nolibgs_hello_worlds/hello_poly_ft/hello_poly_ft.c

200 lines
7.2 KiB
C
Raw Permalink Normal View History

2021-07-25 17:39:20 +02:00
// Draw a textured poly primitive
//
// With help from Nicolas Noble, Jaby smoll Seamonstah, Lameguy64
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
2021-07-25 17:39:20 +02:00
// Schnappy 2021
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
2021-07-24 11:41:57 +02:00
char primbuff[2][32768]; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary____TIM_bousai_tim_start[];
extern unsigned long _binary____TIM_bousai_tim_end[];
extern unsigned long _binary____TIM_bousai_tim_length;
TIM_IMAGE bousai;
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
2021-07-22 10:40:41 +02:00
SetDispMask(1); // Display on screen
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
POLY_FT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, CENTERX/2, 0}; // Initialize translation vector {x, y, z, pad}
VECTOR ScaleVector = {ONE, ONE, ONE}; // ONE is define as 4096 in libgte.h
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 1 }, // Vert 1
{-32, 32, 1 }, // Vert 2
{ 32, -32, 1 }, // Vert 3
{ 32, 32, 1 } // Vert 4
};
MATRIX PolyMatrix = {0};
long polydepth;
long polyflag;
int ping = 0;
init();
LoadTexture(_binary____TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_FT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
ScaleMatrix(&PolyMatrix, &ScaleVector); // Apply scale matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyFT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y); // Get Tpage coordinates from the TIM_IMAGE mode and prect members.
setRGB0(poly, 128, 128, 128); // Set poly color (neutra here)
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
// Let's have some fun on the Z axis
if(!ping){
if (MovVector.vz < CENTERX){ // While Poly position on Z axis is < 160, push it
MovVector.vz += 1; // Push on Z axis
} else {
ping = !ping; // Switch ping value
}
}
if(ping){
if (MovVector.vz > CENTERX/2){ // While Poly position on Z axis is > 80, pull it
MovVector.vz -= 1; // Pull on Z axis
} else {
ping = !ping; // Switch ping value
}
}
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_FT4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello textured poly !");
FntFlush(-1);
display();
}
return 0;
}