepth == 8) {
tim->imgData = malloc(tim->imgWidth*tim->imgHeight);
for(int py=0; py<tim->imgHeight; py++) {
for(int px=0; px<tim->imgWidth; px++) {
u_short pix = srcImage[px+(tim->imgWidth*py)];
short index;
for(index=0; index<diffColors; index++) {
if (pix == colTable[index])
break;
}
if (index < diffColors) {
((u_char*)tim->imgData)[px+(tim->imgWidth*py)] = index;
}
}
}
} else {
tim->imgData = malloc((tim->imgWidth/2)*tim->imgHeight);
for(int py=0; py<tim->imgHeight; py++) {
for(int px=0; px<tim->imgWidth; px++) {
u_short pix = srcImage[px+(tim->imgWidth*py)];
short index;
for(index=0; index<diffColors; index++) {
if (pix == colTable[index])
break;
}
if (index < diffColors) {
if ((px%2) == 0) {
((u_char*)tim->imgData)[(px/2)+((tim->imgWidth/2)*py)] = index;
} else {
((u_char*)tim->imgData)[(px/2)+((tim->imgWidth/2)*py)] |= index<<4;
}
}
}
}
}
free(srcImage);
if (bitDepth == 8) {
tim->clutData = malloc(2*256);
memcpy(tim->clutData, colTable, 2*256);
tim->clutWidth = 256;
} else {
tim->clutData = malloc(2*16);
memcpy(tim->clutData, colTable, 2*16);
tim->clutWidth = 16;
}
tim->clutHeight = 1;
if (bitDepth == 8) {
tim->format = 1;
} else {
tim->format = 0;
}
return(1);
}
int LoadImagePixels(const char* fileName, IMGPARAM* image, bool makeRGBA) {
// Check if file exists
if (access(fileName, F_OK) == -1) {
printf("ERROR: File not found.\n");
return(0);
}
// Determine format of input file
FREE_IMAGE_FORMAT fif = FreeImage_GetFileType(fileName, 0);
if (fif == FIF_UNKNOWN) {
fif = FreeImage_GetFIFFromFilename(fileName);
if (!FreeImage_FIFSupportsReading(fif)) {
printf("ERROR: Unknown/unsupported image format.\n");
return(0);
}
}
// Load the input image
FIBITMAP *srcImage = FreeImage_Load(fif, fileName, 0);
if (srcImage == NULL) {
printf("ERROR: Cannot load specified image file.\n");
return(0);
}
// Some checks to make sure that the image is really valid
if (!FreeImage_HasPixels(srcImage)) {
printf("ERROR: Source image has no pixel data... Somehow.\n");
return(0);
}
if ((makeRGBA) || (FreeImage_GetBPP(srcImage) == 24) || ((FreeImage_GetBPP(srcImage) > 32))) {
// Convert to RGBA32 for 16-bit and 24-bit exports
FIBITMAP *tempImage;
// Just to make things simpler, convert pixels to RGB32 when it is not palletized
tempImage = FreeImage_ConvertTo32Bits(srcImage);
if (tempImage == NULL) {
printf("ERROR: Could not convert image to RGBA32 for conversion.\n");
FreeImage_Unload(srcImage);
return(0);
}
FreeImage_Unload(srcImage);
srcImage = tempImage;
}
switch(FreeImage_GetBPP(srcImage)) {
case 32: // 32-bit images
image->fmt = 0;
image->w = FreeImage_GetWidth(srcImage);
image->h = FreeImage_GetHeight(srcImage);
image->numCols = 0;
image->colors = NULL;
image->pixels = malloc(4*(image->w*image->h));
for(short py=0; py<image->h; py++) {
void* pixels = FreeImage_GetScanLine(srcImage, (image->h-py)-1);
memcpy(&((u_int*)image->pixels)[image->w*py], pixels, 4*image->w);
for(short p=0; p<image->w; p++) {
u_char* pix = (u_char*)&((u_int*)image->pixels)[ p+(image->w*py) ];
u_char t;
t = pix[0];
pix[0] = pix[2];
pix[2] = t;
}
}
break;
case 8: // 8-bit palletized
image->fmt = 1;
image->w = FreeImage_GetWidth(srcImage);
image->h = FreeImage_GetHeight(srcImage);
image->numCols = 256;
image->colors = malloc(4*256);
memcpy(image->colors, FreeImage_GetPalette(srcImage), 4*256);
image->pixels = malloc(image->w*image->h);
for(short py=0; py<image->h; py++) {
void* pixels = FreeImage_GetScanLine(srcImage, (image->h-py)-1);
memcpy(&((u_char*)image->pixels)[image->w*py], pixels, image->w);
}
break;
case 4: // 4-bit palletized
image->fmt = 2;
image->w = FreeImage_GetWidth(srcImage);
image->h = FreeImage_GetHeight(srcImage);
image->numCols = 16;
image->colors = malloc(4*16);
memcpy(image->colors, FreeImage_GetPalette(srcImage), 4*16);
image->pixels = malloc((image->w/2)*image->h);
for(short py=0; py<image->h; py++) {
void* pixels = FreeImage_GetScanLine(srcImage, (image->h-py)-1);
memcpy(&((u_char*)image->pixels)[(image->w/2)*py], pixels, image->w/2);
}
break;
default:
printf("ERROR: Unsupported color depth: %dbpp", FreeImage_GetBPP(srcImage));
FreeImage_Unload(srcImage);
return(0);
}
// Unload source image
FreeImage_Unload(srcImage);
return(1);
}
void FreeImageStruct(IMGPARAM* image) {
if (image->pixels != NULL) {
free(image->pixels);
image->pixels = NULL;
}
if (image->colors != NULL) {
free(image->colors);
image->colors = NULL;
}
}