Revert "Remove old files"

This reverts commit 2bd77289c0.
This commit is contained in:
ABelliqueux 2021-07-10 15:48:45 +02:00
parent f9ebdbdc90
commit d7b8f5d5a7
45 changed files with 9886 additions and 0 deletions

68
CPUMAC.H Normal file
View File

@ -0,0 +1,68 @@
/*
** cpumac.h
mike acton
*/
// cpu_ldr(cpu register,data pointer)
// copy 32bit data from dp to r
#define cpu_ldr(r,dp)\
asm(\
"lw %0, 0(%1);"\
: "=r" (r)\
: "r" (dp)\
)
// cpu_gted0(cpu register)
// copy 32bit data from r to gte register 0
#define cpu_gted0(r)\
asm(\
"mtc2 %0, $0;"\
:\
: "r" (r)\
)
// cpu_gted1(cpu register)
// copy 32bit data from r to gte register 1
#define cpu_gted1(r)\
asm(\
"mtc2 %0, $1;"\
:\
: "r" (r)\
)
// cpu_gted2(cpu register)
// copy 32bit data from r to gte register 2
#define cpu_gted2(r)\
asm(\
"mtc2 %0, $2;"\
:\
: "r" (r)\
)
// cpu_gted3(cpu register)
// copy 32bit data from r to gte register 3
#define cpu_gted3(r)\
asm(\
"mtc2 %0, $3;"\
:\
: "r" (r)\
)
// cpu_gted4(cpu register)
// copy 32bit data from r to gte register 4
#define cpu_gted4(r)\
asm(\
"mtc2 %0, $4;"\
:\
: "r" (r)\
)
// cpu_gted5(cpu register)
// copy 32bit data from r to gte register 5
#define cpu_gted5(r)\
asm(\
"mtc2 %0, $5;"\
:\
: "r" (r)\
)

BIN
cube.blend Normal file

Binary file not shown.

167
cube.c Normal file
View File

@ -0,0 +1,167 @@
SVECTOR modelCube_mesh[] = {
{ -128,128,128 },
{ 128,128,128 },
{ 128,128,-128 },
{ -128,128,-128 },
{ -128,-128,128 },
{ 128,-128,128 },
{ 128,-128,-128 },
{ -128,-128,-128 }
};
SVECTOR modelCube_normal[] = {
2365,-2365,-2365, 0,
-2365,-2365,-2365, 0,
-2365,-2365,2365, 0,
2365,-2365,2365, 0,
2365,2365,-2365, 0,
-2365,2365,-2365, 0,
-2365,2365,2365, 0,
2365,2365,2365, 0
};
CVECTOR modelCube_color[] = {
255,237,0, 0,
255,235,0, 0,
255,236,0, 0,
255,2,0, 0,
254,3,0, 0,
255,8,0, 0,
229,0,255, 0,
229,0,255, 0,
229,0,255, 0,
5,16,250, 0,
0,12,255, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0,
255,237,0, 0,
255,237,0, 0,
255,235,0, 0,
255,2,0, 0,
255,6,2, 0,
254,3,0, 0,
229,0,255, 0,
232,21,232, 0,
229,0,255, 0,
5,16,250, 0,
2,13,253, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0
};
int modelCube_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube = {
modelCube_mesh,
modelCube_normal,
0,
modelCube_color,
12
};
SVECTOR modelCube1_mesh[] = {
{ -128,128,128 },
{ 128,128,128 },
{ 128,128,-128 },
{ -128,128,-128 },
{ -128,-128,128 },
{ 128,-128,128 },
{ 128,-128,-128 },
{ -128,-128,-128 }
};
SVECTOR modelCube1_normal[] = {
2365,-2365,-2365, 0,
-2365,-2365,-2365, 0,
-2365,-2365,2365, 0,
2365,-2365,2365, 0,
2365,2365,-2365, 0,
-2365,2365,-2365, 0,
-2365,2365,2365, 0,
2365,2365,2365, 0
};
CVECTOR modelCube1_color[] = {
255,237,0, 0,
255,235,0, 0,
255,236,0, 0,
255,2,0, 0,
254,3,0, 0,
255,8,0, 0,
229,0,255, 0,
229,0,255, 0,
229,0,255, 0,
5,16,250, 0,
0,12,255, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0,
255,237,0, 0,
255,237,0, 0,
255,235,0, 0,
255,2,0, 0,
255,6,2, 0,
254,3,0, 0,
229,0,255, 0,
232,21,232, 0,
229,0,255, 0,
5,16,250, 0,
2,13,253, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0
};
int modelCube1_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube1 = {
modelCube1_mesh,
modelCube1_normal,
0,
modelCube1_color,
12
};

BIN
cube.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

BIN
cubetex.blend Normal file

Binary file not shown.

132
cubetex.c Normal file
View File

@ -0,0 +1,132 @@
SVECTOR modelCube_mesh[] = {
{20.0,19.999998807907104,-20.0},
{20.0,-20.0,-20.0},
{-20.00000238418579,-19.999996423721313,-20.0},
{-19.999992847442627,20.000007152557373,-20.0},
{20.000009536743164,19.99998927116394,20.0},
{19.99998688697815,-20.000011920928955,20.0},
{-20.000007152557373,-19.999992847442627,20.0},
{-19.999998807907104,20.0,20.0}
};
SVECTOR modelCube_normal[] = {
0.0,-0.0,-1.0,0,
0.0,0.0,1.0,0,
1.0,0.0,-2.384185791015625e-07,0,
-8.940696716308594e-08,-1.0,-2.9802325229866256e-07,0,
-1.0,2.384185791015625e-07,-1.4901158351676713e-07,0,
2.6822084464583895e-07,1.0,2.3841852225814364e-07,0,
0.0,0.0,-1.0,0,
0.0,-0.0,1.0,0,
1.0,-5.662441253662109e-07,3.2782537573439186e-07,0,
-4.768372150465439e-07,-1.0,8.940690321423972e-08,0,
-1.0,2.0861631355728605e-07,-1.1920931797249068e-07,0,
2.0861631355728605e-07,1.0,1.7881397695873602e-07,0
};
SVECTOR modelCube_uv[] = {
83.71398162841797,83.71389770507812, 0, 0,
125.03179168701172,42.396141052246094, 0, 0,
83.71398162841797,42.396141052246094, 0, 0,
125.03179168701172,83.71392059326172, 0, 0,
83.71398162841797,125.03166770935059, 0, 0,
125.03179168701172,125.03169059753418, 0, 0,
1.0784510374069214,83.71392059326172, 0, 0,
42.39619445800781,125.03169059753418, 0, 0,
42.39621353149414,83.71392440795898, 0, 0,
42.39621353149414,125.03166770935059, 0, 0,
83.71398162841797,83.71392440795898, 0, 0,
42.39621353149414,83.71390151977539, 0, 0,
42.39619445800781,1.0783309936523438, 0, 0,
1.0784281492233276,42.39611053466797, 0, 0,
42.39619445800781,42.39612579345703, 0, 0,
42.39619064331055,83.71392059326172, 0, 0,
1.0784281492233276,42.396141052246094, 0, 0,
1.0784281492233276,83.71392059326172, 0, 0,
83.71398162841797,83.71389770507812, 0, 0,
125.03179168701172,83.71390151977539, 0, 0,
125.03179168701172,42.396141052246094, 0, 0,
125.03179168701172,83.71392059326172, 0, 0,
83.71399688720703,83.71392440795898, 0, 0,
83.71398162841797,125.03166770935059, 0, 0,
1.0784510374069214,83.71392059326172, 0, 0,
1.0784281492233276,125.03169059753418, 0, 0,
42.39619445800781,125.03169059753418, 0, 0,
42.39621353149414,125.03166770935059, 0, 0,
83.71398162841797,125.03169059753418, 0, 0,
83.71398162841797,83.71392440795898, 0, 0,
42.39619445800781,1.0783309936523438, 0, 0,
1.0784281492233276,1.0783309936523438, 0, 0,
1.0784281492233276,42.39611053466797, 0, 0,
42.39619064331055,83.71392059326172, 0, 0,
42.39619445800781,42.396141052246094, 0, 0,
1.0784281492233276,42.396141052246094, 0, 0
};
CVECTOR modelCube_color[] = {
255,255,255, 0,
255,255,255, 0,
255,0,251, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
4,18,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
254,255,23, 0,
122,255,107, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
254,255,94, 0,
255,255,255, 0,
35,255,11, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
254,255,23, 0,
255,255,255, 0,
122,255,107, 0,
255,255,255, 0,
54,65,255, 0,
255,255,255, 0
};
int modelCube_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube = {
modelCube_mesh,
modelCube_normal,
modelCube_uv,
modelCube_color,
12
};
extern unsigned long _binary_TIM_cubetex_tim_start[];
extern unsigned long _binary_TIM_cubetex_tim_end[];
extern unsigned long _binary_TIM_cubetex_tim_length;
TIM_IMAGE tim_cube;

618
fun_with_poly.c Normal file
View File

@ -0,0 +1,618 @@
// Having fun with polygons, matrices and vectors
// Credits : Schnappy
//With great help from Jaby smoll Seamonstah, Nicolas Noble, NDR008, paul, sickle on https://discord.com/invite/Zd82yXvs
// 11/2020
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <kernel.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SPIN 16 // Rotation speed increment
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 10 // margins for text display
#define MARGINY 4
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 16 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
CVECTOR BgColor[3] = {20, 20, 20};
struct polygon
{
POLY_F4 * poly_f4;
CVECTOR color;
short width;
short height;
//~ VECTOR PosV_L; // Not used anymore
SVECTOR RotV_L;
VECTOR TransV_L;
VECTOR ScaleV_L;
SVECTOR PivotV_L;
SVECTOR Verts[4];
MATRIX Matrix;
long depth;
long flag;
short rotSpeed;
int otz;
};
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE : Not needed ?
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
PadInit(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], BgColor->r, BgColor->g, BgColor->b);
setRGB0(&draw[1], BgColor->r, BgColor->g, BgColor->b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void pivotPoint(SVECTOR VertPos[3],short width,short height, SVECTOR pivot){
// Not very efficient I think
VertPos[0].vx = -pivot.vx;
VertPos[0].vy = -pivot.vy;
VertPos[0].vz = 1;
VertPos[1].vx = width - pivot.vx;
VertPos[1].vy = -pivot.vy;
VertPos[1].vz = 1;
VertPos[2].vx = -pivot.vx;
VertPos[2].vy = height-pivot.vy;
VertPos[2].vz = 1;
VertPos[3].vx = width - pivot.vx;
VertPos[3].vy = height - pivot.vy;
VertPos[3].vz = 1;
}
MATRIX identity(int num)
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
int main(void)
{
MATRIX IDMATRIX = identity(3);
u_short BtnTimer = 0; // Timer to limit pad input rate
u_short polyCount = 1; // current polygon index
int otz; // z-index
struct polygon *CurrentPoly; // points to the address of selected polygon
// White cursor : shows which polygon is selected
struct polygon cursorS = {
cursorS.poly_f4,
{255, 255, 255}, // color
30, 30, // width, height
{0,0,0}, // RotV_L
{0,0,0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{1,1,1}, // PivotV
{ // Verts[4]
{-1, -1, 1},
{ 1, -1, 1},
{-1, 1, 1},
{ 1, 1, 1}
},
IDMATRIX // Matrix
};
//Red
struct polygon polyS = {
polyS.poly_f4,
{255, 0, 0}, // color
30, 30, // width, height
{0,0,0}, // RotV_L
{-48, -30, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{15,15,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, // depth, flag
8, // rotSpeed
1 // z-index
};
//Yellow
struct polygon poly1S = {
poly1S.poly_f4,
{255, 187, 0}, // color
28, 28, // width, height
{0,0,0}, // RotV_L
{-20, 10, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{4,4,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, // depth, flag
-12, // rotSpeed
2 // z-index
};
//Green
struct polygon poly2S = {
poly2S.poly_f4,
{0, 255, 153}, // color
24, 24, // width, height
{0,0,0}, // RotV_L
{36, -10, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{12,12,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, // depth, flag
-6, // rotSpeed
3 // z-index
};
//Blue
struct polygon poly3S = {
poly3S.poly_f4,
{112, 254, 254}, // color
26, 26, // width, height
{0,0,0}, // RotV_L
{20, 20, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{13,13,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, //depth, flag
256, //rotSpeed
4 // z-index
};
/////
CurrentPoly = &polyS;
pivotPoint(polyS.Verts, polyS.width, polyS.height, polyS.PivotV_L);
pivotPoint(poly1S.Verts, poly1S.width, poly1S.height, poly1S.PivotV_L);
pivotPoint(poly2S.Verts, poly2S.width, poly2S.height, poly2S.PivotV_L);
pivotPoint(poly3S.Verts, poly3S.width, poly3S.height, poly3S.PivotV_L);
init();
while (1)
{
ClearOTagR(ot[db], OTLEN);
cursorS.poly_f4 = (POLY_F4 *)nextpri;
RotMatrix(&cursorS.RotV_L , &cursorS.Matrix);
TransMatrix(&cursorS.Matrix, &CurrentPoly->TransV_L);
SetRotMatrix(&cursorS.Matrix);
SetTransMatrix(&cursorS.Matrix);
setPolyF4(cursorS.poly_f4);
setRGB0(cursorS.poly_f4,cursorS.color.r,cursorS.color.g,cursorS.color.b);
//~ setXY4(cursorS, MovVector.vx-1, MovVector.vy-1 ,MovVector.vx + 1, MovVector.vy -1,MovVector.vx-1, MovVector.vy+1,MovVector.vx+1, MovVector.vy+1);
RotTransPers4(
&cursorS.Verts[0], &cursorS.Verts[1], &cursorS.Verts[2], &cursorS.Verts[3],
(long*)&cursorS.poly_f4->x0, (long*)&cursorS.poly_f4->x1, (long*)&cursorS.poly_f4->x2, (long*)&cursorS.poly_f4->x3,
&cursorS.depth,
&cursorS.flag
);
addPrim(ot[db], cursorS.poly_f4);
nextpri += sizeof(POLY_F4);
///// Red
polyS.poly_f4 = (POLY_F4 *)nextpri;
polyS.RotV_L.vz += polyS.rotSpeed;
RotMatrix(&polyS.RotV_L, &polyS.Matrix);
TransMatrix(&polyS.Matrix, &polyS.TransV_L);
ScaleMatrix(&polyS.Matrix, &polyS.ScaleV_L);
SetRotMatrix(&polyS.Matrix);
SetTransMatrix(&polyS.Matrix);
setPolyF4(polyS.poly_f4);
setRGB0(polyS.poly_f4, polyS.color.r,polyS.color.g,polyS.color.b);
RotTransPers4(
&polyS.Verts[0], &polyS.Verts[1], &polyS.Verts[2], &polyS.Verts[3],
(long*)&polyS.poly_f4->x0, (long*)&polyS.poly_f4->x1, (long*)&polyS.poly_f4->x2, (long*)&polyS.poly_f4->x3,
&polyS.depth,
&polyS.flag
);
addPrim(ot[db]+polyS.otz, polyS.poly_f4);
nextpri += sizeof(POLY_F4);
///// Yellow
poly1S.poly_f4 = (POLY_F4 *)nextpri;
poly1S.RotV_L.vz += poly1S.rotSpeed;
RotMatrix(&poly1S.RotV_L, &poly1S.Matrix);
TransMatrix(&poly1S.Matrix, &poly1S.TransV_L);
ScaleMatrix(&poly1S.Matrix, &poly1S.ScaleV_L);
SetRotMatrix(&poly1S.Matrix);
SetTransMatrix(&poly1S.Matrix);
setPolyF4(poly1S.poly_f4);
setRGB0(poly1S.poly_f4, poly1S.color.r,poly1S.color.g,poly1S.color.b);
RotTransPers4(
&poly1S.Verts[0], &poly1S.Verts[1], &poly1S.Verts[2], &poly1S.Verts[3],
(long*)&poly1S.poly_f4->x0, (long*)&poly1S.poly_f4->x1, (long*)&poly1S.poly_f4->x2, (long*)&poly1S.poly_f4->x3,
&poly1S.depth,
&poly1S.flag
);
addPrim(ot[db]+poly1S.otz, poly1S.poly_f4);
nextpri += sizeof(POLY_F4);
///// Green
poly2S.poly_f4 = (POLY_F4 *)nextpri;
poly2S.RotV_L.vz += poly2S.rotSpeed;
RotMatrix(&poly2S.RotV_L, &poly2S.Matrix);
TransMatrix(&poly2S.Matrix, &poly2S.TransV_L);
ScaleMatrix(&poly2S.Matrix, &poly2S.ScaleV_L);
SetRotMatrix(&poly2S.Matrix);
SetTransMatrix(&poly2S.Matrix);
setPolyF4(poly2S.poly_f4);
setRGB0(poly2S.poly_f4, poly2S.color.r,poly2S.color.g,poly2S.color.b);
RotTransPers4(
&poly2S.Verts[0], &poly2S.Verts[1], &poly2S.Verts[2], &poly2S.Verts[3],
(long*)&poly2S.poly_f4->x0, (long*)&poly2S.poly_f4->x1, (long*)&poly2S.poly_f4->x2, (long*)&poly2S.poly_f4->x3,
&poly2S.depth,
&poly2S.flag
);
addPrim(ot[db]+poly2S.otz, poly2S.poly_f4);
nextpri += sizeof(POLY_F4);
///// Blue
poly3S.poly_f4 = (POLY_F4 *)nextpri;
poly3S.RotV_L.vz += poly3S.rotSpeed;
RotMatrix(&poly3S.RotV_L, &poly3S.Matrix);
TransMatrix(&poly3S.Matrix, &poly3S.TransV_L);
ScaleMatrix(&poly3S.Matrix, &poly3S.ScaleV_L);
SetRotMatrix(&poly3S.Matrix);
SetTransMatrix(&poly3S.Matrix);
setPolyF4(poly3S.poly_f4);
setRGB0(poly3S.poly_f4, poly3S.color.r,poly3S.color.g,poly3S.color.b);
RotTransPers4(
&poly3S.Verts[0], &poly3S.Verts[1], &poly3S.Verts[2], &poly3S.Verts[3],
(long*)&poly3S.poly_f4->x0, (long*)&poly3S.poly_f4->x1, (long*)&poly3S.poly_f4->x2, (long*)&poly3S.poly_f4->x3,
&poly3S.depth,
&poly3S.flag
);
addPrim(ot[db]+poly3S.otz, poly3S.poly_f4);
nextpri += sizeof(POLY_F4);
// Pad stuff
int pad = PadRead(0); // init pad
// Right D-pad
if(pad & PADRup){
if (CurrentPoly->PivotV_L.vy >= 0){
CurrentPoly->PivotV_L.vy -= 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vy = CurrentPoly->PivotV_L.vy;
}
};
if(pad & PADRdown){
if (CurrentPoly->PivotV_L.vy <= CurrentPoly->height ){
CurrentPoly->PivotV_L.vy += 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vy = CurrentPoly->PivotV_L.vy;
}
};
if(pad & PADRleft){
if (CurrentPoly->PivotV_L.vx >= 0){
CurrentPoly->PivotV_L.vx -= 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vx = CurrentPoly->PivotV_L.vx;
}
};
if(pad & PADRright){
if (CurrentPoly->PivotV_L.vx <= CurrentPoly->width ){
CurrentPoly->PivotV_L.vx += 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vx = CurrentPoly->PivotV_L.vx;
}
};
// R1, R2, L2, L2
if(pad & PADR1){
if(BtnTimer == 0){
if (polyCount < 4){
CurrentPoly -= 1;
BtnTimer = 10;
polyCount++;
}
else {
CurrentPoly = &polyS + 1;
polyCount = 0;
}
}
}
if(pad & PADR2){
if(BtnTimer == 0){
if(CurrentPoly->otz < 5 ){
CurrentPoly->otz += 1;
BtnTimer = 10;
} else {
CurrentPoly->otz = 1;
BtnTimer = 10;
}
}
}
if(pad & PADL1){
if(BtnTimer == 0){
if (CurrentPoly->rotSpeed <= 320){
CurrentPoly->rotSpeed += 8;
}
BtnTimer = 10;
}
}
if(pad & PADL2){
if(BtnTimer == 0){
if (CurrentPoly->rotSpeed >= -320){
CurrentPoly->rotSpeed -= 8;
}
BtnTimer = 10;
}
}
// Left D-Pad
if(pad & PADLup){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vy -= 1;
//~ BtnTimer = 2;
}
}
if(pad & PADLdown){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vy += 1;
//~ BtnTimer = 2;
}
}
if(pad & PADLleft){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vx -= 1;
//~ BtnTimer = 2;
}
}
if(pad & PADLright){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vx += 1;
//~ BtnTimer = 2;
}
}
if(pad & PADstart){
if(BtnTimer == 0){
CurrentPoly->ScaleV_L.vx += 100;
CurrentPoly->ScaleV_L.vy += 100;
//~ CurrentPoly->TransV_L.vz += 1;
}
}
if(pad & PADselect){
if(BtnTimer == 0){
CurrentPoly->ScaleV_L.vx -= 100;
CurrentPoly->ScaleV_L.vy -= 100;
//~ CurrentPoly->TransV_L.vz -= 1;
}
}
// Btn_timer decrement
if(BtnTimer > 0){
BtnTimer -= 1;
}
// Debug stuff
// Display Rotation matrix
//~ FntPrint("Rotmatrix:\n%d %d %d\n%d %d %d\n%d %d %d \n",
//~ Poly1Matrix.m[0][0], Poly1Matrix.m[0][1], Poly1Matrix.m[0][2],
//~ Poly1Matrix.m[1][0], Poly1Matrix.m[1][1], Poly1Matrix.m[1][2],
//~ Poly1Matrix.m[2][0], Poly1Matrix.m[2][1], Poly1Matrix.m[2][2]);
// Display Mem adress and values of verticess
//~ FntPrint("cur:%x\n 0:%x\n 1:%x\n 2:%x\n 3:%x\n", CurrentPoly, &polyS, &poly1S, &poly2S, &poly3S);
//~ FntPrint("timer:%d polyCount:%d speed:%d", BtnTimer, polyCount, CurrentPoly->rotSpeed );
//~ FntPrint("&poly->x0 Addr:%x Value:%d \n&poly->y0 Addr:%x Value:%d \n&poly->x1 Addr:%x Value:%d",
//~ (long)&poly->x0, poly->x0,
//~ (long)&poly->y0, poly->y0,
//~ (long)&poly->x1, poly->x1);
//~ FntPrint("otz : %d\n" , CurrentPoly->rotSpeed);
// On-screen instructions
FntPrint("\
D-Pad:move polygon.\n\
[],X,O,\/\\ : Move pivot point.\n\
L1,L2 : Rotations speed +/-\n\
R1 : select polygon\n\
R2 : change z-index\n\
Start,Select : Scale polygon +/-\
");
FntFlush(-1);
display();
}
return 0;
}

417
hello_2pads.c Normal file
View File

@ -0,0 +1,417 @@
// hello_libpad example
//
// We're using libpad this time.
// You can use the classic controller, analog, wheel, gun buttons or mouse
//
// Schnappy - 12/2020
//
// Based on : ../psyq/addons/scea/CNTRL/PAD.C
//
// Controller demo
// Written by Mike Fulton
// Last Modified 6:25pm, 11/15/96
// Copyright (c) 1996 Sony Computer Entertainment America
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <libapi.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// Pad stuff
// Structure for RAW hardware-based light gun position values
typedef struct
{
unsigned short v_count; // Y-axis (vertical scan counter)
unsigned short h_count; // H-axis (horizontal pixel clock value)
} Gun_Position;
// Structure for storing processed controller data
typedef struct
{
int xpos, ypos; // Stored position for sprite(s)
int xpos2, ypos2; // controlled by this controller.
unsigned char status; // These 8 values are obtained
unsigned char type; // directly from the controller
unsigned char button1; // buffer we installed with InitPAD.
unsigned char button2;
unsigned char analog0;
unsigned char analog1;
unsigned char analog2;
unsigned char analog3;
} Controller_Data;
// All-purpose controller data buffer
typedef struct
{
unsigned char pad[34]; // 8-bytes w/o Multi-Tap, 34-bytes w/Multi-Tap
} Controller_Buffer;
Controller_Buffer controllers[2]; // Buffers for reading controllers
Controller_Data theControllers[8]; // Processed controller data
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void get_digital_direction( Controller_Data *c, int buttondata ) // get analog stick values
{
int i;
i = ~(buttondata);
if( i & 0x80 )
c->xpos -= 1;
if( i & 0x20 )
c->xpos += 1;
if( i & 0x40 )
c->ypos += 1;
if( i & 0x10 )
c->ypos -= 1;
}
void read_controller( Controller_Data *c, unsigned char *buf, int port ) // get the raw values from controller
{
register int mouse_x, mouse_y, x;
register Gun_Position *g;
c->status = buf[0]; // Copy over raw controller data
c->type = buf[1];
c->button1 = buf[2];
c->button2 = buf[3];
c->analog0 = buf[4];
c->analog1 = buf[5];
c->analog2 = buf[6];
c->analog3 = buf[7];
if( buf[0] == 0xff ) // If controller returns BAD status then bail on it.
{
c->type = 0;
return;
}
// Look at the controller type code & process controller data as indicated
switch( c->type )
{
case 0x12: // Sony Mouse
mouse_x = buf[4];
mouse_y = buf[5];
if( mouse_x & 0x80 )
mouse_x |= 0xffffff80;
if( mouse_y & 0x80 )
mouse_y |= 0xffffff80;
c->xpos += mouse_x;
c->ypos += mouse_y;
break;
case 0x23: // Namco negCon
// Steering wheel
// Sankyo Pachinko controler
get_digital_direction( c, buf[2] );
break;
case 0x53: // Analog 2-stick
get_digital_direction( c, buf[2] );
break;
case 0x41: // Standard Sony PAD controller
get_digital_direction( c, buf[2] );
break;
default: // If don't know what it is, treat it like standard controller
get_digital_direction( c, buf[2] );
break;
}
}
int main(void)
{
TILE * PADL; // Tile primitives
TILE * TRIGGERL;
TILE * PADR;
TILE * TRIGGERR;
TILE * START, * SELECT;
init();
InitPAD(controllers[0].pad, 34, controllers[1].pad, 34);
StartPAD();
while (1)
{
read_controller( &theControllers[0], &controllers[0].pad[0], 0 ); // Read controllers
read_controller( &theControllers[1], &controllers[1].pad[0], 1 );
ClearOTagR(ot[db], OTLEN);
// D-cross
PADL = (TILE *)nextpri;
setTile(PADL);
setRGB0(PADL, 80, 180, 255);
setXY0(PADL, CENTERX - 80, CENTERY);
setWH(PADL, 24, 24);
addPrim(ot[db], PADL);
nextpri += sizeof(TILE);
// L1+L2
TRIGGERL = (TILE *)nextpri;
setTile(TRIGGERL);
setRGB0(TRIGGERL, 255, 0, 0);
setXY0(TRIGGERL, CENTERX - 80, CENTERY - 80);
setWH(TRIGGERL, 24, 24);
addPrim(ot[db], TRIGGERL);
nextpri += sizeof(TILE);
// /\, X, O, []
PADR = (TILE *)nextpri;
setTile(PADR);
setRGB0(PADR, 0, 255, 0);
setXY0(PADR, CENTERX + 50, CENTERY);
setWH(PADR, 24, 24);
addPrim(ot[db], PADR);
nextpri += sizeof(TILE);
// R1+R2
TRIGGERR = (TILE *)nextpri;
setTile(TRIGGERR);
setRGB0(TRIGGERR, 255, 0, 255);
setXY0(TRIGGERR, CENTERX + 50, CENTERY -80);
setWH(TRIGGERR, 24, 24);
addPrim(ot[db], TRIGGERR);
nextpri += sizeof(TILE);
// START + SELECT
START = (TILE *)nextpri;
setTile(START);
setRGB0(START, 240, 240, 240);
setXY0(START, CENTERX - 16, CENTERY - 36);
setWH(START, 24, 24);
addPrim(ot[db], START);
nextpri += sizeof(TILE);
// D-pad
switch(theControllers[0].button1){
case 0xDF: // Right
PADL->x0 = CENTERX - 64;
break;
case 0x7F: // Left
PADL->x0 = CENTERX - 96;
break;
case 0xEF: // Up
PADL->y0 = CENTERY - 16;
break;
case 0xBF: // Down
PADL->y0 = CENTERY + 16;
break;
// Start & Select
case 0xF7:
START->w = 32; START->h = 32;START->x0 -= 4;START->y0 -= 4; // START
break;
case 0xFE: // SELECT
START->r0 = 0;
break;
// Dualshock L3 + R3
case 0xFD: // L3
TRIGGERL->w += 10;
TRIGGERL->h += 10;
break;
case 0xFB: //R3
TRIGGERR->w += 10;
TRIGGERR->h += 10;
break;
}
// Buttons
switch(theControllers[0].button2){
case 0xDF: // ⭘
PADR->x0 = CENTERX + 66;
break;
case 0x7F: // ⬜
PADR->x0 = CENTERX + 34;
break;
case 0xEF: // △
PADR->y0 = CENTERY - 16;
break;
case 0xBF: //
PADR->y0 = CENTERY + 16;
break;
// Shoulder buttons
case 0xFB: // L1
TRIGGERL->y0 = CENTERY - 64;
break;
case 0xFE: // L2
TRIGGERL->y0 = CENTERY - 96;
break;
case 0xF7: // R1
TRIGGERR->y0 = CENTERY - 96;
break;
case 0xFD: // R2
TRIGGERR->y0 = CENTERY - 64;
break;
// Mouse buttons
case 0xF4: // Mouse Left click
PADL->w += 10;
PADL->h += 10;
break;
case 0xF8: // Mouse Right click
PADL->w -= 10;
PADL->h -= 10;
break;
}
FntPrint("Hello 2 pads!\n\n");
FntPrint( "Pad 1 : %02x\nButtons:%02x %02x, Stick:%02x %02x %02x %02x\n",
theControllers[0].type, // Controller type : 00 == none, 41 == standard, 73 == analog/dualshock, 12 == mouse, 23 == steering wheel, 63 == gun, 53 == analog joystick
theControllers[0].button1, //
theControllers[0].button2,
theControllers[0].analog0,
theControllers[0].analog1,
theControllers[0].analog2,
theControllers[0].analog3 );
FntPrint( "Pad 2 : %02x\nButtons:%02x %02x, Stick:%02x %02x %02x %02x\n",
theControllers[1].type, // Controller type : 00 == none, 41 == standard, 73 == analog/dualshock, 12 == mouse, 23 == steering wheel, 63 == gun, 53 == analog joystick
theControllers[1].button1, //
theControllers[1].button2,
theControllers[1].analog0, // R3 horizontal
theControllers[1].analog1, // R3 vertical
theControllers[1].analog2, // L3 horizontal
theControllers[1].analog3 ); // L3 vertical
FntFlush(-1);
display();
}
return 0;
}

417
hello_2pads/hello_2pads.c Normal file
View File

@ -0,0 +1,417 @@
// hello_libpad example
//
// We're using libpad this time.
// You can use the classic controller, analog, wheel, gun buttons or mouse
//
// Schnappy - 12/2020
//
// Based on : ../psyq/addons/scea/CNTRL/PAD.C
//
// Controller demo
// Written by Mike Fulton
// Last Modified 6:25pm, 11/15/96
// Copyright (c) 1996 Sony Computer Entertainment America
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <libapi.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// Pad stuff
// Structure for RAW hardware-based light gun position values
typedef struct
{
unsigned short v_count; // Y-axis (vertical scan counter)
unsigned short h_count; // H-axis (horizontal pixel clock value)
} Gun_Position;
// Structure for storing processed controller data
typedef struct
{
int xpos, ypos; // Stored position for sprite(s)
int xpos2, ypos2; // controlled by this controller.
unsigned char status; // These 8 values are obtained
unsigned char type; // directly from the controller
unsigned char button1; // buffer we installed with InitPAD.
unsigned char button2;
unsigned char analog0;
unsigned char analog1;
unsigned char analog2;
unsigned char analog3;
} Controller_Data;
// All-purpose controller data buffer
typedef struct
{
unsigned char pad[34]; // 8-bytes w/o Multi-Tap, 34-bytes w/Multi-Tap
} Controller_Buffer;
Controller_Buffer controllers[2]; // Buffers for reading controllers
Controller_Data theControllers[8]; // Processed controller data
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void get_digital_direction( Controller_Data *c, int buttondata ) // get analog stick values
{
int i;
i = ~(buttondata);
if( i & 0x80 )
c->xpos -= 1;
if( i & 0x20 )
c->xpos += 1;
if( i & 0x40 )
c->ypos += 1;
if( i & 0x10 )
c->ypos -= 1;
}
void read_controller( Controller_Data *c, unsigned char *buf, int port ) // get the raw values from controller
{
register int mouse_x, mouse_y, x;
register Gun_Position *g;
c->status = buf[0]; // Copy over raw controller data
c->type = buf[1];
c->button1 = buf[2];
c->button2 = buf[3];
c->analog0 = buf[4];
c->analog1 = buf[5];
c->analog2 = buf[6];
c->analog3 = buf[7];
if( buf[0] == 0xff ) // If controller returns BAD status then bail on it.
{
c->type = 0;
return;
}
// Look at the controller type code & process controller data as indicated
switch( c->type )
{
case 0x12: // Sony Mouse
mouse_x = buf[4];
mouse_y = buf[5];
if( mouse_x & 0x80 )
mouse_x |= 0xffffff80;
if( mouse_y & 0x80 )
mouse_y |= 0xffffff80;
c->xpos += mouse_x;
c->ypos += mouse_y;
break;
case 0x23: // Namco negCon
// Steering wheel
// Sankyo Pachinko controler
get_digital_direction( c, buf[2] );
break;
case 0x53: // Analog 2-stick
get_digital_direction( c, buf[2] );
break;
case 0x41: // Standard Sony PAD controller
get_digital_direction( c, buf[2] );
break;
default: // If don't know what it is, treat it like standard controller
get_digital_direction( c, buf[2] );
break;
}
}
int main(void)
{
TILE * PADL; // Tile primitives
TILE * TRIGGERL;
TILE * PADR;
TILE * TRIGGERR;
TILE * START, * SELECT;
init();
InitPAD(controllers[0].pad, 34, controllers[1].pad, 34);
StartPAD();
while (1)
{
read_controller( &theControllers[0], &controllers[0].pad[0], 0 ); // Read controllers
read_controller( &theControllers[1], &controllers[1].pad[0], 1 );
ClearOTagR(ot[db], OTLEN);
// D-cross
PADL = (TILE *)nextpri;
setTile(PADL);
setRGB0(PADL, 80, 180, 255);
setXY0(PADL, CENTERX - 80, CENTERY);
setWH(PADL, 24, 24);
addPrim(ot[db], PADL);
nextpri += sizeof(TILE);
// L1+L2
TRIGGERL = (TILE *)nextpri;
setTile(TRIGGERL);
setRGB0(TRIGGERL, 255, 0, 0);
setXY0(TRIGGERL, CENTERX - 80, CENTERY - 80);
setWH(TRIGGERL, 24, 24);
addPrim(ot[db], TRIGGERL);
nextpri += sizeof(TILE);
// /\, X, O, []
PADR = (TILE *)nextpri;
setTile(PADR);
setRGB0(PADR, 0, 255, 0);
setXY0(PADR, CENTERX + 50, CENTERY);
setWH(PADR, 24, 24);
addPrim(ot[db], PADR);
nextpri += sizeof(TILE);
// R1+R2
TRIGGERR = (TILE *)nextpri;
setTile(TRIGGERR);
setRGB0(TRIGGERR, 255, 0, 255);
setXY0(TRIGGERR, CENTERX + 50, CENTERY -80);
setWH(TRIGGERR, 24, 24);
addPrim(ot[db], TRIGGERR);
nextpri += sizeof(TILE);
// START + SELECT
START = (TILE *)nextpri;
setTile(START);
setRGB0(START, 240, 240, 240);
setXY0(START, CENTERX - 16, CENTERY - 36);
setWH(START, 24, 24);
addPrim(ot[db], START);
nextpri += sizeof(TILE);
// D-pad
switch(theControllers[0].button1){
case 0xDF: // Right
PADL->x0 = CENTERX - 64;
break;
case 0x7F: // Left
PADL->x0 = CENTERX - 96;
break;
case 0xEF: // Up
PADL->y0 = CENTERY - 16;
break;
case 0xBF: // Down
PADL->y0 = CENTERY + 16;
break;
// Start & Select
case 0xF7:
START->w = 32; START->h = 32;START->x0 -= 4;START->y0 -= 4; // START
break;
case 0xFE: // SELECT
START->r0 = 0;
break;
// Dualshock L3 + R3
case 0xFD: // L3
TRIGGERL->w += 10;
TRIGGERL->h += 10;
break;
case 0xFB: //R3
TRIGGERR->w += 10;
TRIGGERR->h += 10;
break;
}
// Buttons
switch(theControllers[0].button2){
case 0xDF: // ⭘
PADR->x0 = CENTERX + 66;
break;
case 0x7F: // ⬜
PADR->x0 = CENTERX + 34;
break;
case 0xEF: // △
PADR->y0 = CENTERY - 16;
break;
case 0xBF: //
PADR->y0 = CENTERY + 16;
break;
// Shoulder buttons
case 0xFB: // L1
TRIGGERL->y0 = CENTERY - 64;
break;
case 0xFE: // L2
TRIGGERL->y0 = CENTERY - 96;
break;
case 0xF7: // R1
TRIGGERR->y0 = CENTERY - 96;
break;
case 0xFD: // R2
TRIGGERR->y0 = CENTERY - 64;
break;
// Mouse buttons
case 0xF4: // Mouse Left click
PADL->w += 10;
PADL->h += 10;
break;
case 0xF8: // Mouse Right click
PADL->w -= 10;
PADL->h -= 10;
break;
}
FntPrint("Hello 2 pads!\n\n");
FntPrint( "Pad 1 : %02x\nButtons:%02x %02x, Stick:%02x %02x %02x %02x\n",
theControllers[0].type, // Controller type : 00 == none, 41 == standard, 73 == analog/dualshock, 12 == mouse, 23 == steering wheel, 63 == gun, 53 == analog joystick
theControllers[0].button1, //
theControllers[0].button2,
theControllers[0].analog0,
theControllers[0].analog1,
theControllers[0].analog2,
theControllers[0].analog3 );
FntPrint( "Pad 2 : %02x\nButtons:%02x %02x, Stick:%02x %02x %02x %02x\n",
theControllers[1].type, // Controller type : 00 == none, 41 == standard, 73 == analog/dualshock, 12 == mouse, 23 == steering wheel, 63 == gun, 53 == analog joystick
theControllers[1].button1, //
theControllers[1].button2,
theControllers[1].analog0, // R3 horizontal
theControllers[1].analog1, // R3 vertical
theControllers[1].analog2, // L3 horizontal
theControllers[1].analog3 ); // L3 vertical
FntFlush(-1);
display();
}
return 0;
}

178
hello_cube.c Normal file
View File

@ -0,0 +1,178 @@
/* primdrawG.c, by Schnappy, 12-2020
- Draw a gouraud shaded mesh exported as a TMESH by the blender <= 2.79b plugin io_export_psx_tmesh.py
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
Demonstrates:
- Using a primitive OT to draw triangles without libgs.
- Using the GTE to rotate, translate, and project 3D primitives.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Sample vector model
#include "cube.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// Prototypes
void init(void);
void display(void);
//~ void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 128, 255);
setRGB0(&draw[1], 0, 128, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_G3 *poly = {0}; // pointer to a POLY_G4
SVECTOR Rotate={ 0 }; // Rotation coordinates
VECTOR Trans={ 0, 0, CENTERX * 3, 0 }; // Translation coordinates
// Scaling coordinates
VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
init();
// Main loop
while (1) {
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
if (PadStatus & PADselect) {
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Convert and set the matrixes
RotMatrix(&Rotate, &Matrix);
TransMatrix(&Matrix, &Trans);
ScaleMatrix(&Matrix, &Scale);
SetRotMatrix(&Matrix);
SetTransMatrix(&Matrix);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (modelCube.len*3); i += 3) {
poly = (POLY_G3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyG3(poly);
setRGB0(poly, modelCube.c[i].r , modelCube.c[i].g , modelCube.c[i].b);
setRGB1(poly, modelCube.c[i+2].r, modelCube.c[i+2].g, modelCube.c[i+2].b);
setRGB2(poly, modelCube.c[i+1].r, modelCube.c[i+1].g, modelCube.c[i+1].b);
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_G3);
t+=3;
}
FntPrint("Hello gouraud shaded cube!\n");
FntFlush(-1);
display();
}
return 0;
}

167
hello_cube/cube.c Normal file
View File

@ -0,0 +1,167 @@
SVECTOR modelCube_mesh[] = {
{ -128,128,128 },
{ 128,128,128 },
{ 128,128,-128 },
{ -128,128,-128 },
{ -128,-128,128 },
{ 128,-128,128 },
{ 128,-128,-128 },
{ -128,-128,-128 }
};
SVECTOR modelCube_normal[] = {
2365,-2365,-2365, 0,
-2365,-2365,-2365, 0,
-2365,-2365,2365, 0,
2365,-2365,2365, 0,
2365,2365,-2365, 0,
-2365,2365,-2365, 0,
-2365,2365,2365, 0,
2365,2365,2365, 0
};
CVECTOR modelCube_color[] = {
255,237,0, 0,
255,235,0, 0,
255,236,0, 0,
255,2,0, 0,
254,3,0, 0,
255,8,0, 0,
229,0,255, 0,
229,0,255, 0,
229,0,255, 0,
5,16,250, 0,
0,12,255, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0,
255,237,0, 0,
255,237,0, 0,
255,235,0, 0,
255,2,0, 0,
255,6,2, 0,
254,3,0, 0,
229,0,255, 0,
232,21,232, 0,
229,0,255, 0,
5,16,250, 0,
2,13,253, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0
};
int modelCube_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube = {
modelCube_mesh,
modelCube_normal,
0,
modelCube_color,
12
};
SVECTOR modelCube1_mesh[] = {
{ -128,128,128 },
{ 128,128,128 },
{ 128,128,-128 },
{ -128,128,-128 },
{ -128,-128,128 },
{ 128,-128,128 },
{ 128,-128,-128 },
{ -128,-128,-128 }
};
SVECTOR modelCube1_normal[] = {
2365,-2365,-2365, 0,
-2365,-2365,-2365, 0,
-2365,-2365,2365, 0,
2365,-2365,2365, 0,
2365,2365,-2365, 0,
-2365,2365,-2365, 0,
-2365,2365,2365, 0,
2365,2365,2365, 0
};
CVECTOR modelCube1_color[] = {
255,237,0, 0,
255,235,0, 0,
255,236,0, 0,
255,2,0, 0,
254,3,0, 0,
255,8,0, 0,
229,0,255, 0,
229,0,255, 0,
229,0,255, 0,
5,16,250, 0,
0,12,255, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0,
255,237,0, 0,
255,237,0, 0,
255,235,0, 0,
255,2,0, 0,
255,6,2, 0,
254,3,0, 0,
229,0,255, 0,
232,21,232, 0,
229,0,255, 0,
5,16,250, 0,
2,13,253, 0,
0,12,255, 0,
4,251,25, 0,
0,255,26, 0,
0,255,26, 0,
0,248,255, 0,
0,248,255, 0,
0,248,255, 0
};
int modelCube1_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube1 = {
modelCube1_mesh,
modelCube1_normal,
0,
modelCube1_color,
12
};

178
hello_cube/hello_cube.c Normal file
View File

@ -0,0 +1,178 @@
/* primdrawG.c, by Schnappy, 12-2020
- Draw a gouraud shaded mesh exported as a TMESH by the blender <= 2.79b plugin io_export_psx_tmesh.py
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
Demonstrates:
- Using a primitive OT to draw triangles without libgs.
- Using the GTE to rotate, translate, and project 3D primitives.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Sample vector model
#include "../includes/cube.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// Prototypes
void init(void);
void display(void);
//~ void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 128, 255);
setRGB0(&draw[1], 0, 128, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_G3 *poly = {0}; // pointer to a POLY_G4
SVECTOR Rotate={ 0 }; // Rotation coordinates
VECTOR Trans={ 0, 0, CENTERX * 3, 0 }; // Translation coordinates
// Scaling coordinates
VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
init();
// Main loop
while (1) {
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
if (PadStatus & PADselect) {
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Convert and set the matrixes
RotMatrix(&Rotate, &Matrix);
TransMatrix(&Matrix, &Trans);
ScaleMatrix(&Matrix, &Scale);
SetRotMatrix(&Matrix);
SetTransMatrix(&Matrix);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (modelCube.len*3); i += 3) {
poly = (POLY_G3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyG3(poly);
setRGB0(poly, modelCube.c[i].r , modelCube.c[i].g , modelCube.c[i].b);
setRGB1(poly, modelCube.c[i+2].r, modelCube.c[i+2].g, modelCube.c[i+2].b);
setRGB2(poly, modelCube.c[i+1].r, modelCube.c[i+1].g, modelCube.c[i+1].b);
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_G3);
t+=3;
}
FntPrint("Hello gouraud shaded cube!\n");
FntFlush(-1);
display();
}
return 0;
}

297
hello_cubetex.c Normal file
View File

@ -0,0 +1,297 @@
/* primdrawG.c, by Schnappy, 12-2020
- Draw a gouraud shaded mesh exported as a TMESH by the blender <= 2.79b plugin io_export_psx_tmesh.py
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
Demonstrates:
- Using a primitive OT to draw triangles without libgs.
- Using the GTE to rotate, translate, and project 3D primitives.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Sample vector model
#include "cubetex.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
//~ int primcnt=0; // Primitive counter
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// Prototypes
void init(void);
void display(void);
void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 *poly = {0}; // pointer to a POLY_G4
SVECTOR Rotate={ 0 }; // Rotation coordinates
VECTOR Trans={ 0, 0, CENTERX, 0 }; // Translation coordinates
// Scaling coordinates
VECTOR Scale={ ONE, ONE, ONE, 0 }; // ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
// Texture window
DR_MODE * dr_mode; // Pointer to dr_mode prim
RECT tws = {0, 0, 32, 32}; // Texture window coordinates : x, y, w, h
init();
LoadTexture(_binary_TIM_cubetex_tim_start, &tim_cube);
// Main loop
while (1) {
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
if (PadStatus & PADselect) {
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Convert and set the matrixes
RotMatrix(&Rotate, &Matrix);
TransMatrix(&Matrix, &Trans);
ScaleMatrix(&Matrix, &Scale);
SetRotMatrix(&Matrix);
SetTransMatrix(&Matrix);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (modelCube.len*3); i += 3) {
poly = (POLY_GT3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyGT3(poly);
((POLY_GT3 *)poly)->tpage = getTPage(tim_cube.mode&0x3, 0,
tim_cube.prect->x,
tim_cube.prect->y
);
setRGB0(poly, modelCube.c[i].r , modelCube.c[i].g , modelCube.c[i].b);
setRGB1(poly, modelCube.c[i+2].r, modelCube.c[i+2].g, modelCube.c[i+2].b);
setRGB2(poly, modelCube.c[i+1].r, modelCube.c[i+1].g, modelCube.c[i+1].b);
setUV3(poly, modelCube.u[i].vx, modelCube.u[i].vy,
modelCube.u[i+2].vx, modelCube.u[i+2].vy,
modelCube.u[i+1].vx, modelCube.u[i+1].vy);
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_GT3);
t+=3;
}
dr_mode = (DR_MODE *)nextpri;
setDrawMode(dr_mode,1,0, getTPage(tim_cube.mode&0x3, 0,
tim_cube.prect->x,
tim_cube.prect->y), &tws); //set texture window
AddPrim(&ot[db], dr_mode);
nextpri += sizeof(DR_MODE);
FntPrint("Hello textured cube!\n");
FntFlush(-1);
display();
}
return 0;
}

132
hello_cubetex/cubetex.c Normal file
View File

@ -0,0 +1,132 @@
SVECTOR modelCube_mesh[] = {
{20.0,19.999998807907104,-20.0},
{20.0,-20.0,-20.0},
{-20.00000238418579,-19.999996423721313,-20.0},
{-19.999992847442627,20.000007152557373,-20.0},
{20.000009536743164,19.99998927116394,20.0},
{19.99998688697815,-20.000011920928955,20.0},
{-20.000007152557373,-19.999992847442627,20.0},
{-19.999998807907104,20.0,20.0}
};
SVECTOR modelCube_normal[] = {
0.0,-0.0,-1.0,0,
0.0,0.0,1.0,0,
1.0,0.0,-2.384185791015625e-07,0,
-8.940696716308594e-08,-1.0,-2.9802325229866256e-07,0,
-1.0,2.384185791015625e-07,-1.4901158351676713e-07,0,
2.6822084464583895e-07,1.0,2.3841852225814364e-07,0,
0.0,0.0,-1.0,0,
0.0,-0.0,1.0,0,
1.0,-5.662441253662109e-07,3.2782537573439186e-07,0,
-4.768372150465439e-07,-1.0,8.940690321423972e-08,0,
-1.0,2.0861631355728605e-07,-1.1920931797249068e-07,0,
2.0861631355728605e-07,1.0,1.7881397695873602e-07,0
};
SVECTOR modelCube_uv[] = {
83.71398162841797,83.71389770507812, 0, 0,
125.03179168701172,42.396141052246094, 0, 0,
83.71398162841797,42.396141052246094, 0, 0,
125.03179168701172,83.71392059326172, 0, 0,
83.71398162841797,125.03166770935059, 0, 0,
125.03179168701172,125.03169059753418, 0, 0,
1.0784510374069214,83.71392059326172, 0, 0,
42.39619445800781,125.03169059753418, 0, 0,
42.39621353149414,83.71392440795898, 0, 0,
42.39621353149414,125.03166770935059, 0, 0,
83.71398162841797,83.71392440795898, 0, 0,
42.39621353149414,83.71390151977539, 0, 0,
42.39619445800781,1.0783309936523438, 0, 0,
1.0784281492233276,42.39611053466797, 0, 0,
42.39619445800781,42.39612579345703, 0, 0,
42.39619064331055,83.71392059326172, 0, 0,
1.0784281492233276,42.396141052246094, 0, 0,
1.0784281492233276,83.71392059326172, 0, 0,
83.71398162841797,83.71389770507812, 0, 0,
125.03179168701172,83.71390151977539, 0, 0,
125.03179168701172,42.396141052246094, 0, 0,
125.03179168701172,83.71392059326172, 0, 0,
83.71399688720703,83.71392440795898, 0, 0,
83.71398162841797,125.03166770935059, 0, 0,
1.0784510374069214,83.71392059326172, 0, 0,
1.0784281492233276,125.03169059753418, 0, 0,
42.39619445800781,125.03169059753418, 0, 0,
42.39621353149414,125.03166770935059, 0, 0,
83.71398162841797,125.03169059753418, 0, 0,
83.71398162841797,83.71392440795898, 0, 0,
42.39619445800781,1.0783309936523438, 0, 0,
1.0784281492233276,1.0783309936523438, 0, 0,
1.0784281492233276,42.39611053466797, 0, 0,
42.39619064331055,83.71392059326172, 0, 0,
42.39619445800781,42.396141052246094, 0, 0,
1.0784281492233276,42.396141052246094, 0, 0
};
CVECTOR modelCube_color[] = {
255,255,255, 0,
255,255,255, 0,
255,0,251, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
4,18,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
254,255,23, 0,
122,255,107, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
254,255,94, 0,
255,255,255, 0,
35,255,11, 0,
255,255,255, 0,
255,255,255, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,5,7, 0,
255,255,255, 0,
255,255,255, 0,
254,255,23, 0,
255,255,255, 0,
122,255,107, 0,
255,255,255, 0,
54,65,255, 0,
255,255,255, 0
};
int modelCube_index[] = {
0,2,3,
7,5,4,
4,1,0,
5,2,1,
2,7,3,
0,7,4,
0,1,2,
7,6,5,
4,5,1,
5,6,2,
2,6,7,
0,3,7
};
TMESH modelCube = {
modelCube_mesh,
modelCube_normal,
modelCube_uv,
modelCube_color,
12
};
extern unsigned long _binary____TIM_cubetex_tim_start[];
extern unsigned long _binary____TIM_cubetex_tim_end[];
extern unsigned long _binary____TIM_cubetex_tim_length;
TIM_IMAGE tim_cube;

View File

@ -0,0 +1,297 @@
/* primdrawG.c, by Schnappy, 12-2020
- Draw a gouraud shaded mesh exported as a TMESH by the blender <= 2.79b plugin io_export_psx_tmesh.py
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
Demonstrates:
- Using a primitive OT to draw triangles without libgs.
- Using the GTE to rotate, translate, and project 3D primitives.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Sample vector model
#include "cubetex.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
//~ int primcnt=0; // Primitive counter
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// Prototypes
void init(void);
void display(void);
void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
POLY_GT3 *poly = {0}; // pointer to a POLY_G4
SVECTOR Rotate={ 0 }; // Rotation coordinates
VECTOR Trans={ 0, 0, CENTERX, 0 }; // Translation coordinates
// Scaling coordinates
VECTOR Scale={ ONE, ONE, ONE, 0 }; // ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
// Texture window
DR_MODE * dr_mode; // Pointer to dr_mode prim
RECT tws = {0, 0, 32, 32}; // Texture window coordinates : x, y, w, h
init();
LoadTexture(_binary____TIM_cubetex_tim_start, &tim_cube);
// Main loop
while (1) {
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
if (PadStatus & PADselect) {
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vx = Rotate.vy = Rotate.vz = 0;
Scale.vx = Scale.vy = Scale.vz = ONE;
Trans.vx = Trans.vy = 0;
Trans.vz = CENTERX;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Convert and set the matrixes
RotMatrix(&Rotate, &Matrix);
TransMatrix(&Matrix, &Trans);
ScaleMatrix(&Matrix, &Scale);
SetRotMatrix(&Matrix);
SetTransMatrix(&Matrix);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (modelCube.len*3); i += 3) {
poly = (POLY_GT3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyGT3(poly);
((POLY_GT3 *)poly)->tpage = getTPage(tim_cube.mode&0x3, 0,
tim_cube.prect->x,
tim_cube.prect->y
);
setRGB0(poly, modelCube.c[i].r , modelCube.c[i].g , modelCube.c[i].b);
setRGB1(poly, modelCube.c[i+2].r, modelCube.c[i+2].g, modelCube.c[i+2].b);
setRGB2(poly, modelCube.c[i+1].r, modelCube.c[i+1].g, modelCube.c[i+1].b);
setUV3(poly, modelCube.u[i].vx, modelCube.u[i].vy,
modelCube.u[i+2].vx, modelCube.u[i+2].vy,
modelCube.u[i+1].vx, modelCube.u[i+1].vy);
// Rotate, translate, and project the vectors and output the results into a primitive
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_GT3);
t+=3;
}
dr_mode = (DR_MODE *)nextpri;
setDrawMode(dr_mode,1,0, getTPage(tim_cube.mode&0x3, 0,
tim_cube.prect->x,
tim_cube.prect->y), &tws); //set texture window
AddPrim(&ot[db], dr_mode);
nextpri += sizeof(DR_MODE);
FntPrint("Hello textured cube!\n");
FntFlush(-1);
display();
}
return 0;
}

BIN
hello_gt.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

239
hello_gte_opti.c Normal file
View File

@ -0,0 +1,239 @@
// Hello free cycles !
//
// Ref : /psyq/DOCS/Devrefs/Inlinref.pdf, p.18
// /psyq/psx/sample/scea/GTE
// https://psx-spx.consoledev.net/geometrytransformationenginegte/
// PSX / Z+
// screen /
//coordinate +-----X+
//system / |
// eye | Y+
//
// Credits, thanks : Nicolas Noble, Sickle, Lameguy64 @ psxdev discord : https://discord.com/invite/N2mmwp
// https://discord.com/channels/642647820683444236/663664210525290507/834831466100949002
#include <sys/types.h>
#include <stdio.h>
#include <libetc.h>
#include <libgte.h>
#include <libgpu.h>
// OldWorld PsyQ has a inline_c.h file for inline GTE functions. We have to use the one at https://github.com/grumpycoders/pcsx-redux/blob/07f9b02d1dbb68f57a9f5b9773041813c55a4913/src/mips/psyq/include/inline_n.h
// because the real GTE commands are needed in nugget : https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-coordinate-calculation-commands
#include <inline_n.h>
// RAM -> CPU and CPU -> GTE macros :
#include "CPUMAC.H"
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 + (VMODE << 4) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256
#define CENTERX ( SCREENXRES >> 1 ) // Center of screen on x
#define CENTERY ( SCREENYRES >> 1 ) // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 10 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// DCache setup
#define dc_camdirp ((sshort*) getScratchAddr(0))
#define dc_ip ((uchar*) getScratchAddr(1))
#define dc_opzp ((slong*) getScratchAddr(2))
#define dc_wmatp ((MATRIX*) getScratchAddr(3))
#define dc_cmatp ((MATRIX*) getScratchAddr(9))
#define dc_sxytbl ((DVECTOR*) getScratchAddr(15))
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
//~ SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomScreen(CENTERX);
// Set display environment
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
// Set draw environment
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
// If PAL, use 320x256, hence 256 - 240 = 16 / 2 = 8 px vertical offset
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
// Set background color
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
// Wait for drawing
DrawSync(0);
// Wait for vsync
VSync(1);
// Flip DISP and DRAW env
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
//~ SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
// Flip db index
db = !db;
// Get next primitive in buffer
nextpri = primbuff[db];
}
int main(void)
{
long p, flag, OTz;
SVECTOR rotVector = {0};
SVECTOR rotVector4 = {0}; // Initialize rotation vector {x, y, z} - ALWAYS !
VECTOR transVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z}
SVECTOR vertPos[4] = {
{ 0, -32, 0, 0 }, // Vert 1
{ 32, 0, 0, 0 }, // Vert 2
{ -32, 0, 0, 0 },
{ 0, 32, 0, 0 }
}; // Vert 3
MATRIX workMatrix = {0};
POLY_F3 * poly = {0}; // pointer to a POLY_F4
POLY_F4 * poly4 = {0}; // pointer to a POLY_F4
init();
// Declare registers
register ulong ur0 asm("$16");
register ulong ur1 asm("$17");
register ulong ur2 asm("$18");
register ulong ur3 asm("$19");
register ulong ur4 asm("$20");
register ulong ur5 asm("$21");
while (1)
{
// Set Ordering table
ClearOTagR(ot[db], OTLEN);
// Cast next primitives in buffer as a POLY_F3 and a POLY_F4 (see display() )
poly = (POLY_F3 *)nextpri;
nextpri += sizeof(POLY_F3);
poly4 = (POLY_F4 *)nextpri;
// Set matrices - Move to left of screen
// Draw on the left part of the screen
transVector.vx = -CENTERX/2;
// Increment rotation angle on Y axis
rotVector.vy += 1;
// Find rotation matrix from vector, store in
RotMatrix_gte(&rotVector, &workMatrix);
// Ditto for translation
TransMatrix(&workMatrix, &transVector);
// Set the matrices we just found
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Draw a Tri and a Quad
// Copy Tri vertices from ram to cpu registers casting as ulong so that ur0 (len 32bits) contains vx and vy (2 * 8bits)
// Hence the use of vx, vz members
cpu_ldr(ur0,(ulong*)&vertPos[0].vx); // Put vx, vy value in ur0
cpu_ldr(ur1,(ulong*)&vertPos[0].vz); // Put vz, pad value in ur1
cpu_ldr(ur2,(ulong*)&vertPos[1].vx);
cpu_ldr(ur3,(ulong*)&vertPos[1].vz);
cpu_ldr(ur4,(ulong*)&vertPos[2].vx);
cpu_ldr(ur5,(ulong*)&vertPos[2].vz);
// Load the gte registers from the cpu registers (gte-cpu move 1 cycle) - mtc2 %0, $0;
cpu_gted0(ur0);
cpu_gted1(ur1);
cpu_gted2(ur2);
cpu_gted3(ur3);
cpu_gted4(ur4);
cpu_gted5(ur5);
// Tri RotTransPers3
// The two last cpu->gte copy will happen during the 2 nops in gte_rtpt()
gte_rtpt();
// Fill the cpu registers with the Quad vertices
cpu_ldr(ur0,(ulong*)&vertPos[0].vx);
cpu_ldr(ur1,(ulong*)&vertPos[0].vz);
cpu_ldr(ur2,(ulong*)&vertPos[1].vx);
cpu_ldr(ur3,(ulong*)&vertPos[1].vz);
cpu_ldr(ur4,(ulong*)&vertPos[2].vx);
cpu_ldr(ur5,(ulong*)&vertPos[2].vz);
// Get nclip value, and win two cycles
gte_nclip();
// Copy Tri 's screen coordinates from gte registers to d-cache.
gte_stsxy3c(&dc_sxytbl[0]);
// Set matrices - Move to right of screen
transVector.vx = CENTERX/2;
// Increment rot on X/Y axis
rotVector4.vy -= 1 ;
rotVector4.vx -= 1 ;
// Set matrices
RotMatrix_gte(&rotVector4, &workMatrix);
TransMatrix(&workMatrix, &transVector);
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Load the gte registers from the cpu registers (gte-cpu move 1 cycle) - mtc2 %0, $0;
cpu_gted0(ur0);
cpu_gted1(ur1);
cpu_gted2(ur2);
cpu_gted3(ur3);
cpu_gted4(ur4);
cpu_gted5(ur5);
// Quad RotTransPers3
// Getting 2 cycles back thanks to nops
gte_rtpt();
// gte_nclip() has 2 nops, lets use them to load the remaining vertex data from ram->cpu register
cpu_ldr(ur0,(ulong*)&vertPos[3].vx);
cpu_ldr(ur1,(ulong*)&vertPos[3].vz);
// Calculate nclip (outer product)
gte_nclip();
// Copy result to d-cache + 3
gte_stsxy3c(&dc_sxytbl[3]);
// Copy from cpu-gte
cpu_gted0(ur0);
cpu_gted1(ur1);
// Quad last vertex RotTransPers
// These two last cpu->gte load are free :p
gte_rtps();
gte_nclip();
// Copy last vertex value to d-cache
gte_stsxy(&dc_sxytbl[6]);
// Get p, flag, OTz
gte_stdp(&p);
gte_stflg(&flag);
gte_stszotz(&OTz);
// That's 10 cycles we won back ?
// Copy vertices data from d-cache to ram
// Tri
*(unsigned long long*)&poly->x0 = *(unsigned long long*)&dc_sxytbl[0];
*(ulong*)&poly->x2 = *(ulong*)&dc_sxytbl[2];
// Quad
*(unsigned long long*)&poly4->x0 = *(unsigned long long*)&dc_sxytbl[3];
*(unsigned long long*)&poly4->x2 = *(unsigned long long*)&dc_sxytbl[5];
// Initialize polygons
setPolyF3(poly);
setRGB0(poly, 255, 0, 255);
setPolyF4(poly4);
setRGB0(poly4, 0, 255, 255);
// Add to OT
addPrim(ot[db], poly);
addPrim(ot[db], poly4);
// Display text
FntPrint("Hello Free cycles !\n");
FntFlush(-1);
display();
}
return 0;
}

View File

@ -0,0 +1,239 @@
// Hello free cycles !
//
// Ref : /psyq/DOCS/Devrefs/Inlinref.pdf, p.18
// /psyq/psx/sample/scea/GTE
// https://psx-spx.consoledev.net/geometrytransformationenginegte/
// PSX / Z+
// screen /
//coordinate +-----X+
//system / |
// eye | Y+
//
// Credits, thanks : Nicolas Noble, Sickle, Lameguy64 @ psxdev discord : https://discord.com/invite/N2mmwp
// https://discord.com/channels/642647820683444236/663664210525290507/834831466100949002
#include <sys/types.h>
#include <stdio.h>
#include <libetc.h>
#include <libgte.h>
#include <libgpu.h>
// OldWorld PsyQ has a inline_c.h file for inline GTE functions. We have to use the one at https://github.com/grumpycoders/pcsx-redux/blob/07f9b02d1dbb68f57a9f5b9773041813c55a4913/src/mips/psyq/include/inline_n.h
// because the real GTE commands are needed in nugget : https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-coordinate-calculation-commands
#include <inline_n.h>
// RAM -> CPU and CPU -> GTE macros :
#include "../includes/CPUMAC.H"
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 + (VMODE << 4) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256
#define CENTERX ( SCREENXRES >> 1 ) // Center of screen on x
#define CENTERY ( SCREENYRES >> 1 ) // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 10 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// DCache setup
#define dc_camdirp ((sshort*) getScratchAddr(0))
#define dc_ip ((uchar*) getScratchAddr(1))
#define dc_opzp ((slong*) getScratchAddr(2))
#define dc_wmatp ((MATRIX*) getScratchAddr(3))
#define dc_cmatp ((MATRIX*) getScratchAddr(9))
#define dc_sxytbl ((DVECTOR*) getScratchAddr(15))
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
//~ SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomScreen(CENTERX);
// Set display environment
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
// Set draw environment
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
// If PAL, use 320x256, hence 256 - 240 = 16 / 2 = 8 px vertical offset
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
// Set background color
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
// Wait for drawing
DrawSync(0);
// Wait for vsync
VSync(1);
// Flip DISP and DRAW env
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
//~ SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
// Flip db index
db = !db;
// Get next primitive in buffer
nextpri = primbuff[db];
}
int main(void)
{
long p, flag, OTz;
SVECTOR rotVector = {0};
SVECTOR rotVector4 = {0}; // Initialize rotation vector {x, y, z} - ALWAYS !
VECTOR transVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z}
SVECTOR vertPos[4] = {
{ 0, -32, 0, 0 }, // Vert 1
{ 32, 0, 0, 0 }, // Vert 2
{ -32, 0, 0, 0 },
{ 0, 32, 0, 0 }
}; // Vert 3
MATRIX workMatrix = {0};
POLY_F3 * poly = {0}; // pointer to a POLY_F4
POLY_F4 * poly4 = {0}; // pointer to a POLY_F4
init();
// Declare registers
register ulong ur0 asm("$16");
register ulong ur1 asm("$17");
register ulong ur2 asm("$18");
register ulong ur3 asm("$19");
register ulong ur4 asm("$20");
register ulong ur5 asm("$21");
while (1)
{
// Set Ordering table
ClearOTagR(ot[db], OTLEN);
// Cast next primitives in buffer as a POLY_F3 and a POLY_F4 (see display() )
poly = (POLY_F3 *)nextpri;
nextpri += sizeof(POLY_F3);
poly4 = (POLY_F4 *)nextpri;
// Set matrices - Move to left of screen
// Draw on the left part of the screen
transVector.vx = -CENTERX/2;
// Increment rotation angle on Y axis
rotVector.vy += 1;
// Find rotation matrix from vector, store in
RotMatrix_gte(&rotVector, &workMatrix);
// Ditto for translation
TransMatrix(&workMatrix, &transVector);
// Set the matrices we just found
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Draw a Tri and a Quad
// Copy Tri vertices from ram to cpu registers casting as ulong so that ur0 (len 32bits) contains vx and vy (2 * 8bits)
// Hence the use of vx, vz members
cpu_ldr(ur0,(ulong*)&vertPos[0].vx); // Put vx, vy value in ur0
cpu_ldr(ur1,(ulong*)&vertPos[0].vz); // Put vz, pad value in ur1
cpu_ldr(ur2,(ulong*)&vertPos[1].vx);
cpu_ldr(ur3,(ulong*)&vertPos[1].vz);
cpu_ldr(ur4,(ulong*)&vertPos[2].vx);
cpu_ldr(ur5,(ulong*)&vertPos[2].vz);
// Load the gte registers from the cpu registers (gte-cpu move 1 cycle) - mtc2 %0, $0;
cpu_gted0(ur0);
cpu_gted1(ur1);
cpu_gted2(ur2);
cpu_gted3(ur3);
cpu_gted4(ur4);
cpu_gted5(ur5);
// Tri RotTransPers3
// The two last cpu->gte copy will happen during the 2 nops in gte_rtpt()
gte_rtpt();
// Fill the cpu registers with the Quad vertices
cpu_ldr(ur0,(ulong*)&vertPos[0].vx);
cpu_ldr(ur1,(ulong*)&vertPos[0].vz);
cpu_ldr(ur2,(ulong*)&vertPos[1].vx);
cpu_ldr(ur3,(ulong*)&vertPos[1].vz);
cpu_ldr(ur4,(ulong*)&vertPos[2].vx);
cpu_ldr(ur5,(ulong*)&vertPos[2].vz);
// Get nclip value, and win two cycles
gte_nclip();
// Copy Tri 's screen coordinates from gte registers to d-cache.
gte_stsxy3c(&dc_sxytbl[0]);
// Set matrices - Move to right of screen
transVector.vx = CENTERX/2;
// Increment rot on X/Y axis
rotVector4.vy -= 1 ;
rotVector4.vx -= 1 ;
// Set matrices
RotMatrix_gte(&rotVector4, &workMatrix);
TransMatrix(&workMatrix, &transVector);
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Load the gte registers from the cpu registers (gte-cpu move 1 cycle) - mtc2 %0, $0;
cpu_gted0(ur0);
cpu_gted1(ur1);
cpu_gted2(ur2);
cpu_gted3(ur3);
cpu_gted4(ur4);
cpu_gted5(ur5);
// Quad RotTransPers3
// Getting 2 cycles back thanks to nops
gte_rtpt();
// gte_nclip() has 2 nops, lets use them to load the remaining vertex data from ram->cpu register
cpu_ldr(ur0,(ulong*)&vertPos[3].vx);
cpu_ldr(ur1,(ulong*)&vertPos[3].vz);
// Calculate nclip (outer product)
gte_nclip();
// Copy result to d-cache + 3
gte_stsxy3c(&dc_sxytbl[3]);
// Copy from cpu-gte
cpu_gted0(ur0);
cpu_gted1(ur1);
// Quad last vertex RotTransPers
// These two last cpu->gte load are free :p
gte_rtps();
gte_nclip();
// Copy last vertex value to d-cache
gte_stsxy(&dc_sxytbl[6]);
// Get p, flag, OTz
gte_stdp(&p);
gte_stflg(&flag);
gte_stszotz(&OTz);
// That's 10 cycles we won back ?
// Copy vertices data from d-cache to ram
// Tri
*(unsigned long long*)&poly->x0 = *(unsigned long long*)&dc_sxytbl[0];
*(ulong*)&poly->x2 = *(ulong*)&dc_sxytbl[2];
// Quad
*(unsigned long long*)&poly4->x0 = *(unsigned long long*)&dc_sxytbl[3];
*(unsigned long long*)&poly4->x2 = *(unsigned long long*)&dc_sxytbl[5];
// Initialize polygons
setPolyF3(poly);
setRGB0(poly, 255, 0, 255);
setPolyF4(poly4);
setRGB0(poly4, 0, 255, 255);
// Add to OT
addPrim(ot[db], poly);
addPrim(ot[db], poly4);
// Display text
FntPrint("Hello Free cycles !\n");
FntFlush(-1);
display();
}
return 0;
}

275
hello_light.c Normal file
View File

@ -0,0 +1,275 @@
/* hello_light.c, by Schnappy, 06-2021
- Demonstrates setting and using light sources in 3D without libgs.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Sample vector model
#include "cube.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
// Lighting
// See PsyQ's LibOver47.pdf, p.133 for more details on the purpose of each component and full calculations.
// Far color : This is the color used to fade to when the mesh is far from the cam (NearFog)
CVECTOR BGc = {150, 50, 75, 0};
// Back color
VECTOR BKc = {128, 128, 128, 0};
// Light rotation angle
SVECTOR lgtang = {0, 0, 0};
// These will be used to store the light rotation matrix, cube rotation matrix, and composite light matrix.
MATRIX rotlgt, rotcube, light;
// Local Light Matrix : Direction and reach of each light source.
// Each light points in the direction aligned with the axis, hence direction is in the same coordinate system as the PSX (see l.23-30 of this file)
// Negative/positive value denotes light direction on corresponding axis
// -4096 > Value < 4096 denotes reach/intensity of light source
MATRIX lgtmat = {
// X Y Z
-ONE, -ONE, ONE, // Lightsource 1 : here, the light source is at the Bottom-Left of the screen, and points into the screen.
0, 0, 0, // Lightsource 2
0, 0, 0, // Lightsource 3
};
// Local Color Matrix
// Set color of each light source (L)
// Value range : 0 > x < 4096
MATRIX cmat = {
// L1 L2 L3
4096, 0, 0, // R
4096, 0, 0, // G
4096, 0, 0 // B
};
// Prototypes
void init(void);
void display(void);
//~ void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
// Set light env
// Set far color
SetFarColor( BGc.r, BGc.g, BGc.b );
// Set Ambient color
SetBackColor( BKc.vx, BKc.vy, BKc.vz );
// Set Color matrix
SetColorMatrix(&cmat);
// Set Fog settings
SetFogNearFar( 1200, 2200, SCREENXRES );
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
// Rotating cube
POLY_G3 * poly;
SVECTOR Rotate={ ONE/6,ONE/6,ONE/6 }; // Rotation coordinates
VECTOR Trans={ -SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates
VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
// Static cube
POLY_G3 * poly1; // pointer to a POLY_G4
SVECTOR Rotate1={ ONE/6, ONE/6, ONE/6, 0 }; // Rotation coordinates
VECTOR Trans1={ SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates
VECTOR Scale1={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096
MATRIX Matrix1={0}; // Matrix data for the GTE
init();
// Main loop
while (1) {
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vy = Rotate.vx = Rotate.vz = ONE/6;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = -SCREENXRES/2;
Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (modelCube.len*3); i += 3) {
poly = (POLY_G3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyG3(poly);
// Rotate, translate, and project the vectors and output the results into a primitive
// Could be replaced with one call with RotTransPers3()
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Find light color
// Work color vectors
CVECTOR outCol, outCol1, outCol2 = { 0,0,0,0 };
// Find local color from three normal vectors and perform depth cueing.
// Could be replaced with one call with NormalColorDpq3()
NormalColorDpq(&modelCube.n[ modelCube_index[t+0] ], &modelCube.c[i+0], p, &outCol);
NormalColorDpq(&modelCube.n[ modelCube_index[t+2] ], &modelCube.c[i+2], p, &outCol1);
NormalColorDpq(&modelCube.n[ modelCube_index[t+1] ], &modelCube.c[i+1], p, &outCol2);
// Set vertex colors
setRGB0(poly, outCol.r, outCol.g , outCol.b);
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_G3);
t+=3;
}
// Find and apply light rotation matrix
//~ // Find rotmat from light angles
RotMatrix_gte(&lgtang, &rotlgt);
// Find rotmat from cube angles
RotMatrix_gte(&Rotate, &rotcube);
// RotMatrix cube * RotMatrix light
MulMatrix0(&rotcube, &rotlgt, &rotlgt);
// Light Matrix * RotMatrix light
MulMatrix0(&lgtmat, &rotlgt, &light);
// Set new light matrix
SetLightMatrix(&light);
// Convert and set the matrices
// Find Rotation matrix from object's angles
RotMatrix(&Rotate, &Matrix);
// Find Scale matrix from object's angles
ScaleMatrix(&Matrix, &Scale);
// Find Translation matrix from object's angles
TransMatrix(&Matrix, &Trans);
// Set GTE's rotation matrix
SetRotMatrix(&Matrix);
// Set GTE's Translation matrix
SetTransMatrix(&Matrix);
// Draw static cube
t=0;
for (i = 0; i < (modelCube1.len*3); i += 3) {
poly1 = (POLY_G3 *)nextpri;
SetPolyG3(poly1);
OTz = RotTransPers(&modelCube1_mesh[modelCube1_index[t]] , (long*)&poly1->x0, &p, &Flag);
OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+2]], (long*)&poly1->x1, &p, &Flag);
OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+1]], (long*)&poly1->x2, &p, &Flag);
CVECTOR outCol = { 0,0,0,0 };
CVECTOR outCol1 = { 0,0,0,0 };
CVECTOR outCol2 = { 0,0,0,0 };
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+0] ], &modelCube1.c[i+0], p, &outCol);
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+2] ], &modelCube1.c[i+2], p, &outCol1);
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+1] ], &modelCube1.c[i+1], p, &outCol2);
setRGB0(poly1, outCol.r, outCol.g , outCol.b);
setRGB1(poly1, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly1, outCol2.r, outCol2.g, outCol2.b);
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly1);
nextpri += sizeof(POLY_G3);
t+=3;
}
// See l.216
RotMatrix_gte(&lgtang, &rotlgt);
RotMatrix_gte(&Rotate1, &rotcube);
MulMatrix0(&rotcube, &rotlgt, &rotlgt);
MulMatrix0(&lgtmat, &rotlgt, &light);
SetLightMatrix(&light);
// See l.227
RotMatrix(&Rotate1, &Matrix1);
ScaleMatrix(&Matrix1, &Scale1);
TransMatrix(&Matrix1, &Trans1);
SetRotMatrix(&Matrix1);
SetTransMatrix(&Matrix1);
FntPrint("Hello lightsources !\n");
FntFlush(-1);
display();
}
return 0;
}

276
hello_light/hello_light.c Normal file
View File

@ -0,0 +1,276 @@
/* hello_light.c, by Schnappy, 06-2021
- Demonstrates setting and using light sources in 3D without libgs.
Controls:
Start - Toggle interactive/non-interactive mode.
Select - Reset object's position and angles.
L1/L2 - Move object closer/farther.
L2/R2 - Rotate object (XY).
Up/Down/Left/Right - Rotate object (XZ/YZ).
Triangle/Cross/Square/Circle - Move object up/down/left/right.
based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537)
2014 Meido-Tek Productions.
*/
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Sample vector model
#include "../includes/cube.c"
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
// Lighting
// See PsyQ's LibOver47.pdf, p.133 for more details on the purpose of each component and full calculations.
// Far color : This is the color used to fade to when the mesh is far from the cam (NearFog)
CVECTOR BGc = {150, 50, 75, 0};
// Back color
VECTOR BKc = {128, 128, 128, 0};
// Light rotation angle
SVECTOR lgtang = {0, 0, 0};
// These will be used to store the light rotation matrix, cube rotation matrix, and composite light matrix.
MATRIX rotlgt, rotcube, light;
// Local Light Matrix : Direction and reach of each light source.
// Each light points in the direction aligned with the axis, hence direction is in the same coordinate system as the PSX (see l.23-30 of this file)
// Negative/positive value denotes light direction on corresponding axis
// -4096 > Value < 4096 denotes reach/intensity of light source
MATRIX lgtmat = {
// X Y Z
-ONE, -ONE, ONE, // Lightsource 1 : here, the light source is at the Bottom-Left of the screen, and points into the screen.
0, 0, 0, // Lightsource 2
0, 0, 0, // Lightsource 3
};
// Local Color Matrix
// Set color of each light source (L)
// Value range : 0 > x < 4096
MATRIX cmat = {
// L1 L2 L3
4096, 0, 0, // R
4096, 0, 0, // G
4096, 0, 0 // B
};
// Prototypes
void init(void);
void display(void);
//~ void LoadTexture(u_long * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
// Set light env
// Set far color
SetFarColor( BGc.r, BGc.g, BGc.b );
// Set Ambient color
SetBackColor( BKc.vx, BKc.vy, BKc.vz );
// Set Color matrix
SetColorMatrix(&cmat);
// Set Fog settings
SetFogNearFar( 1200, 2200, SCREENXRES );
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main() {
int i;
int PadStatus;
int TPressed=0;
int AutoRotate=1;
// Rotating cube
POLY_G3 * poly;
SVECTOR Rotate={ ONE/6,ONE/6,ONE/6 }; // Rotation coordinates
VECTOR Trans={ -SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates
VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096
MATRIX Matrix={0}; // Matrix data for the GTE
// Static cube
POLY_G3 * poly1; // pointer to a POLY_G4
SVECTOR Rotate1={ ONE/6, ONE/6, ONE/6, 0 }; // Rotation coordinates
VECTOR Trans1={ SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates
VECTOR Scale1={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096
MATRIX Matrix1={0}; // Matrix data for the GTE
init();
// Main loop
while (1) {
// Read pad status
PadStatus = PadRead(0);
if (AutoRotate == 0) {
if (PadStatus & PADL1) Trans.vz -= 4;
if (PadStatus & PADR1) Trans.vz += 4;
if (PadStatus & PADL2) Rotate.vz -= 8;
if (PadStatus & PADR2) Rotate.vz += 8;
if (PadStatus & PADLup) Rotate.vx -= 8;
if (PadStatus & PADLdown) Rotate.vx += 8;
if (PadStatus & PADLleft) Rotate.vy -= 8;
if (PadStatus & PADLright) Rotate.vy += 8;
if (PadStatus & PADRup) Trans.vy -= 2;
if (PadStatus & PADRdown) Trans.vy += 2;
if (PadStatus & PADRleft) Trans.vx -= 2;
if (PadStatus & PADRright) Trans.vx += 2;
}
if (PadStatus & PADstart) {
if (TPressed == 0) {
AutoRotate = (AutoRotate + 1) & 1;
Rotate.vy = Rotate.vx = Rotate.vz = ONE/6;
Scale.vx = Scale.vy = Scale.vz = ONE/2;
Trans.vx = -SCREENXRES/2;
Trans.vy = 0;
Trans.vz = CENTERX * 3;
}
TPressed = 1;
} else {
TPressed = 0;
}
if (AutoRotate) {
Rotate.vy += 8; // Pan
Rotate.vx += 8; // Tilt
//~ Rotate.vz += 8; // Roll
}
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Render the sample vector model
t=0;
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (i = 0; i < (modelCube.len*3); i += 3) {
poly = (POLY_G3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyG3(poly);
// Rotate, translate, and project the vectors and output the results into a primitive
// Could be replaced with one call with RotTransPers3()
OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag);
// Find light color
// Work color vectors
CVECTOR outCol, outCol1, outCol2 = { 0,0,0,0 };
// Find local color from three normal vectors and perform depth cueing.
// Could be replaced with one call with NormalColorDpq3()
NormalColorDpq(&modelCube.n[ modelCube_index[t+0] ], &modelCube.c[i+0], p, &outCol);
NormalColorDpq(&modelCube.n[ modelCube_index[t+2] ], &modelCube.c[i+2], p, &outCol1);
NormalColorDpq(&modelCube.n[ modelCube_index[t+1] ], &modelCube.c[i+1], p, &outCol2);
// Set vertex colors
setRGB0(poly, outCol.r, outCol.g , outCol.b);
setRGB1(poly, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly, outCol2.r, outCol2.g, outCol2.b);
// Sort the primitive into the OT
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly);
nextpri += sizeof(POLY_G3);
t+=3;
}
// Find and apply light rotation matrix
//~ // Find rotmat from light angles
RotMatrix_gte(&lgtang, &rotlgt);
// Find rotmat from cube angles
RotMatrix_gte(&Rotate, &rotcube);
// RotMatrix cube * RotMatrix light
MulMatrix0(&rotcube, &rotlgt, &rotlgt);
// Light Matrix * RotMatrix light
MulMatrix0(&lgtmat, &rotlgt, &light);
// Set new light matrix
SetLightMatrix(&light);
// Convert and set the matrices
// Find Rotation matrix from object's angles
RotMatrix(&Rotate, &Matrix);
// Find Scale matrix from object's angles
ScaleMatrix(&Matrix, &Scale);
// Find Translation matrix from object's angles
TransMatrix(&Matrix, &Trans);
// Set GTE's rotation matrix
SetRotMatrix(&Matrix);
// Set GTE's Translation matrix
SetTransMatrix(&Matrix);
// Draw static cube
t=0;
for (i = 0; i < (modelCube1.len*3); i += 3) {
poly1 = (POLY_G3 *)nextpri;
SetPolyG3(poly1);
OTz = RotTransPers(&modelCube1_mesh[modelCube1_index[t]] , (long*)&poly1->x0, &p, &Flag);
OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+2]], (long*)&poly1->x1, &p, &Flag);
OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+1]], (long*)&poly1->x2, &p, &Flag);
CVECTOR outCol = { 0,0,0,0 };
CVECTOR outCol1 = { 0,0,0,0 };
CVECTOR outCol2 = { 0,0,0,0 };
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+0] ], &modelCube1.c[i+0], p, &outCol);
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+2] ], &modelCube1.c[i+2], p, &outCol1);
NormalColorDpq(&modelCube1.n[ modelCube1_index[t+1] ], &modelCube1.c[i+1], p, &outCol2);
setRGB0(poly1, outCol.r, outCol.g , outCol.b);
setRGB1(poly1, outCol1.r, outCol1.g, outCol1.b);
setRGB2(poly1, outCol2.r, outCol2.g, outCol2.b);
OTz /= 3;
if ((OTz > 0) && (OTz < OTLEN))
AddPrim(&ot[db][OTz-2], poly1);
nextpri += sizeof(POLY_G3);
t+=3;
}
// See l.216
RotMatrix_gte(&lgtang, &rotlgt);
RotMatrix_gte(&Rotate1, &rotcube);
MulMatrix0(&rotcube, &rotlgt, &rotlgt);
MulMatrix0(&lgtmat, &rotlgt, &light);
SetLightMatrix(&light);
// See l.227
RotMatrix(&Rotate1, &Matrix1);
ScaleMatrix(&Matrix1, &Scale1);
TransMatrix(&Matrix1, &Trans1);
SetRotMatrix(&Matrix1);
SetTransMatrix(&Matrix1);
FntPrint("Hello lightsources !\n");
FntFlush(-1);
display();
}
return 0;
}

320
hello_multivag.c Normal file
View File

@ -0,0 +1,320 @@
// VAGDEMO2020 by Schnappy
// December 2020
// Based on VAGDEMO_FIXED by Yagotzirck
// Based on VAGDEMO by Shadow
// based on psyq/addons/sound/TUTO3.C
//
//
// Load two VAG file to SPU sound buffer and play them back alternatively or simultaneously.
//
// WAV creation: use ffmpeg to create a 16-bit ADPCM mono WAV file - change -ar to reduce filesize (and quality)
// $ ffmpeg -i input.mp3 -acodec pcm_s16le -ac 1 -ar 44100 output.wav
//
// WAV to VAG convertion using WAV2VAG : https://github.com/ColdSauce/psxsdk/blob/master/tools/wav2vag.c
// change -freq according to the -ar setting above
// $ wav2vag input.wav output.vag -sraw16 -freq=44100 (-L)
//
// Alternatively, you can use PsyQ VAGEDIT.EXE to change the sampling frequency of an existing VAG file.
//
// Docs : see libformat47.pdf p.209
// libover47.pdf, p.271
// libref47.pdf, p.980
// URLS : http://psx.arthus.net/code/VAG/
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
// Sound system
#include <libsnd.h>
#include <libspu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
short db = 0; // index of which buffer is used, values 0, 1
// Sound stuff
#define MALLOC_MAX 3 // Max number of time we can call SpuMalloc
//~ // convert Little endian to Big endian
#define SWAP_ENDIAN32(x) (((x)>>24) | (((x)>>8) & 0xFF00) | (((x)<<8) & 0x00FF0000) | ((x)<<24))
typedef struct VAGheader{ // All the values in this header must be big endian
char id[4]; // VAGp 4 bytes -> 1 char * 4
unsigned int version; // 4 bytes
unsigned int reserved; // 4 bytes
unsigned int dataSize; // (in bytes) 4 bytes
unsigned int samplingFrequency;// 4 bytes
char reserved2[12]; // 12 bytes -> 1 char * 12
char name[16]; // 16 bytes -> 1 char * 16
// Waveform data after that
}VAGhdr;
SpuCommonAttr commonAttributes; // structure for changing common voice attributes
SpuVoiceAttr voiceAttributes ; // structure for changing individual voice attributes
u_long hello_spu_address; // address allocated in memory for first sound file
u_long poly_spu_address; // address allocated in memory for second sound file
// DEBUG : these allow printing values for debugging
u_long hello_spu_start_address;
u_long hello_get_start_addr;
u_long hello_transSize;
u_long poly_spu_start_address;
u_long poly_get_start_addr;
u_long poly_transSize;
#define HELLO SPU_0CH // Play first vag on channel 0
#define POLY SPU_2CH // Play second vag on channel 2
// Memory management table ; allow MALLOC_MAX calls to SpuMalloc() - ibref47.pdf p.1044
char spu_malloc_rec[SPU_MALLOC_RECSIZ * (2 + MALLOC_MAX+1)];
// VAG files
// We're using GrumpyCoder's Nugget wrapper to compile the code with a modern GCC : https://github.com/grumpycoders/pcsx-redux/tree/main/src/mips/psyq
// To include binary files in the exe, add your VAG files to the SRCS variable in Makefile
// and in common.mk, add this rule to include *.vag files :
//
//~ %.o: %.vag
//~ $(PREFIX)-objcopy -I binary --set-section-alignment .data=4 --rename-section .data=.rodata,alloc,load,readonly,data,contents -O elf32-tradlittlemips -B mips $< $@
// hello.vag - 44100 Khz
extern unsigned char _binary_VAG_hello_vag_start[]; // filename must begin with _binary_ followed by the full path, with . and / replaced, and then suffixed with _ and end with _start[]; or end[];
extern unsigned char _binary_VAG_hello_vag_end[]; // https://discord.com/channels/642647820683444236/663664210525290507/780866265077383189
// poly.vag - 44100 Khz
extern unsigned char _binary_VAG_poly_vag_start[];
extern unsigned char _binary_VAG_poly_vag_end[];
void initGraph(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(8, 60, 304, 200, 0, 500 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
db = !db;
}
// Audio initialisation & functions
void initSnd(void){
SpuInitMalloc(MALLOC_MAX, spu_malloc_rec); // Maximum number of blocks, mem. management table address.
commonAttributes.mask = (SPU_COMMON_MVOLL | SPU_COMMON_MVOLR); // Mask which attributes to set
commonAttributes.mvol.left = 0x3fff; // Master volume left
commonAttributes.mvol.right = 0x3fff; // see libref47.pdf, p.1058
SpuSetCommonAttr(&commonAttributes); // set attributes
SpuSetIRQ(SPU_OFF);
}
u_long sendVAGtoRAM(unsigned int VAG_data_size, unsigned char *VAG_data){
u_long size;
SpuSetTransferMode(SpuTransByDMA); // DMA transfer; can do other processing during transfer
size = SpuWrite (VAG_data + sizeof(VAGhdr), VAG_data_size); // transfer VAG_data_size bytes from VAG_data address to sound buffer
SpuIsTransferCompleted (SPU_TRANSFER_WAIT); // Checks whether transfer is completed and waits for completion
return size;
}
void setVoiceAttr(unsigned int pitch, long channel, unsigned long soundAddr ){
voiceAttributes.mask= //~ Attributes (bit string, 1 bit per attribute)
(
SPU_VOICE_VOLL |
SPU_VOICE_VOLR |
SPU_VOICE_PITCH |
SPU_VOICE_WDSA |
SPU_VOICE_ADSR_AMODE |
SPU_VOICE_ADSR_SMODE |
SPU_VOICE_ADSR_RMODE |
SPU_VOICE_ADSR_AR |
SPU_VOICE_ADSR_DR |
SPU_VOICE_ADSR_SR |
SPU_VOICE_ADSR_RR |
SPU_VOICE_ADSR_SL
);
voiceAttributes.voice = channel; //~ Voice (low 24 bits are a bit string, 1 bit per voice )
voiceAttributes.volume.left = 0x1000; //~ Volume
voiceAttributes.volume.right = 0x1000; //~ Volume
voiceAttributes.pitch = pitch; //~ Interval (set pitch)
voiceAttributes.addr = soundAddr; //~ Waveform data start address
voiceAttributes.a_mode = SPU_VOICE_LINEARIncN; //~ Attack rate mode = Linear Increase - see libref47.pdf p.1091
voiceAttributes.s_mode = SPU_VOICE_LINEARIncN; //~ Sustain rate mode = Linear Increase
voiceAttributes.r_mode = SPU_VOICE_LINEARDecN; //~ Release rate mode = Linear Decrease
voiceAttributes.ar = 0x0; //~ Attack rate
voiceAttributes.dr = 0x0; //~ Decay rate
voiceAttributes.rr = 0x0; //~ Release rate
voiceAttributes.sr = 0x0; //~ Sustain rate
voiceAttributes.sl = 0xf; //~ Sustain level
SpuSetVoiceAttr(&voiceAttributes); // set attributes
}
void playSFX(unsigned long fx){
SpuSetKey(SpuOn, fx);
}
int main(void)
{
short counter = 0;
const VAGhdr * HellofileHeader = (VAGhdr *) _binary_VAG_hello_vag_start; // get header of first VAG file
const VAGhdr * PolyfileHeader = (VAGhdr *) _binary_VAG_poly_vag_start; // get header of second VAG file
// From libover47.pdf :
// The sampling frequency of the original audio file can be used to determine the pitch
// at which to play the VAG. pitch = (sampling frequency << 12)/44100L
// Ex: 44.1kHz=0x1000 22.05kHz=0x800 etc
unsigned int Hellopitch = (SWAP_ENDIAN32(HellofileHeader->samplingFrequency) << 12) / 44100L;
unsigned int Polypitch = (SWAP_ENDIAN32(PolyfileHeader->samplingFrequency) << 12) / 44100L;
SpuInit(); // Initialize SPU. Called only once.
initSnd();
// First VAG
hello_spu_address = SpuMalloc(SWAP_ENDIAN32(HellofileHeader->dataSize)); // Allocate an area of dataSize bytes in the sound buffer.
hello_spu_start_address = SpuSetTransferStartAddr(hello_spu_address); // Sets a starting address in the sound buffer
hello_get_start_addr = SpuGetTransferStartAddr(); // SpuGetTransferStartAddr() returns current sound buffer transfer start address.
hello_transSize = sendVAGtoRAM(SWAP_ENDIAN32(HellofileHeader->dataSize), _binary_VAG_hello_vag_start);
// First VAG
poly_spu_address = SpuMalloc(SWAP_ENDIAN32(PolyfileHeader->dataSize)); // Allocate an area of dataSize bytes in the sound buffer.
poly_spu_start_address = SpuSetTransferStartAddr(poly_spu_address); // Sets a starting address in the sound buffer
poly_get_start_addr = SpuGetTransferStartAddr(); // SpuGetTransferStartAddr() returns current sound buffer transfer start address.
poly_transSize = sendVAGtoRAM(SWAP_ENDIAN32(PolyfileHeader->dataSize), _binary_VAG_poly_vag_start);
// set VAG to channel
setVoiceAttr(Hellopitch, HELLO, hello_spu_address); // SPU_0CH == hello
setVoiceAttr(Polypitch, POLY, poly_spu_address); // SPU_2CH == poly
initGraph();
while (1)
{
if(!counter){
playSFX(HELLO); // Play first VAG
counter = 240;
}
if(counter == 160){
playSFX(POLY); // Play second VAG
}
if(counter == 80){
playSFX(HELLO|POLY); // Play both VAGs simultaneously
}
FntPrint("First VAG:");
FntPrint("\nPitch : %08x-%dKhz", Hellopitch, (SWAP_ENDIAN32(HellofileHeader->samplingFrequency)) );
FntPrint("\nSet Start addr : %08x", hello_spu_address);
FntPrint("\nReturn start addr : %08x", hello_spu_start_address);
FntPrint("\nGet Start addr : %08x", hello_get_start_addr);
FntPrint("\nSend size : %08x", SWAP_ENDIAN32(HellofileHeader->dataSize));
FntPrint("\nReturn size : %08x\n", hello_transSize);
FntPrint("\nSecond VAG:");
FntPrint("\nPitch : %08x-%dKhz", Polypitch, (SWAP_ENDIAN32(HellofileHeader->samplingFrequency)) );
FntPrint("\nSet Start addr : %08x", poly_spu_address);
FntPrint("\nReturn start addr : %08x", poly_spu_start_address);
FntPrint("\nGet Start addr : %08x", poly_get_start_addr);
FntPrint("\nSend size : %08x", SWAP_ENDIAN32(PolyfileHeader->dataSize));
FntPrint("\nReturn size : %08x\n", poly_transSize);
FntPrint("\nCounter : %d\n", counter);
FntFlush(-1);
counter --;
display();
}
return 0;
}

View File

@ -0,0 +1,320 @@
// VAGDEMO2020 by Schnappy
// December 2020
// Based on VAGDEMO_FIXED by Yagotzirck
// Based on VAGDEMO by Shadow
// based on psyq/addons/sound/TUTO3.C
//
//
// Load two VAG file to SPU sound buffer and play them back alternatively or simultaneously.
//
// WAV creation: use ffmpeg to create a 16-bit ADPCM mono WAV file - change -ar to reduce filesize (and quality)
// $ ffmpeg -i input.mp3 -acodec pcm_s16le -ac 1 -ar 44100 output.wav
//
// WAV to VAG convertion using WAV2VAG : https://github.com/ColdSauce/psxsdk/blob/master/tools/wav2vag.c
// change -freq according to the -ar setting above
// $ wav2vag input.wav output.vag -sraw16 -freq=44100 (-L)
//
// Alternatively, you can use PsyQ VAGEDIT.EXE to change the sampling frequency of an existing VAG file.
//
// Docs : see libformat47.pdf p.209
// libover47.pdf, p.271
// libref47.pdf, p.980
// URLS : http://psx.arthus.net/code/VAG/
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
// Sound system
#include <libsnd.h>
#include <libspu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
short db = 0; // index of which buffer is used, values 0, 1
// Sound stuff
#define MALLOC_MAX 3 // Max number of time we can call SpuMalloc
//~ // convert Little endian to Big endian
#define SWAP_ENDIAN32(x) (((x)>>24) | (((x)>>8) & 0xFF00) | (((x)<<8) & 0x00FF0000) | ((x)<<24))
typedef struct VAGheader{ // All the values in this header must be big endian
char id[4]; // VAGp 4 bytes -> 1 char * 4
unsigned int version; // 4 bytes
unsigned int reserved; // 4 bytes
unsigned int dataSize; // (in bytes) 4 bytes
unsigned int samplingFrequency;// 4 bytes
char reserved2[12]; // 12 bytes -> 1 char * 12
char name[16]; // 16 bytes -> 1 char * 16
// Waveform data after that
}VAGhdr;
SpuCommonAttr commonAttributes; // structure for changing common voice attributes
SpuVoiceAttr voiceAttributes ; // structure for changing individual voice attributes
u_long hello_spu_address; // address allocated in memory for first sound file
u_long poly_spu_address; // address allocated in memory for second sound file
// DEBUG : these allow printing values for debugging
u_long hello_spu_start_address;
u_long hello_get_start_addr;
u_long hello_transSize;
u_long poly_spu_start_address;
u_long poly_get_start_addr;
u_long poly_transSize;
#define HELLO SPU_0CH // Play first vag on channel 0
#define POLY SPU_2CH // Play second vag on channel 2
// Memory management table ; allow MALLOC_MAX calls to SpuMalloc() - ibref47.pdf p.1044
char spu_malloc_rec[SPU_MALLOC_RECSIZ * (2 + MALLOC_MAX+1)];
// VAG files
// We're using GrumpyCoder's Nugget wrapper to compile the code with a modern GCC : https://github.com/grumpycoders/pcsx-redux/tree/main/src/mips/psyq
// To include binary files in the exe, add your VAG files to the SRCS variable in Makefile
// and in common.mk, add this rule to include *.vag files :
//
//~ %.o: %.vag
//~ $(PREFIX)-objcopy -I binary --set-section-alignment .data=4 --rename-section .data=.rodata,alloc,load,readonly,data,contents -O elf32-tradlittlemips -B mips $< $@
// hello.vag - 44100 Khz
extern unsigned char _binary____VAG_hello_vag_start[]; // filename must begin with _binary____ followed by the full path, with . and / replaced, and then suffixed with _ and end with _start[]; or end[];
extern unsigned char _binary____VAG_hello_vag_end[]; // https://discord.com/channels/642647820683444236/663664210525290507/780866265077383189
// poly.vag - 44100 Khz
extern unsigned char _binary____VAG_poly_vag_start[];
extern unsigned char _binary____VAG_poly_vag_end[];
void initGraph(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(8, 60, 304, 200, 0, 500 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
db = !db;
}
// Audio initialisation & functions
void initSnd(void){
SpuInitMalloc(MALLOC_MAX, spu_malloc_rec); // Maximum number of blocks, mem. management table address.
commonAttributes.mask = (SPU_COMMON_MVOLL | SPU_COMMON_MVOLR); // Mask which attributes to set
commonAttributes.mvol.left = 0x3fff; // Master volume left
commonAttributes.mvol.right = 0x3fff; // see libref47.pdf, p.1058
SpuSetCommonAttr(&commonAttributes); // set attributes
SpuSetIRQ(SPU_OFF);
}
u_long sendVAGtoRAM(unsigned int VAG_data_size, unsigned char *VAG_data){
u_long size;
SpuSetTransferMode(SpuTransByDMA); // DMA transfer; can do other processing during transfer
size = SpuWrite (VAG_data + sizeof(VAGhdr), VAG_data_size); // transfer VAG_data_size bytes from VAG_data address to sound buffer
SpuIsTransferCompleted (SPU_TRANSFER_WAIT); // Checks whether transfer is completed and waits for completion
return size;
}
void setVoiceAttr(unsigned int pitch, long channel, unsigned long soundAddr ){
voiceAttributes.mask= //~ Attributes (bit string, 1 bit per attribute)
(
SPU_VOICE_VOLL |
SPU_VOICE_VOLR |
SPU_VOICE_PITCH |
SPU_VOICE_WDSA |
SPU_VOICE_ADSR_AMODE |
SPU_VOICE_ADSR_SMODE |
SPU_VOICE_ADSR_RMODE |
SPU_VOICE_ADSR_AR |
SPU_VOICE_ADSR_DR |
SPU_VOICE_ADSR_SR |
SPU_VOICE_ADSR_RR |
SPU_VOICE_ADSR_SL
);
voiceAttributes.voice = channel; //~ Voice (low 24 bits are a bit string, 1 bit per voice )
voiceAttributes.volume.left = 0x1000; //~ Volume
voiceAttributes.volume.right = 0x1000; //~ Volume
voiceAttributes.pitch = pitch; //~ Interval (set pitch)
voiceAttributes.addr = soundAddr; //~ Waveform data start address
voiceAttributes.a_mode = SPU_VOICE_LINEARIncN; //~ Attack rate mode = Linear Increase - see libref47.pdf p.1091
voiceAttributes.s_mode = SPU_VOICE_LINEARIncN; //~ Sustain rate mode = Linear Increase
voiceAttributes.r_mode = SPU_VOICE_LINEARDecN; //~ Release rate mode = Linear Decrease
voiceAttributes.ar = 0x0; //~ Attack rate
voiceAttributes.dr = 0x0; //~ Decay rate
voiceAttributes.rr = 0x0; //~ Release rate
voiceAttributes.sr = 0x0; //~ Sustain rate
voiceAttributes.sl = 0xf; //~ Sustain level
SpuSetVoiceAttr(&voiceAttributes); // set attributes
}
void playSFX(unsigned long fx){
SpuSetKey(SpuOn, fx);
}
int main(void)
{
short counter = 0;
const VAGhdr * HellofileHeader = (VAGhdr *) _binary____VAG_hello_vag_start; // get header of first VAG file
const VAGhdr * PolyfileHeader = (VAGhdr *) _binary____VAG_poly_vag_start; // get header of second VAG file
// From libover47.pdf :
// The sampling frequency of the original audio file can be used to determine the pitch
// at which to play the VAG. pitch = (sampling frequency << 12)/44100L
// Ex: 44.1kHz=0x1000 22.05kHz=0x800 etc
unsigned int Hellopitch = (SWAP_ENDIAN32(HellofileHeader->samplingFrequency) << 12) / 44100L;
unsigned int Polypitch = (SWAP_ENDIAN32(PolyfileHeader->samplingFrequency) << 12) / 44100L;
SpuInit(); // Initialize SPU. Called only once.
initSnd();
// First VAG
hello_spu_address = SpuMalloc(SWAP_ENDIAN32(HellofileHeader->dataSize)); // Allocate an area of dataSize bytes in the sound buffer.
hello_spu_start_address = SpuSetTransferStartAddr(hello_spu_address); // Sets a starting address in the sound buffer
hello_get_start_addr = SpuGetTransferStartAddr(); // SpuGetTransferStartAddr() returns current sound buffer transfer start address.
hello_transSize = sendVAGtoRAM(SWAP_ENDIAN32(HellofileHeader->dataSize), _binary____VAG_hello_vag_start);
// First VAG
poly_spu_address = SpuMalloc(SWAP_ENDIAN32(PolyfileHeader->dataSize)); // Allocate an area of dataSize bytes in the sound buffer.
poly_spu_start_address = SpuSetTransferStartAddr(poly_spu_address); // Sets a starting address in the sound buffer
poly_get_start_addr = SpuGetTransferStartAddr(); // SpuGetTransferStartAddr() returns current sound buffer transfer start address.
poly_transSize = sendVAGtoRAM(SWAP_ENDIAN32(PolyfileHeader->dataSize), _binary____VAG_poly_vag_start);
// set VAG to channel
setVoiceAttr(Hellopitch, HELLO, hello_spu_address); // SPU_0CH == hello
setVoiceAttr(Polypitch, POLY, poly_spu_address); // SPU_2CH == poly
initGraph();
while (1)
{
if(!counter){
playSFX(HELLO); // Play first VAG
counter = 240;
}
if(counter == 160){
playSFX(POLY); // Play second VAG
}
if(counter == 80){
playSFX(HELLO|POLY); // Play both VAGs simultaneously
}
FntPrint("First VAG:");
FntPrint("\nPitch : %08x-%dKhz", Hellopitch, (SWAP_ENDIAN32(HellofileHeader->samplingFrequency)) );
FntPrint("\nSet Start addr : %08x", hello_spu_address);
FntPrint("\nReturn start addr : %08x", hello_spu_start_address);
FntPrint("\nGet Start addr : %08x", hello_get_start_addr);
FntPrint("\nSend size : %08x", SWAP_ENDIAN32(HellofileHeader->dataSize));
FntPrint("\nReturn size : %08x\n", hello_transSize);
FntPrint("\nSecond VAG:");
FntPrint("\nPitch : %08x-%dKhz", Polypitch, (SWAP_ENDIAN32(HellofileHeader->samplingFrequency)) );
FntPrint("\nSet Start addr : %08x", poly_spu_address);
FntPrint("\nReturn start addr : %08x", poly_spu_start_address);
FntPrint("\nGet Start addr : %08x", poly_get_start_addr);
FntPrint("\nSend size : %08x", SWAP_ENDIAN32(PolyfileHeader->dataSize));
FntPrint("\nReturn size : %08x\n", poly_transSize);
FntPrint("\nCounter : %d\n", counter);
FntFlush(-1);
counter --;
display();
}
return 0;
}

213
hello_pad.c Normal file
View File

@ -0,0 +1,213 @@
// hello_pad example
//
// We're using libetc PadInit() and PadRead() that only supports the 16 buttons pad
// but doesn't need the libpad lib. It's fine for prototyping and simple stuff.
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 2 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
TILE * PADL; // Tile primitives
TILE * TRIGGERL;
TILE * PADR;
TILE * TRIGGERR;
TILE * START, * SELECT;
int pad = 0;
init();
PadInit(0); // Initialize pad. Mode is always 0
while (1)
{
ClearOTagR(ot[db], OTLEN);
// D-cross
PADL = (TILE *)nextpri;
setTile(PADL);
setRGB0(PADL, 0, 0, 255);
setXY0(PADL, CENTERX - 80, CENTERY);
setWH(PADL, 24, 24);
addPrim(ot[db], PADL);
nextpri += sizeof(TILE);
// L1+L2
TRIGGERL = (TILE *)nextpri;
setTile(TRIGGERL);
setRGB0(TRIGGERL, 255, 0, 0);
setXY0(TRIGGERL, CENTERX - 80, CENTERY - 80);
setWH(TRIGGERL, 24, 24);
addPrim(ot[db], TRIGGERL);
nextpri += sizeof(TILE);
// /\, X, O, []
PADR = (TILE *)nextpri;
setTile(PADR);
setRGB0(PADR, 0, 255, 0);
setXY0(PADR, CENTERX + 50, CENTERY);
setWH(PADR, 24, 24);
addPrim(ot[db], PADR);
nextpri += sizeof(TILE);
// R1+R2
TRIGGERR = (TILE *)nextpri;
setTile(TRIGGERR);
setRGB0(TRIGGERR, 255, 0, 255);
setXY0(TRIGGERR, CENTERX + 50, CENTERY -80);
setWH(TRIGGERR, 24, 24);
addPrim(ot[db], TRIGGERR);
nextpri += sizeof(TILE);
// START + SELECT
START = (TILE *)nextpri;
setTile(START);
setRGB0(START, 240, 240, 240);
setXY0(START, CENTERX - 16, CENTERY - 36);
setWH(START, 24, 24);
addPrim(ot[db], START);
nextpri += sizeof(TILE);
// Pad stuff
pad = PadRead(0); // Read pads input. id is unused, always 0.
// PadRead() returns a 32 bit value, where input from pad 1 is stored in the low 2 bytes and input from pad 2 is stored in the high 2 bytes. (https://matiaslavik.wordpress.com/2015/02/13/diving-into-psx-development/)
// D-pad
if(pad & PADLup) {PADL->y0 = CENTERY - 16;} // 🡩 // To access pad 2, use ( pad >> 16 & PADLup)...
if(pad & PADLdown) {PADL->y0 = CENTERY + 16;} // 🡫
if(pad & PADLright){PADL->x0 = CENTERX - 64;} // 🡪
if(pad & PADLleft) {PADL->x0 = CENTERX - 96;} // 🡨
// Buttons
if(pad & PADRup) {PADR->y0 = CENTERY - 16;} // △
if(pad & PADRdown) {PADR->y0 = CENTERY + 16;} //
if(pad & PADRright){PADR->x0 = CENTERX + 66;} // ⭘
if(pad & PADRleft) {PADR->x0 = CENTERX + 34;} // ⬜
// Shoulder buttons
if(pad & PADL1){TRIGGERL->y0 = CENTERY - 64;} // L1
if(pad & PADL2){TRIGGERL->y0 = CENTERY - 96;} // L2
if(pad & PADR1){TRIGGERR->y0 = CENTERY - 64;} // R1
if(pad & PADR2){TRIGGERR->y0 = CENTERY - 96;} // R2
// Start & Select
if(pad & PADstart){START->w = 32; START->h = 32;START->x0 -= 4;START->y0 -= 4;} // START
if(pad & PADselect){START->r0 = 0;} // SELECT
FntPrint("Hello Pad!");
FntFlush(-1);
display();
}
return 0;
}

213
hello_pad/hello_pad.c Normal file
View File

@ -0,0 +1,213 @@
// hello_pad example
//
// We're using libetc PadInit() and PadRead() that only supports the 16 buttons pad
// but doesn't need the libpad lib. It's fine for prototyping and simple stuff.
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 2 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
TILE * PADL; // Tile primitives
TILE * TRIGGERL;
TILE * PADR;
TILE * TRIGGERR;
TILE * START, * SELECT;
int pad = 0;
init();
PadInit(0); // Initialize pad. Mode is always 0
while (1)
{
ClearOTagR(ot[db], OTLEN);
// D-cross
PADL = (TILE *)nextpri;
setTile(PADL);
setRGB0(PADL, 0, 0, 255);
setXY0(PADL, CENTERX - 80, CENTERY);
setWH(PADL, 24, 24);
addPrim(ot[db], PADL);
nextpri += sizeof(TILE);
// L1+L2
TRIGGERL = (TILE *)nextpri;
setTile(TRIGGERL);
setRGB0(TRIGGERL, 255, 0, 0);
setXY0(TRIGGERL, CENTERX - 80, CENTERY - 80);
setWH(TRIGGERL, 24, 24);
addPrim(ot[db], TRIGGERL);
nextpri += sizeof(TILE);
// /\, X, O, []
PADR = (TILE *)nextpri;
setTile(PADR);
setRGB0(PADR, 0, 255, 0);
setXY0(PADR, CENTERX + 50, CENTERY);
setWH(PADR, 24, 24);
addPrim(ot[db], PADR);
nextpri += sizeof(TILE);
// R1+R2
TRIGGERR = (TILE *)nextpri;
setTile(TRIGGERR);
setRGB0(TRIGGERR, 255, 0, 255);
setXY0(TRIGGERR, CENTERX + 50, CENTERY -80);
setWH(TRIGGERR, 24, 24);
addPrim(ot[db], TRIGGERR);
nextpri += sizeof(TILE);
// START + SELECT
START = (TILE *)nextpri;
setTile(START);
setRGB0(START, 240, 240, 240);
setXY0(START, CENTERX - 16, CENTERY - 36);
setWH(START, 24, 24);
addPrim(ot[db], START);
nextpri += sizeof(TILE);
// Pad stuff
pad = PadRead(0); // Read pads input. id is unused, always 0.
// PadRead() returns a 32 bit value, where input from pad 1 is stored in the low 2 bytes and input from pad 2 is stored in the high 2 bytes. (https://matiaslavik.wordpress.com/2015/02/13/diving-into-psx-development/)
// D-pad
if(pad & PADLup) {PADL->y0 = CENTERY - 16;} // 🡩 // To access pad 2, use ( pad >> 16 & PADLup)...
if(pad & PADLdown) {PADL->y0 = CENTERY + 16;} // 🡫
if(pad & PADLright){PADL->x0 = CENTERX - 64;} // 🡪
if(pad & PADLleft) {PADL->x0 = CENTERX - 96;} // 🡨
// Buttons
if(pad & PADRup) {PADR->y0 = CENTERY - 16;} // △
if(pad & PADRdown) {PADR->y0 = CENTERY + 16;} //
if(pad & PADRright){PADR->x0 = CENTERX + 66;} // ⭘
if(pad & PADRleft) {PADR->x0 = CENTERX + 34;} // ⬜
// Shoulder buttons
if(pad & PADL1){TRIGGERL->y0 = CENTERY - 64;} // L1
if(pad & PADL2){TRIGGERL->y0 = CENTERY - 96;} // L2
if(pad & PADR1){TRIGGERR->y0 = CENTERY - 64;} // R1
if(pad & PADR2){TRIGGERR->y0 = CENTERY - 96;} // R2
// Start & Select
if(pad & PADstart){START->w = 32; START->h = 32;START->x0 -= 4;START->y0 -= 4;} // START
if(pad & PADselect){START->r0 = 0;} // SELECT
FntPrint("Hello Pad!");
FntFlush(-1);
display();
}
return 0;
}

197
hello_poly.c Normal file
View File

@ -0,0 +1,197 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <libapi.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_F4 *poly = {0}; // pointer to a POLY_F4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z}
VECTOR ScaleVector ={ONE, ONE, ONE}; // ONE is define as 4096 in libgte.h
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 1 }, // Vert 1
{-32, 32, 1 }, // Vert 2
{ 32, -32, 1 }, // Vert 3
{ 32, 32, 1 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
long polydepth;
long polyflag;
long OTz;
init();
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_F4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector);
ScaleMatrix(&PolyMatrix, &ScaleVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyF4(poly); // Initialize poly as a POLY_F4
setRGB0(poly, 255, 0, 255); // Set poly color
// RotTransPers
//~ OTz = RotTransPers(&VertPos[0], (long*)&poly->x0, &polydepth, &polyflag);
//~ RotTransPers(&VertPos[1], (long*)&poly->x1, &polydepth, &polyflag);
//~ RotTransPers(&VertPos[2], (long*)&poly->x2, &polydepth, &polyflag);
//~ RotTransPers(&VertPos[3], (long*)&poly->x3, &polydepth, &polyflag);
// RotTransPers4 equivalent
OTz = RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
RotVector.vy += 4;
RotVector.vz += 4; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_F4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello Poly !");
FntFlush(-1);
display();
}
return 0;
}

197
hello_poly/hello_poly.c Normal file
View File

@ -0,0 +1,197 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <libapi.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_F4 *poly = {0}; // pointer to a POLY_F4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z}
VECTOR ScaleVector ={ONE, ONE, ONE}; // ONE is define as 4096 in libgte.h
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 1 }, // Vert 1
{-32, 32, 1 }, // Vert 2
{ 32, -32, 1 }, // Vert 3
{ 32, 32, 1 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
long polydepth;
long polyflag;
long OTz;
init();
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_F4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector);
ScaleMatrix(&PolyMatrix, &ScaleVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyF4(poly); // Initialize poly as a POLY_F4
setRGB0(poly, 255, 0, 255); // Set poly color
// RotTransPers
//~ OTz = RotTransPers(&VertPos[0], (long*)&poly->x0, &polydepth, &polyflag);
//~ RotTransPers(&VertPos[1], (long*)&poly->x1, &polydepth, &polyflag);
//~ RotTransPers(&VertPos[2], (long*)&poly->x2, &polydepth, &polyflag);
//~ RotTransPers(&VertPos[3], (long*)&poly->x3, &polydepth, &polyflag);
// RotTransPers4 equivalent
OTz = RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
RotVector.vy += 4;
RotVector.vz += 4; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_F4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello Poly !");
FntFlush(-1);
display();
}
return 0;
}

231
hello_poly_ft.c Normal file
View File

@ -0,0 +1,231 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary_TIM_bousai_tim_start[];
extern unsigned long _binary_TIM_bousai_tim_end[];
extern unsigned long _binary_TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_FT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, CENTERX/2, 0}; // Initialize translation vector {x, y, z, pad}
VECTOR ScaleVector = {ONE, ONE, ONE}; // ONE is define as 4096 in libgte.h
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 1 }, // Vert 1
{-32, 32, 1 }, // Vert 2
{ 32, -32, 1 }, // Vert 3
{ 32, 32, 1 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
long polydepth;
long polyflag;
int ping = 0;
init();
LoadTexture(_binary_TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_FT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
ScaleMatrix(&PolyMatrix, &ScaleVector); // Apply scale matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyFT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y); // Get Tpage coordinates from the TIM_IMAGE mode and prect members.
setRGB0(poly, 128, 128, 128); // Set poly color (neutra here)
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
// Let's have some fun on the Z axis
if(!ping){
if (MovVector.vz < CENTERX){ // While Poly position on Z axis is < 160, push it
MovVector.vz += 1; // Push on Z axis
} else {
ping = !ping; // Switch ping value
}
}
if(ping){
if (MovVector.vz > CENTERX/2){ // While Poly position on Z axis is > 80, pull it
MovVector.vz -= 1; // Pull on Z axis
} else {
ping = !ping; // Switch ping value
}
}
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_FT4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello textured poly !");
FntFlush(-1);
display();
}
return 0;
}

View File

@ -0,0 +1,231 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary____TIM_bousai_tim_start[];
extern unsigned long _binary____TIM_bousai_tim_end[];
extern unsigned long _binary____TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_FT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, CENTERX/2, 0}; // Initialize translation vector {x, y, z, pad}
VECTOR ScaleVector = {ONE, ONE, ONE}; // ONE is define as 4096 in libgte.h
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 1 }, // Vert 1
{-32, 32, 1 }, // Vert 2
{ 32, -32, 1 }, // Vert 3
{ 32, 32, 1 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
long polydepth;
long polyflag;
int ping = 0;
init();
LoadTexture(_binary____TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_FT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
ScaleMatrix(&PolyMatrix, &ScaleVector); // Apply scale matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyFT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y); // Get Tpage coordinates from the TIM_IMAGE mode and prect members.
setRGB0(poly, 128, 128, 128); // Set poly color (neutra here)
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
// Let's have some fun on the Z axis
if(!ping){
if (MovVector.vz < CENTERX){ // While Poly position on Z axis is < 160, push it
MovVector.vz += 1; // Push on Z axis
} else {
ping = !ping; // Switch ping value
}
}
if(ping){
if (MovVector.vz > CENTERX/2){ // While Poly position on Z axis is > 80, pull it
MovVector.vz -= 1; // Pull on Z axis
} else {
ping = !ping; // Switch ping value
}
}
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_FT4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello textured poly !");
FntFlush(-1);
display();
}
return 0;
}

View File

@ -0,0 +1,618 @@
// Having fun with polygons, matrices and vectors
// Credits : Schnappy
//With great help from Jaby smoll Seamonstah, Nicolas Noble, NDR008, paul, sickle on https://discord.com/invite/Zd82yXvs
// 11/2020
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#include <kernel.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SPIN 16 // Rotation speed increment
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 10 // margins for text display
#define MARGINY 4
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 16 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
CVECTOR BgColor[3] = {20, 20, 20};
struct polygon
{
POLY_F4 * poly_f4;
CVECTOR color;
short width;
short height;
//~ VECTOR PosV_L; // Not used anymore
SVECTOR RotV_L;
VECTOR TransV_L;
VECTOR ScaleV_L;
SVECTOR PivotV_L;
SVECTOR Verts[4];
MATRIX Matrix;
long depth;
long flag;
short rotSpeed;
int otz;
};
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE : Not needed ?
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
PadInit(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], BgColor->r, BgColor->g, BgColor->b);
setRGB0(&draw[1], BgColor->r, BgColor->g, BgColor->b);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
void pivotPoint(SVECTOR VertPos[3],short width,short height, SVECTOR pivot){
// Not very efficient I think
VertPos[0].vx = -pivot.vx;
VertPos[0].vy = -pivot.vy;
VertPos[0].vz = 1;
VertPos[1].vx = width - pivot.vx;
VertPos[1].vy = -pivot.vy;
VertPos[1].vz = 1;
VertPos[2].vx = -pivot.vx;
VertPos[2].vy = height-pivot.vy;
VertPos[2].vz = 1;
VertPos[3].vx = width - pivot.vx;
VertPos[3].vy = height - pivot.vy;
VertPos[3].vz = 1;
}
MATRIX identity(int num)
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
int main(void)
{
MATRIX IDMATRIX = identity(3);
u_short BtnTimer = 0; // Timer to limit pad input rate
u_short polyCount = 1; // current polygon index
int otz; // z-index
struct polygon *CurrentPoly; // points to the address of selected polygon
// White cursor : shows which polygon is selected
struct polygon cursorS = {
cursorS.poly_f4,
{255, 255, 255}, // color
30, 30, // width, height
{0,0,0}, // RotV_L
{0,0,0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{1,1,1}, // PivotV
{ // Verts[4]
{-1, -1, 1},
{ 1, -1, 1},
{-1, 1, 1},
{ 1, 1, 1}
},
IDMATRIX // Matrix
};
//Red
struct polygon polyS = {
polyS.poly_f4,
{255, 0, 0}, // color
30, 30, // width, height
{0,0,0}, // RotV_L
{-48, -30, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{15,15,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, // depth, flag
8, // rotSpeed
1 // z-index
};
//Yellow
struct polygon poly1S = {
poly1S.poly_f4,
{255, 187, 0}, // color
28, 28, // width, height
{0,0,0}, // RotV_L
{-20, 10, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{4,4,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, // depth, flag
-12, // rotSpeed
2 // z-index
};
//Green
struct polygon poly2S = {
poly2S.poly_f4,
{0, 255, 153}, // color
24, 24, // width, height
{0,0,0}, // RotV_L
{36, -10, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{12,12,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, // depth, flag
-6, // rotSpeed
3 // z-index
};
//Blue
struct polygon poly3S = {
poly3S.poly_f4,
{112, 254, 254}, // color
26, 26, // width, height
{0,0,0}, // RotV_L
{20, 20, 0, 0}, // TransV_L
{4096,4096,4096}, // ScaleV_L
{13,13,1}, // PivotV
{ // Verts[4]
{0, 0, 0},
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
},
IDMATRIX, // Matrix
0,0, //depth, flag
256, //rotSpeed
4 // z-index
};
/////
CurrentPoly = &polyS;
pivotPoint(polyS.Verts, polyS.width, polyS.height, polyS.PivotV_L);
pivotPoint(poly1S.Verts, poly1S.width, poly1S.height, poly1S.PivotV_L);
pivotPoint(poly2S.Verts, poly2S.width, poly2S.height, poly2S.PivotV_L);
pivotPoint(poly3S.Verts, poly3S.width, poly3S.height, poly3S.PivotV_L);
init();
while (1)
{
ClearOTagR(ot[db], OTLEN);
cursorS.poly_f4 = (POLY_F4 *)nextpri;
RotMatrix(&cursorS.RotV_L , &cursorS.Matrix);
TransMatrix(&cursorS.Matrix, &CurrentPoly->TransV_L);
SetRotMatrix(&cursorS.Matrix);
SetTransMatrix(&cursorS.Matrix);
setPolyF4(cursorS.poly_f4);
setRGB0(cursorS.poly_f4,cursorS.color.r,cursorS.color.g,cursorS.color.b);
//~ setXY4(cursorS, MovVector.vx-1, MovVector.vy-1 ,MovVector.vx + 1, MovVector.vy -1,MovVector.vx-1, MovVector.vy+1,MovVector.vx+1, MovVector.vy+1);
RotTransPers4(
&cursorS.Verts[0], &cursorS.Verts[1], &cursorS.Verts[2], &cursorS.Verts[3],
(long*)&cursorS.poly_f4->x0, (long*)&cursorS.poly_f4->x1, (long*)&cursorS.poly_f4->x2, (long*)&cursorS.poly_f4->x3,
&cursorS.depth,
&cursorS.flag
);
addPrim(ot[db], cursorS.poly_f4);
nextpri += sizeof(POLY_F4);
///// Red
polyS.poly_f4 = (POLY_F4 *)nextpri;
polyS.RotV_L.vz += polyS.rotSpeed;
RotMatrix(&polyS.RotV_L, &polyS.Matrix);
TransMatrix(&polyS.Matrix, &polyS.TransV_L);
ScaleMatrix(&polyS.Matrix, &polyS.ScaleV_L);
SetRotMatrix(&polyS.Matrix);
SetTransMatrix(&polyS.Matrix);
setPolyF4(polyS.poly_f4);
setRGB0(polyS.poly_f4, polyS.color.r,polyS.color.g,polyS.color.b);
RotTransPers4(
&polyS.Verts[0], &polyS.Verts[1], &polyS.Verts[2], &polyS.Verts[3],
(long*)&polyS.poly_f4->x0, (long*)&polyS.poly_f4->x1, (long*)&polyS.poly_f4->x2, (long*)&polyS.poly_f4->x3,
&polyS.depth,
&polyS.flag
);
addPrim(ot[db]+polyS.otz, polyS.poly_f4);
nextpri += sizeof(POLY_F4);
///// Yellow
poly1S.poly_f4 = (POLY_F4 *)nextpri;
poly1S.RotV_L.vz += poly1S.rotSpeed;
RotMatrix(&poly1S.RotV_L, &poly1S.Matrix);
TransMatrix(&poly1S.Matrix, &poly1S.TransV_L);
ScaleMatrix(&poly1S.Matrix, &poly1S.ScaleV_L);
SetRotMatrix(&poly1S.Matrix);
SetTransMatrix(&poly1S.Matrix);
setPolyF4(poly1S.poly_f4);
setRGB0(poly1S.poly_f4, poly1S.color.r,poly1S.color.g,poly1S.color.b);
RotTransPers4(
&poly1S.Verts[0], &poly1S.Verts[1], &poly1S.Verts[2], &poly1S.Verts[3],
(long*)&poly1S.poly_f4->x0, (long*)&poly1S.poly_f4->x1, (long*)&poly1S.poly_f4->x2, (long*)&poly1S.poly_f4->x3,
&poly1S.depth,
&poly1S.flag
);
addPrim(ot[db]+poly1S.otz, poly1S.poly_f4);
nextpri += sizeof(POLY_F4);
///// Green
poly2S.poly_f4 = (POLY_F4 *)nextpri;
poly2S.RotV_L.vz += poly2S.rotSpeed;
RotMatrix(&poly2S.RotV_L, &poly2S.Matrix);
TransMatrix(&poly2S.Matrix, &poly2S.TransV_L);
ScaleMatrix(&poly2S.Matrix, &poly2S.ScaleV_L);
SetRotMatrix(&poly2S.Matrix);
SetTransMatrix(&poly2S.Matrix);
setPolyF4(poly2S.poly_f4);
setRGB0(poly2S.poly_f4, poly2S.color.r,poly2S.color.g,poly2S.color.b);
RotTransPers4(
&poly2S.Verts[0], &poly2S.Verts[1], &poly2S.Verts[2], &poly2S.Verts[3],
(long*)&poly2S.poly_f4->x0, (long*)&poly2S.poly_f4->x1, (long*)&poly2S.poly_f4->x2, (long*)&poly2S.poly_f4->x3,
&poly2S.depth,
&poly2S.flag
);
addPrim(ot[db]+poly2S.otz, poly2S.poly_f4);
nextpri += sizeof(POLY_F4);
///// Blue
poly3S.poly_f4 = (POLY_F4 *)nextpri;
poly3S.RotV_L.vz += poly3S.rotSpeed;
RotMatrix(&poly3S.RotV_L, &poly3S.Matrix);
TransMatrix(&poly3S.Matrix, &poly3S.TransV_L);
ScaleMatrix(&poly3S.Matrix, &poly3S.ScaleV_L);
SetRotMatrix(&poly3S.Matrix);
SetTransMatrix(&poly3S.Matrix);
setPolyF4(poly3S.poly_f4);
setRGB0(poly3S.poly_f4, poly3S.color.r,poly3S.color.g,poly3S.color.b);
RotTransPers4(
&poly3S.Verts[0], &poly3S.Verts[1], &poly3S.Verts[2], &poly3S.Verts[3],
(long*)&poly3S.poly_f4->x0, (long*)&poly3S.poly_f4->x1, (long*)&poly3S.poly_f4->x2, (long*)&poly3S.poly_f4->x3,
&poly3S.depth,
&poly3S.flag
);
addPrim(ot[db]+poly3S.otz, poly3S.poly_f4);
nextpri += sizeof(POLY_F4);
// Pad stuff
int pad = PadRead(0); // init pad
// Right D-pad
if(pad & PADRup){
if (CurrentPoly->PivotV_L.vy >= 0){
CurrentPoly->PivotV_L.vy -= 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vy = CurrentPoly->PivotV_L.vy;
}
};
if(pad & PADRdown){
if (CurrentPoly->PivotV_L.vy <= CurrentPoly->height ){
CurrentPoly->PivotV_L.vy += 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vy = CurrentPoly->PivotV_L.vy;
}
};
if(pad & PADRleft){
if (CurrentPoly->PivotV_L.vx >= 0){
CurrentPoly->PivotV_L.vx -= 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vx = CurrentPoly->PivotV_L.vx;
}
};
if(pad & PADRright){
if (CurrentPoly->PivotV_L.vx <= CurrentPoly->width ){
CurrentPoly->PivotV_L.vx += 1;
pivotPoint(CurrentPoly->Verts, CurrentPoly->width, CurrentPoly->height, CurrentPoly->PivotV_L);
}
else {
CurrentPoly->PivotV_L.vx = CurrentPoly->PivotV_L.vx;
}
};
// R1, R2, L2, L2
if(pad & PADR1){
if(BtnTimer == 0){
if (polyCount < 4){
CurrentPoly -= 1;
BtnTimer = 10;
polyCount++;
}
else {
CurrentPoly = &polyS + 1;
polyCount = 0;
}
}
}
if(pad & PADR2){
if(BtnTimer == 0){
if(CurrentPoly->otz < 5 ){
CurrentPoly->otz += 1;
BtnTimer = 10;
} else {
CurrentPoly->otz = 1;
BtnTimer = 10;
}
}
}
if(pad & PADL1){
if(BtnTimer == 0){
if (CurrentPoly->rotSpeed <= 320){
CurrentPoly->rotSpeed += 8;
}
BtnTimer = 10;
}
}
if(pad & PADL2){
if(BtnTimer == 0){
if (CurrentPoly->rotSpeed >= -320){
CurrentPoly->rotSpeed -= 8;
}
BtnTimer = 10;
}
}
// Left D-Pad
if(pad & PADLup){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vy -= 1;
//~ BtnTimer = 2;
}
}
if(pad & PADLdown){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vy += 1;
//~ BtnTimer = 2;
}
}
if(pad & PADLleft){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vx -= 1;
//~ BtnTimer = 2;
}
}
if(pad & PADLright){
if(BtnTimer == 0){
CurrentPoly->TransV_L.vx += 1;
//~ BtnTimer = 2;
}
}
if(pad & PADstart){
if(BtnTimer == 0){
CurrentPoly->ScaleV_L.vx += 100;
CurrentPoly->ScaleV_L.vy += 100;
//~ CurrentPoly->TransV_L.vz += 1;
}
}
if(pad & PADselect){
if(BtnTimer == 0){
CurrentPoly->ScaleV_L.vx -= 100;
CurrentPoly->ScaleV_L.vy -= 100;
//~ CurrentPoly->TransV_L.vz -= 1;
}
}
// Btn_timer decrement
if(BtnTimer > 0){
BtnTimer -= 1;
}
// Debug stuff
// Display Rotation matrix
//~ FntPrint("Rotmatrix:\n%d %d %d\n%d %d %d\n%d %d %d \n",
//~ Poly1Matrix.m[0][0], Poly1Matrix.m[0][1], Poly1Matrix.m[0][2],
//~ Poly1Matrix.m[1][0], Poly1Matrix.m[1][1], Poly1Matrix.m[1][2],
//~ Poly1Matrix.m[2][0], Poly1Matrix.m[2][1], Poly1Matrix.m[2][2]);
// Display Mem adress and values of verticess
//~ FntPrint("cur:%x\n 0:%x\n 1:%x\n 2:%x\n 3:%x\n", CurrentPoly, &polyS, &poly1S, &poly2S, &poly3S);
//~ FntPrint("timer:%d polyCount:%d speed:%d", BtnTimer, polyCount, CurrentPoly->rotSpeed );
//~ FntPrint("&poly->x0 Addr:%x Value:%d \n&poly->y0 Addr:%x Value:%d \n&poly->x1 Addr:%x Value:%d",
//~ (long)&poly->x0, poly->x0,
//~ (long)&poly->y0, poly->y0,
//~ (long)&poly->x1, poly->x1);
//~ FntPrint("otz : %d\n" , CurrentPoly->rotSpeed);
// On-screen instructions
FntPrint("\
D-Pad:move polygon.\n\
[],X,O,\/\\ : Move pivot point.\n\
L1,L2 : Rotations speed +/-\n\
R1 : select polygon\n\
R2 : change z-index\n\
Start,Select : Scale polygon +/-\
");
FntFlush(-1);
display();
}
return 0;
}

215
hello_poly_gt.c Normal file
View File

@ -0,0 +1,215 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary_TIM_bousai_tim_start[];
extern unsigned long _binary_TIM_bousai_tim_end[];
extern unsigned long _binary_TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
int i;
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_GT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, 120, 0}; // Initialize translation vector {x, y, z}
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 0 }, // Vert 1
{-32, 32, 0 }, // Vert 2
{ 32, -32, 0 }, // Vert 3
{ 32, 32, 0 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
DR_TPAGE * bousai_tpage;
long polydepth;
long polyflag;
init();
LoadTexture(_binary_TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_GT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyGT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y);
setRGB0(poly, 128, 128, 128); // Set vertice 1 color
setRGB1(poly, 255, 0, 0); // Set vertice 2 color
setRGB2(poly, 0, 255, 0); // Set vertice 3 color
setRGB3(poly, 0, 0, 255); // Set vertice 4 color
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
RotVector.vx += 8; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_GT4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello textured shaded !");
FntFlush(-1);
display();
}
return 0;
}

View File

@ -0,0 +1,215 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary____TIM_bousai_tim_start[];
extern unsigned long _binary____TIM_bousai_tim_end[];
extern unsigned long _binary____TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
int i;
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_GT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, 120, 0}; // Initialize translation vector {x, y, z}
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 0 }, // Vert 1
{-32, 32, 0 }, // Vert 2
{ 32, -32, 0 }, // Vert 3
{ 32, 32, 0 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
DR_TPAGE * bousai_tpage;
long polydepth;
long polyflag;
init();
LoadTexture(_binary____TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_GT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyGT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y);
setRGB0(poly, 128, 128, 128); // Set vertice 1 color
setRGB1(poly, 255, 0, 0); // Set vertice 2 color
setRGB2(poly, 0, 255, 0); // Set vertice 3 color
setRGB3(poly, 0, 0, 255); // Set vertice 4 color
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
RotVector.vx += 8; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_GT4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello textured shaded !");
FntFlush(-1);
display();
}
return 0;
}

234
hello_poly_gt_tw.c Normal file
View File

@ -0,0 +1,234 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary_TIM_bousai_tim_start[];
extern unsigned long _binary_TIM_bousai_tim_end[];
extern unsigned long _binary_TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
int i;
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_GT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, 120, 0}; // Initialize translation vector {x, y, z}
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 0 }, // Vert 1
{-32, 32, 0 }, // Vert 2
{ 32, -32, 0 }, // Vert 3
{ 32, 32, 0 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
DR_TPAGE * bousai_tpage;
long polydepth;
long polyflag;
// Texture window
DR_MODE * dr_mode; // Pointer to dr_mode prim
RECT tws = {64, 32, 32, 32}; // Texture window coordinates : x, y, w, h
// See libref47.pdf, p.242, 7-6, table 7-2 for possible values
init();
LoadTexture(_binary_TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_GT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyGT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y);
setRGB0(poly, 128, 128, 128); // Set vertice 1 color
setRGB1(poly, 255, 0, 0); // Set vertice 2 color
setRGB2(poly, 0, 255, 0); // Set vertice 3 color
setRGB3(poly, 0, 0, 255); // Set vertice 4 color
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
RotVector.vy += 14; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_GT4); // increment nextpri address with size of a POLY_GT4 struct
// drawing mode primitive
dr_mode = (DR_MODE *)nextpri; // initialize drawing mode primitive
setDrawMode(dr_mode, 1, 0, getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y), &tws); //set texture window
addPrim(ot[db], dr_mode);
nextpri += sizeof(DR_MODE); // increment nextpri address with size of a DR_MODE struct
FntPrint("Hello textured shaded !");
FntFlush(-1);
display();
}
return 0;
}

View File

@ -0,0 +1,234 @@
// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary____TIM_bousai_tim_start[];
extern unsigned long _binary____TIM_bousai_tim_end[];
extern unsigned long _binary____TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
int i;
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_GT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, 120, 0}; // Initialize translation vector {x, y, z}
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 0 }, // Vert 1
{-32, 32, 0 }, // Vert 2
{ 32, -32, 0 }, // Vert 3
{ 32, 32, 0 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
DR_TPAGE * bousai_tpage;
long polydepth;
long polyflag;
// Texture window
DR_MODE * dr_mode; // Pointer to dr_mode prim
RECT tws = {64, 32, 32, 32}; // Texture window coordinates : x, y, w, h
// See libref47.pdf, p.242, 7-6, table 7-2 for possible values
init();
LoadTexture(_binary____TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_GT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyGT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y);
setRGB0(poly, 128, 128, 128); // Set vertice 1 color
setRGB1(poly, 255, 0, 0); // Set vertice 2 color
setRGB2(poly, 0, 255, 0); // Set vertice 3 color
setRGB3(poly, 0, 0, 255); // Set vertice 4 color
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
RotVector.vy += 14; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_GT4); // increment nextpri address with size of a POLY_GT4 struct
// drawing mode primitive
dr_mode = (DR_MODE *)nextpri; // initialize drawing mode primitive
setDrawMode(dr_mode, 1, 0, getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y), &tws); //set texture window
addPrim(ot[db], dr_mode);
nextpri += sizeof(DR_MODE); // increment nextpri address with size of a DR_MODE struct
FntPrint("Hello textured shaded !");
FntFlush(-1);
display();
}
return 0;
}

214
hello_poly_inline.c Normal file
View File

@ -0,0 +1,214 @@
// Hello poly ! Inline / DMPSX version
//
// Ref : /psyq/DOCS/Devrefs/Inlinref.pdf, p.18
// https://psx-spx.consoledev.net/geometrytransformationenginegte/
// PSX / Z+
// screen /
//coordinate +-----X+
//system / |
// eye | Y+
//
// Credits, thanks : Nicolas Noble, Sickle, Lameguy64 @ psxdev discord : https://discord.com/invite/N2mmwp
// https://discord.com/channels/642647820683444236/663664210525290507/834831466100949002
#include <sys/types.h>
#include <stdio.h>
#include <libetc.h>
#include <libgte.h>
#include <libgpu.h>
// OldWorld PsyQ has a inline_c.h file for inline GTE functions. We have to use the one at https://github.com/grumpycoders/pcsx-redux/blob/07f9b02d1dbb68f57a9f5b9773041813c55a4913/src/mips/psyq/include/inline_n.h
// because the real GTE commands are needed in nugget : https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-coordinate-calculation-commands
#include <inline_n.h>
//~ #include <gtemac.h> // gtemac contains macro versions of the libgte functions, worth checking out to see the operations order.
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 + (VMODE << 4) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256
#define CENTERX ( SCREENXRES >> 1 ) // Center of screen on x
#define CENTERY ( SCREENYRES >> 1 ) // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 10 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
//~ SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomScreen(CENTERX);
// Set display environment
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
// Set draw environment
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
// If PAL, use 320x256, hence 256 - 240 = 16 / 2 = 8 px vertical offset
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
// Set background color
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
// Wait for drawing
DrawSync(0);
// Wait for vsync
VSync(0);
// Flip DISP and DRAW env
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
//~ SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
// Flip db index
db = !db;
// Get next primitive in buffer
nextpri = primbuff[db];
}
int main(void)
{
long p, flag, OTz;
SVECTOR rotVector, rotVector4 = {0}; // Initialize rotation vector {x, y, z}
VECTOR transVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z}
SVECTOR vertPos[4] = {
{ 0, -32, 0, 0 }, // Vert 1
{ 32, 0, 0, 0 }, // Vert 2
{ -32, 0, 0, 0 },
{ 0, 32, 0, 0 }
}; // Vert 3
MATRIX workMatrix = {0};
POLY_F3 * poly = {0}; // pointer to a POLY_F4
POLY_F4 * poly4 = {0}; // pointer to a POLY_F4
init();
while (1)
{
// Set Ordering table
ClearOTagR(ot[db], OTLEN);
// Draw on the left part of the screen
transVector.vx = -CENTERX/2;
// Increment rotation angle on Y axis
rotVector.vy += 8;
rotVector.vx -= 4 ;
// Find rotation matrix from vector, store in
RotMatrix_gte(&rotVector, &workMatrix);
// Ditto for translation
TransMatrix(&workMatrix, &transVector);
// Set the matrices we just found
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Cast next primitive in buffer as a POLY_F4 (see display() )
poly = (POLY_F3 *)nextpri;
// Draw a Tri
// Initialize poly as a POLY_F3
setPolyF3(poly);
// Set poly color - Hot pink
setRGB0(poly, 255, 0, 255);
// Store vertex positions for current polygon in registers v0,v1,v2
// Can be replaced by one gte_ldv3 call :
// gte_ldv3(&vertPos[0], &vertPos[1], &vertPos[2]);
gte_ldv0(&vertPos[0]);
gte_ldv1(&vertPos[1]);
gte_ldv2(&vertPos[2]);
// RotTransPers3 : Perform coordinate and perspective transformation for three vertices.
// Use gte_rtps() for one vertex.
gte_rtpt();
// Get screen coordinates from cop2 registers XY0,XY1,XY2 and store them in primitive's x0, y0, x1, y1, x2, y2 members.
// Can be replace with one gte_stsxy3() call :
// gte_stsxy3(&poly->x0, &poly->x1, &poly->x2);
// Can also be replaced with a primitive type dependant version :
// gte_stsxy3_f3(poly);
gte_stsxy0(&poly->x0);
gte_stsxy1(&poly->x1);
gte_stsxy2(&poly->x2);
// Get depth interpolation coefficient p
gte_stdp(&p);
// Get the flag - see libover47.pdf, p.143 for details on ppossible values
gte_stflg(&flag);
// Get screen coordinate Z/4
gte_stszotz(&OTz);
// GTE macro version - needs 'gtemac.h' to be included - uncomment l.21
//~ gte_RotTransPers3( &VertPos[0], &VertPos[1], &VertPos[2],
//~ &poly->x0, &poly->x1, &poly->x2,
//~ &p, &flag, &OTz );
// add poly to the Ordering table
addPrim(ot[db], poly);
// increment nextpri address with size of a POLY_F3 struct
nextpri += sizeof(POLY_F3);
// Draw a Quad
//
// The GTE rtpt can only transform 3 vertices at a time, so we have to do all operations as 3 + 1.
// Move to right of screen
transVector.vx = CENTERX/2;
// Increment rot on X/Y axis
rotVector4.vy -= 8 ;
rotVector4.vx -= 4 ;
// Set matrices
RotMatrix_gte(&rotVector4, &workMatrix);
TransMatrix(&workMatrix, &transVector);
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Cast a POLY_F4 at the address we just incremented.
poly4 = (POLY_F4 *)nextpri;
// Initialize poly as a POLY_F4
setPolyF4(poly4);
// Set Poly color - Blue
setRGB0(poly4, 0, 255, 255);
// Transform 3 first vertices
gte_ldv3(&vertPos[0], &vertPos[1], &vertPos[2]);
gte_rtpt();
gte_stsxy3_f4(poly4);
// Transform remaining vertex
gte_ldv0(&vertPos[3]);
gte_rtps();
// SXY3 is set with gte_stsxy() or gte_stsxy2() ¯\_(ツ)_/¯
gte_stsxy(&poly4->x3);
// Get p, flag and OTz
gte_stdp(&p);
gte_stflg(&flag);
gte_stszotz(&OTz);
addPrim(ot[db], poly4); // add poly to the Ordering table
nextpri += sizeof(POLY_F4); // increment nextpri address with size of a POLY_F3 struct
// Display text
FntPrint("Hello Inline GTE !\n");
FntFlush(-1);
display();
}
return 0;
}

View File

@ -0,0 +1,214 @@
// Hello poly ! Inline / DMPSX version
//
// Ref : /psyq/DOCS/Devrefs/Inlinref.pdf, p.18
// https://psx-spx.consoledev.net/geometrytransformationenginegte/
// PSX / Z+
// screen /
//coordinate +-----X+
//system / |
// eye | Y+
//
// Credits, thanks : Nicolas Noble, Sickle, Lameguy64 @ psxdev discord : https://discord.com/invite/N2mmwp
// https://discord.com/channels/642647820683444236/663664210525290507/834831466100949002
#include <sys/types.h>
#include <stdio.h>
#include <libetc.h>
#include <libgte.h>
#include <libgpu.h>
// OldWorld PsyQ has a inline_c.h file for inline GTE functions. We have to use the one at https://github.com/grumpycoders/pcsx-redux/blob/07f9b02d1dbb68f57a9f5b9773041813c55a4913/src/mips/psyq/include/inline_n.h
// because the real GTE commands are needed in nugget : https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-coordinate-calculation-commands
#include <inline_n.h>
//~ #include <gtemac.h> // gtemac contains macro versions of the libgte functions, worth checking out to see the operations order.
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 + (VMODE << 4) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256
#define CENTERX ( SCREENXRES >> 1 ) // Center of screen on x
#define CENTERY ( SCREENYRES >> 1 ) // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 10 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
//~ SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomOffset(CENTERX,CENTERY);
gte_SetGeomScreen(CENTERX);
// Set display environment
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
// Set draw environment
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
// If PAL, use 320x256, hence 256 - 240 = 16 / 2 = 8 px vertical offset
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
// Set background color
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
// Wait for drawing
DrawSync(0);
// Wait for vsync
VSync(0);
// Flip DISP and DRAW env
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
//~ SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
// Flip db index
db = !db;
// Get next primitive in buffer
nextpri = primbuff[db];
}
int main(void)
{
long p, flag, OTz;
SVECTOR rotVector, rotVector4 = {0}; // Initialize rotation vector {x, y, z}
VECTOR transVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z}
SVECTOR vertPos[4] = {
{ 0, -32, 0, 0 }, // Vert 1
{ 32, 0, 0, 0 }, // Vert 2
{ -32, 0, 0, 0 },
{ 0, 32, 0, 0 }
}; // Vert 3
MATRIX workMatrix = {0};
POLY_F3 * poly = {0}; // pointer to a POLY_F4
POLY_F4 * poly4 = {0}; // pointer to a POLY_F4
init();
while (1)
{
// Set Ordering table
ClearOTagR(ot[db], OTLEN);
// Draw on the left part of the screen
transVector.vx = -CENTERX/2;
// Increment rotation angle on Y axis
rotVector.vy += 8;
rotVector.vx -= 4 ;
// Find rotation matrix from vector, store in
RotMatrix_gte(&rotVector, &workMatrix);
// Ditto for translation
TransMatrix(&workMatrix, &transVector);
// Set the matrices we just found
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Cast next primitive in buffer as a POLY_F4 (see display() )
poly = (POLY_F3 *)nextpri;
// Draw a Tri
// Initialize poly as a POLY_F3
setPolyF3(poly);
// Set poly color - Hot pink
setRGB0(poly, 255, 0, 255);
// Store vertex positions for current polygon in registers v0,v1,v2
// Can be replaced by one gte_ldv3 call :
// gte_ldv3(&vertPos[0], &vertPos[1], &vertPos[2]);
gte_ldv0(&vertPos[0]);
gte_ldv1(&vertPos[1]);
gte_ldv2(&vertPos[2]);
// RotTransPers3 : Perform coordinate and perspective transformation for three vertices.
// Use gte_rtps() for one vertex.
gte_rtpt();
// Get screen coordinates from cop2 registers XY0,XY1,XY2 and store them in primitive's x0, y0, x1, y1, x2, y2 members.
// Can be replace with one gte_stsxy3() call :
// gte_stsxy3(&poly->x0, &poly->x1, &poly->x2);
// Can also be replaced with a primitive type dependant version :
// gte_stsxy3_f3(poly);
gte_stsxy0(&poly->x0);
gte_stsxy1(&poly->x1);
gte_stsxy2(&poly->x2);
// Get depth interpolation coefficient p
gte_stdp(&p);
// Get the flag - see libover47.pdf, p.143 for details on ppossible values
gte_stflg(&flag);
// Get screen coordinate Z/4
gte_stszotz(&OTz);
// GTE macro version - needs 'gtemac.h' to be included - uncomment l.21
//~ gte_RotTransPers3( &VertPos[0], &VertPos[1], &VertPos[2],
//~ &poly->x0, &poly->x1, &poly->x2,
//~ &p, &flag, &OTz );
// add poly to the Ordering table
addPrim(ot[db], poly);
// increment nextpri address with size of a POLY_F3 struct
nextpri += sizeof(POLY_F3);
// Draw a Quad
//
// The GTE rtpt can only transform 3 vertices at a time, so we have to do all operations as 3 + 1.
// Move to right of screen
transVector.vx = CENTERX/2;
// Increment rot on X/Y axis
rotVector4.vy -= 8 ;
rotVector4.vx -= 4 ;
// Set matrices
RotMatrix_gte(&rotVector4, &workMatrix);
TransMatrix(&workMatrix, &transVector);
gte_SetRotMatrix(&workMatrix);
gte_SetTransMatrix(&workMatrix);
// Cast a POLY_F4 at the address we just incremented.
poly4 = (POLY_F4 *)nextpri;
// Initialize poly as a POLY_F4
setPolyF4(poly4);
// Set Poly color - Blue
setRGB0(poly4, 0, 255, 255);
// Transform 3 first vertices
gte_ldv3(&vertPos[0], &vertPos[1], &vertPos[2]);
gte_rtpt();
gte_stsxy3_f4(poly4);
// Transform remaining vertex
gte_ldv0(&vertPos[3]);
gte_rtps();
// SXY3 is set with gte_stsxy() or gte_stsxy2() ¯\_(ツ)_/¯
gte_stsxy(&poly4->x3);
// Get p, flag and OTz
gte_stdp(&p);
gte_stflg(&flag);
gte_stszotz(&OTz);
addPrim(ot[db], poly4); // add poly to the Ordering table
nextpri += sizeof(POLY_F4); // increment nextpri address with size of a POLY_F3 struct
// Display text
FntPrint("Hello Inline GTE !\n");
FntFlush(-1);
display();
}
return 0;
}

219
hello_sio.c Normal file
View File

@ -0,0 +1,219 @@
// hello_sio example
//
// This example will display the RX data in a 64 char rolling buffer.
//
// Use minicom or any other serial comm program and a serial/USB cable.
//
// Relevant doc is libref47.pdf, l.1120-1127
//
// Schnappy - 04/2021
//
// Based on : ../psyq/psx/sample/serial/SIO
//
// sio echo back
// 1.00 Jan.28.1997 shino
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Needed for SIO operations
#include <libsio.h>
// Needed for manipulating strings
#include <string.h>
// Display stuff (see hello_tile for the basics)
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// SIO
#define MAX_CHARS 64
u_char SIO = 1; // Is SIO enabled ?
u_char SIOinit = 0; // Is SIO initialized ?
// Prototypes
void init(void);
void display(void);
void init(){
// Reset the GPU before doing anything and the controller
ResetGraph(0);
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
// If in PAL mode, add vertical offset
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
db = !db;
}
int main() {
init();
// Main loop
while (1) {
// Buffer for the RX data of size MAX_CHARS
static char buffer[ MAX_CHARS ] = {0};
// If SIO flag is set, initialize and get data
if( SIO ){
// Is SIO is not initialized, dot it
if( ! SIOinit ){
ResetCallback();
// Load SIO driver at 115200bps
AddSIO(115200);
ResetGraph(0);
// Use _sio_control to clear driver status error-related bits
// See psyq's libref47.pdf, p.1125 for the commands and status tables
_sio_control(2,1,0);
SIOinit = 1;
}
// Limit input buffer to MAX_CHARS chars, making it a rolling buffer
if( strlen(buffer) > MAX_CHARS ){
// If that limit is reached, remove first char in string
memmove(buffer, buffer + 1, strlen(buffer));
}
// Check if sio driver is able to write communications data
// If so, this means reading is not occuring
if( _sio_control(0,0,0) & SR_RXRDY ){ // SR_RXRDY == 0x2
// Read byte
char c = _sio_control(0,4,0);
// Add to buffer
strncat(buffer, &c, 1);
}
}
// END SIO FUN
FntPrint("Hello Serial!\n\n");
if( buffer ){
FntPrint("%s", buffer);
}
FntFlush(-1);
display();
}
return 0;
}

219
hello_sio/hello_sio.c Normal file
View File

@ -0,0 +1,219 @@
// hello_sio example
//
// This example will display the RX data in a 64 char rolling buffer.
//
// Use minicom or any other serial comm program and a serial/USB cable.
//
// Relevant doc is libref47.pdf, l.1120-1127
//
// Schnappy - 04/2021
//
// Based on : ../psyq/psx/sample/serial/SIO
//
// sio echo back
// 1.00 Jan.28.1997 shino
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <stdio.h>
// Needed for SIO operations
#include <libsio.h>
// Needed for manipulating strings
#include <string.h>
// Display stuff (see hello_tile for the basics)
#define VMODE 0
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// SIO
#define MAX_CHARS 64
u_char SIO = 1; // Is SIO enabled ?
u_char SIOinit = 0; // Is SIO initialized ?
// Prototypes
void init(void);
void display(void);
void init(){
// Reset the GPU before doing anything and the controller
ResetGraph(0);
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
// If in PAL mode, add vertical offset
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(16, 16, 196, 64, 0, 256);
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
db = !db;
}
int main() {
init();
// Main loop
while (1) {
// Buffer for the RX data of size MAX_CHARS
static char buffer[ MAX_CHARS ] = {0};
// If SIO flag is set, initialize and get data
if( SIO ){
// Is SIO is not initialized, dot it
if( ! SIOinit ){
ResetCallback();
// Load SIO driver at 115200bps
AddSIO(115200);
ResetGraph(0);
// Use _sio_control to clear driver status error-related bits
// See psyq's libref47.pdf, p.1125 for the commands and status tables
_sio_control(2,1,0);
SIOinit = 1;
}
// Limit input buffer to MAX_CHARS chars, making it a rolling buffer
if( strlen(buffer) > MAX_CHARS ){
// If that limit is reached, remove first char in string
memmove(buffer, buffer + 1, strlen(buffer));
}
// Check if sio driver is able to write communications data
// If so, this means reading is not occuring
if( _sio_control(0,0,0) & SR_RXRDY ){ // SR_RXRDY == 0x2
// Read byte
char c = _sio_control(0,4,0);
// Add to buffer
strncat(buffer, &c, 1);
}
}
// END SIO FUN
FntPrint("Hello Serial!\n\n");
if( buffer ){
FntPrint("%s", buffer);
}
FntFlush(-1);
display();
}
return 0;
}

232
hello_sprt.c Normal file
View File

@ -0,0 +1,232 @@
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 44
#define FONTSIZE 8 * 3 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// Embed TIM files
// See https://github.com/ABelliqueux/nolibgs_hello_worlds#embedding-binary-data-in-a-ps-exe
// 16bpp TIM
extern unsigned long _binary_TIM_TIM16_tim_start[];
extern unsigned long _binary_TIM_TIM16_tim_end[];
extern unsigned long _binary_TIM_TIM16_tim_length;
// 8bpp TIM
extern unsigned long _binary_TIM_TIM8_tim_start[];
extern unsigned long _binary_TIM_TIM8_tim_end[];
extern unsigned long _binary_TIM_TIM8_TIM_length;
// 4bpp TIM
extern unsigned long _binary_TIM_TIM4_tim_start[];
extern unsigned long _binary_TIM_TIM4_tim_end[];
extern unsigned long _binary_TIM_TIM4_tim_length;
TIM_IMAGE TIM_16;
TIM_IMAGE TIM_8;
TIM_IMAGE TIM_4;
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
SPRT * sprt_16b; // Define 3 pointers to SPRT struct
SPRT * sprt_8b;
SPRT * sprt_4b;
DR_TPAGE * tpage_16b; // Define 3 pointers to DR_TPAGE struct. We need three because our images are on three
DR_TPAGE * tpage_8b; // different texture pages.
DR_TPAGE * tpage_4b;
init();
LoadTexture(_binary_TIM_TIM16_tim_start, &TIM_16); // Load everything to vram
LoadTexture(_binary_TIM_TIM8_tim_start, &TIM_8);
LoadTexture(_binary_TIM_TIM4_tim_start, &TIM_4);
while (1)
{
ClearOTagR(ot[db], OTLEN);
// Loading a 16 bit TIM
sprt_16b = (SPRT *)nextpri; // Cast whats at nexpri as a SPRT named sprt_16b
setSprt(sprt_16b); // Initialize the SPRT struct
setRGB0(sprt_16b, 128, 128, 128); // Set RGB color. 128,128,128 is neutral. You can color the image by adjusting these values
setXY0(sprt_16b, 28, MARGINY); // Set sprite position
setWH(sprt_16b, 64, 128 ); // Set sprite width and height
addPrim(ot[db], sprt_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(SPRT); // increment nextpri so that it points just after sprt_16b in the primitive buffer
// Set Texture page for the 16bit tim : 768, 0 - No CLUT
// Note : You need to use setDrawTPage each time you want to use a texture that's on a different texture page
tpage_16b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_16b, 0, 1, // Set the Texture Page the texture we want resides on.
getTPage(TIM_16.mode&0x3, 0, // Here we are using bitmasking to deduce the picture mode : &0x3
TIM_16.prect->x, TIM_16.prect->y)); // In binary, 3 is 11, so we only keep the first two bits
// Values can be 00 (0), 01 (1), 10(2), respectively, 4bpp, 8bpp, 15bpp, 24bpp. See Fileformat47.pdf, p.180
// Similarly, we could use bitmasking to deduce if there is a CLUT by bitmasking the 4th bit : if(TIM_IMAGE.mode & 0x8) LoadImage... :
addPrim(ot[db], tpage_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(DR_TPAGE); // Advance next primitive address
// Loading a 8 bit TIM
sprt_8b = (SPRT *)nextpri;
setSprt(sprt_8b);
setRGB0(sprt_8b, 128, 128, 128);
setXY0(sprt_8b, sprt_16b->x0 + sprt_16b->w + 32, MARGINY);
setWH(sprt_8b, 64, 128 );
setClut(sprt_8b, TIM_8.crect->x, TIM_8.crect->y); // Only difference here is we set the CLUT to the position of the VRAM we loaded the palette earlier (see LoadTexture())
addPrim(ot[db], sprt_8b);
nextpri += sizeof(SPRT);
// Set Texture page for the 8bit tim : 512, 256 - CLUT is at 0, 480
tpage_8b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_8b, 0, 1,
getTPage(TIM_8.mode&0x3, 0,
TIM_8.prect->x, TIM_8.prect->y));
addPrim(ot[db], tpage_8b);
nextpri += sizeof(DR_TPAGE);
// Loading a 4 bit TIM
sprt_4b = (SPRT *)nextpri;
setSprt(sprt_4b);
setRGB0(sprt_4b, 128, 128, 128);
setXY0(sprt_4b, sprt_8b->x0 + sprt_8b->w + 32, MARGINY);
setWH(sprt_4b, 64, 128 );
setClut(sprt_4b, TIM_4.crect->x, TIM_4.crect->y);
addPrim(ot[db], sprt_4b);
nextpri += sizeof(SPRT);
// Set Texture page for the 4bit tim : 512, 256 - CLUT is at 0, 480
tpage_4b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_4b, 0, 1,
getTPage(TIM_4.mode&0x3, 0,
TIM_4.prect->x, TIM_4.prect->y));
addPrim(ot[db], tpage_4b);
nextpri += sizeof(DR_TPAGE);
FntPrint("16 Bit! ");
FntPrint("8 Bit! ");
FntPrint("4 Bit!\n\n");
FntPrint("Check VRAM in emu to see the dif");
FntFlush(-1);
display();
}
return 0;
}

232
hello_sprt/hello_sprt.c Normal file
View File

@ -0,0 +1,232 @@
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 44
#define FONTSIZE 8 * 3 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// Embed TIM files
// See https://github.com/ABelliqueux/nolibgs_hello_worlds#embedding-binary-data-in-a-ps-exe
// 16bpp TIM
extern unsigned long _binary____TIM_TIM16_tim_start[];
extern unsigned long _binary____TIM_TIM16_tim_end[];
extern unsigned long _binary____TIM_TIM16_tim_length;
// 8bpp TIM
extern unsigned long _binary____TIM_TIM8_tim_start[];
extern unsigned long _binary____TIM_TIM8_tim_end[];
extern unsigned long _binary____TIM_TIM8_TIM_length;
// 4bpp TIM
extern unsigned long _binary____TIM_TIM4_tim_start[];
extern unsigned long _binary____TIM_TIM4_tim_end[];
extern unsigned long _binary____TIM_TIM4_tim_length;
TIM_IMAGE TIM_16;
TIM_IMAGE TIM_8;
TIM_IMAGE TIM_4;
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
SPRT * sprt_16b; // Define 3 pointers to SPRT struct
SPRT * sprt_8b;
SPRT * sprt_4b;
DR_TPAGE * tpage_16b; // Define 3 pointers to DR_TPAGE struct. We need three because our images are on three
DR_TPAGE * tpage_8b; // different texture pages.
DR_TPAGE * tpage_4b;
init();
LoadTexture(_binary____TIM_TIM16_tim_start, &TIM_16); // Load everything to vram
LoadTexture(_binary____TIM_TIM8_tim_start, &TIM_8);
LoadTexture(_binary____TIM_TIM4_tim_start, &TIM_4);
while (1)
{
ClearOTagR(ot[db], OTLEN);
// Loading a 16 bit TIM
sprt_16b = (SPRT *)nextpri; // Cast whats at nexpri as a SPRT named sprt_16b
setSprt(sprt_16b); // Initialize the SPRT struct
setRGB0(sprt_16b, 128, 128, 128); // Set RGB color. 128,128,128 is neutral. You can color the image by adjusting these values
setXY0(sprt_16b, 28, MARGINY); // Set sprite position
setWH(sprt_16b, 64, 128 ); // Set sprite width and height
addPrim(ot[db], sprt_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(SPRT); // increment nextpri so that it points just after sprt_16b in the primitive buffer
// Set Texture page for the 16bit tim : 768, 0 - No CLUT
// Note : You need to use setDrawTPage each time you want to use a texture that's on a different texture page
tpage_16b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_16b, 0, 1, // Set the Texture Page the texture we want resides on.
getTPage(TIM_16.mode&0x3, 0, // Here we are using bitmasking to deduce the picture mode : &0x3
TIM_16.prect->x, TIM_16.prect->y)); // In binary, 3 is 11, so we only keep the first two bits
// Values can be 00 (0), 01 (1), 10(2), respectively, 4bpp, 8bpp, 15bpp, 24bpp. See Fileformat47.pdf, p.180
// Similarly, we could use bitmasking to deduce if there is a CLUT by bitmasking the 4th bit : if(TIM_IMAGE.mode & 0x8) LoadImage... :
addPrim(ot[db], tpage_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(DR_TPAGE); // Advance next primitive address
// Loading a 8 bit TIM
sprt_8b = (SPRT *)nextpri;
setSprt(sprt_8b);
setRGB0(sprt_8b, 128, 128, 128);
setXY0(sprt_8b, sprt_16b->x0 + sprt_16b->w + 32, MARGINY);
setWH(sprt_8b, 64, 128 );
setClut(sprt_8b, TIM_8.crect->x, TIM_8.crect->y); // Only difference here is we set the CLUT to the position of the VRAM we loaded the palette earlier (see LoadTexture())
addPrim(ot[db], sprt_8b);
nextpri += sizeof(SPRT);
// Set Texture page for the 8bit tim : 512, 256 - CLUT is at 0, 480
tpage_8b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_8b, 0, 1,
getTPage(TIM_8.mode&0x3, 0,
TIM_8.prect->x, TIM_8.prect->y));
addPrim(ot[db], tpage_8b);
nextpri += sizeof(DR_TPAGE);
// Loading a 4 bit TIM
sprt_4b = (SPRT *)nextpri;
setSprt(sprt_4b);
setRGB0(sprt_4b, 128, 128, 128);
setXY0(sprt_4b, sprt_8b->x0 + sprt_8b->w + 32, MARGINY);
setWH(sprt_4b, 64, 128 );
setClut(sprt_4b, TIM_4.crect->x, TIM_4.crect->y);
addPrim(ot[db], sprt_4b);
nextpri += sizeof(SPRT);
// Set Texture page for the 4bit tim : 512, 256 - CLUT is at 0, 480
tpage_4b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_4b, 0, 1,
getTPage(TIM_4.mode&0x3, 0,
TIM_4.prect->x, TIM_4.prect->y));
addPrim(ot[db], tpage_4b);
nextpri += sizeof(DR_TPAGE);
FntPrint("16 Bit! ");
FntPrint("8 Bit! ");
FntPrint("4 Bit!\n\n");
FntPrint("Check VRAM in emu to see the dif");
FntFlush(-1);
display();
}
return 0;
}

150
hello_tile.c Normal file
View File

@ -0,0 +1,150 @@
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1};// double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
// We're using a reverse OT, so we want to display the last item first. See PsyQ's LibRef47.pdf, p.277
DrawOTag(ot[db] + OTLEN - 1);
// Uncomment the following line to use a regular oredered OT. Uncomment l.100 accordingly
//~ DrawOTag(ot[db]);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
// These two tiles are added at the same OT index
TILE * blue_tile;
TILE * pink_tile;
// This one is added at a different OT index
TILE * yellow_tile;
init();
while (1)
{
// Initialize the reversed ordering table. This means the elements at index OTLEN - 1 is drawn first.
ClearOTagR(ot[db], OTLEN);
// Use regular order OT, uncomment l.77 accordingly
//~ ClearOTag(ot[db], OTLEN);
// yellow_tile is before pink and blue tile in the code,
// and it displays behind because it is added to a different ot index (od[db] + OTLEN - 1)
// Using a Regular or Reverse OT will have an effect on drawing order. (See lines 77 and 100)
yellow_tile = (TILE * ) nextpri; // yellow_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a TILE struc.
setTile(yellow_tile); // initialize the TILE structure ( fill the length and tag(?) value )
setXY0(yellow_tile, CENTERX - 32 , CENTERY - 48); // Set X,Y
setWH(yellow_tile, 128, 40); // Set Width, Height
setRGB0(yellow_tile, 255, 255, 0); // Set color
addPrim(ot[db] + OTLEN - 1, yellow_tile); // Add primitive to ordering table
nextpri += sizeof(TILE);
// blue_tile added at od[db] + OTLEN - 2
blue_tile = (TILE * ) nextpri; // blue_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a blue_tile struc.
setTile(blue_tile); // initialize the blue_tile structure ( fill the length and tag(?) value )
setXY0(blue_tile, CENTERX - 16, CENTERY - 32); // Set X,Y
setWH(blue_tile, 32, 64); // Set Width, Height
setRGB0(blue_tile, 60, 180, 255); // Set color
addPrim(ot[db] + OTLEN - 2, blue_tile); // Add primitive to ordering table
nextpri += sizeof(TILE); // Increment the adress nextpri points to by the size of TILE struct
// pink_tile is after blue_tile in the code,
// so it is drawn before, thus under blue_tile.
// However, it is added at the same ot index (od[db] + OTLEN - 2)
// so using a Regular or Reverse OT won't have an effect on drawing order.
pink_tile = (TILE * ) nextpri; // pink_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a TILE struc.
setTile(pink_tile); // initialize the TILE structure ( fill the length and tag(?) value )
setXY0(pink_tile, CENTERX, CENTERY - 64); // Set X,Y
setWH(pink_tile, 64, 64); // Set Width, Height
setRGB0(pink_tile, 255, 32, 255); // Set color
addPrim(ot[db] + OTLEN - 2, pink_tile); // Add primitive to ordering table
nextpri += sizeof(TILE);
FntPrint("Hello tile !");
FntFlush(-1);
display();
}
return 0;
}

150
hello_tile/hello_tile.c Normal file
View File

@ -0,0 +1,150 @@
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1};// double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
// We're using a reverse OT, so we want to display the last item first. See PsyQ's LibRef47.pdf, p.277
DrawOTag(ot[db] + OTLEN - 1);
// Uncomment the following line to use a regular oredered OT. Uncomment l.100 accordingly
//~ DrawOTag(ot[db]);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
// These two tiles are added at the same OT index
TILE * blue_tile;
TILE * pink_tile;
// This one is added at a different OT index
TILE * yellow_tile;
init();
while (1)
{
// Initialize the reversed ordering table. This means the elements at index OTLEN - 1 is drawn first.
ClearOTagR(ot[db], OTLEN);
// Use regular order OT, uncomment l.77 accordingly
//~ ClearOTag(ot[db], OTLEN);
// yellow_tile is before pink and blue tile in the code,
// and it displays behind because it is added to a different ot index (od[db] + OTLEN - 1)
// Using a Regular or Reverse OT will have an effect on drawing order. (See lines 77 and 100)
yellow_tile = (TILE * ) nextpri; // yellow_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a TILE struc.
setTile(yellow_tile); // initialize the TILE structure ( fill the length and tag(?) value )
setXY0(yellow_tile, CENTERX - 32 , CENTERY - 48); // Set X,Y
setWH(yellow_tile, 128, 40); // Set Width, Height
setRGB0(yellow_tile, 255, 255, 0); // Set color
addPrim(ot[db] + OTLEN - 1, yellow_tile); // Add primitive to ordering table
nextpri += sizeof(TILE);
// blue_tile added at od[db] + OTLEN - 2
blue_tile = (TILE * ) nextpri; // blue_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a blue_tile struc.
setTile(blue_tile); // initialize the blue_tile structure ( fill the length and tag(?) value )
setXY0(blue_tile, CENTERX - 16, CENTERY - 32); // Set X,Y
setWH(blue_tile, 32, 64); // Set Width, Height
setRGB0(blue_tile, 60, 180, 255); // Set color
addPrim(ot[db] + OTLEN - 2, blue_tile); // Add primitive to ordering table
nextpri += sizeof(TILE); // Increment the adress nextpri points to by the size of TILE struct
// pink_tile is after blue_tile in the code,
// so it is drawn before, thus under blue_tile.
// However, it is added at the same ot index (od[db] + OTLEN - 2)
// so using a Regular or Reverse OT won't have an effect on drawing order.
pink_tile = (TILE * ) nextpri; // pink_tile is a pointer to primbuf content at adress nextpri, that's cast (type converted) to a TILE struc.
setTile(pink_tile); // initialize the TILE structure ( fill the length and tag(?) value )
setXY0(pink_tile, CENTERX, CENTERY - 64); // Set X,Y
setWH(pink_tile, 64, 64); // Set Width, Height
setRGB0(pink_tile, 255, 32, 255); // Set color
addPrim(ot[db] + OTLEN - 2, pink_tile); // Add primitive to ordering table
nextpri += sizeof(TILE);
FntPrint("Hello tile !");
FntFlush(-1);
display();
}
return 0;
}

274
hello_vag.c Normal file
View File

@ -0,0 +1,274 @@
// VAGDEMO2020 by Schnappy
// December 2020
// Based on VAGDEMO_FIXED by Yagotzirck
// Based on VAGDEMO by Shadow
// based on psyq/addons/sound/TUTO3.C
//
//
// Load a VAG file to SPU sound buffer and play it back.
//
// WAV creation: use ffmpeg to create a 16-bit ADPCM mono WAV file - change -ar to reduce filesize (and quality)
// $ ffmpeg -i input.mp3 -acodec pcm_s16le -ac 1 -ar 44100 output.wav
//
// WAV to VAG convertion using WAV2VAG : https://github.com/ColdSauce/psxsdk/blob/master/tools/wav2vag.c
// change -freq according to the -ar setting above
// $ wav2vag input.wav output.vag -sraw16 -freq=44100 (-L)
//
// Alternatively, you can use PsyQ VAGEDIT.EXE to change the sampling frequency of an existing VAG file.
//
// Docs : see libformat47.pdf p.209
// libover47.pdf, p.271
// libref47.pdf, p.980
// URLS : http://psx.arthus.net/code/VAG/
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
// Sound system
#include <libsnd.h>
#include <libspu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
short db = 0; // index of which buffer is used, values 0, 1
// Sound stuff
#define MALLOC_MAX 3 // Max number of time we can call SpuMalloc
//~ // convert Little endian to Big endian
#define SWAP_ENDIAN32(x) (((x)>>24) | (((x)>>8) & 0xFF00) | (((x)<<8) & 0x00FF0000) | ((x)<<24))
typedef struct VAGheader{ // All the values in this header must be big endian
char id[4]; // VAGp 4 bytes -> 1 char * 4
unsigned int version; // 4 bytes
unsigned int reserved; // 4 bytes
unsigned int dataSize; // (in bytes) 4 bytes
unsigned int samplingFrequency;// 4 bytes
char reserved2[12]; // 12 bytes -> 1 char * 12
char name[16]; // 16 bytes -> 1 char * 16
// Waveform data after that
}VAGhdr;
SpuCommonAttr commonAttributes; // structure for changing common voice attributes
SpuVoiceAttr voiceAttributes ; // structure for changing individual voice attributes
u_long vag_spu_address; // address allocated in memory for first sound file
// DEBUG : these allow printing values for debugging
u_long spu_start_address;
u_long get_start_addr;
u_long transSize;
// Memory management table ; allow MALLOC_MAX calls to SpuMalloc() - ibref47.pdf p.1044
char spu_malloc_rec[SPU_MALLOC_RECSIZ * (2 + MALLOC_MAX+1)];
// VAG files
// We're using GrumpyCoder's Nugget wrapper to compile the code with a modern GCC : https://github.com/grumpycoders/pcsx-redux/tree/main/src/mips/psyq
// To include binary files in the exe, add your VAG files to the SRCS variable in Makefile
// and in common.mk, add this rule to include *.vag files :
//
//~ %.o: %.vag
//~ $(PREFIX)-objcopy -I binary --set-section-alignment .data=4 --rename-section .data=.rodata,alloc,load,readonly,data,contents -O elf32-tradlittlemips -B mips $< $@
// hello_poly.vag - 44100 Khz
extern unsigned char _binary_VAG_hello_poly_vag_start[]; // filename must begin with _binary_ followed by the full path, with . and / replaced, and then suffixed with _ and end with _start[]; or end[];
extern unsigned char _binary_VAG_hello_poly_vag_end[]; // https://discord.com/channels/642647820683444236/663664210525290507/780866265077383189
void initGraph(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(8, 60, 304, 200, 0, 500 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
db = !db;
}
// Audio initialisation & functions
void initSnd(void){
SpuInitMalloc(MALLOC_MAX, spu_malloc_rec); // Maximum number of blocks, mem. management table address.
commonAttributes.mask = (SPU_COMMON_MVOLL | SPU_COMMON_MVOLR); // Mask which attributes to set
commonAttributes.mvol.left = 0x3fff; // Master volume left
commonAttributes.mvol.right = 0x3fff; // see libref47.pdf, p.1058
SpuSetCommonAttr(&commonAttributes); // set attributes
SpuSetIRQ(SPU_OFF);
}
u_long sendVAGtoRAM(unsigned int VAG_data_size, unsigned char *VAG_data){
u_long size;
SpuSetTransferMode(SpuTransByDMA); // DMA transfer; can do other processing during transfer
size = SpuWrite (VAG_data + sizeof(VAGhdr), VAG_data_size); // transfer VAG_data_size bytes from VAG_data address to sound buffer
SpuIsTransferCompleted (SPU_TRANSFER_WAIT); // Checks whether transfer is completed and waits for completion
return size;
}
void setVoiceAttr(unsigned int pitch, long channel, unsigned long soundAddr ){
voiceAttributes.mask= //~ Attributes (bit string, 1 bit per attribute)
(
SPU_VOICE_VOLL |
SPU_VOICE_VOLR |
SPU_VOICE_PITCH |
SPU_VOICE_WDSA |
SPU_VOICE_ADSR_AMODE |
SPU_VOICE_ADSR_SMODE |
SPU_VOICE_ADSR_RMODE |
SPU_VOICE_ADSR_AR |
SPU_VOICE_ADSR_DR |
SPU_VOICE_ADSR_SR |
SPU_VOICE_ADSR_RR |
SPU_VOICE_ADSR_SL
);
voiceAttributes.voice = channel; //~ Voice (low 24 bits are a bit string, 1 bit per voice )
voiceAttributes.volume.left = 0x1000; //~ Volume
voiceAttributes.volume.right = 0x1000; //~ Volume
voiceAttributes.pitch = pitch; //~ Interval (set pitch)
voiceAttributes.addr = soundAddr; //~ Waveform data start address
voiceAttributes.a_mode = SPU_VOICE_LINEARIncN; //~ Attack rate mode = Linear Increase - see libref47.pdf p.1091
voiceAttributes.s_mode = SPU_VOICE_LINEARIncN; //~ Sustain rate mode = Linear Increase
voiceAttributes.r_mode = SPU_VOICE_LINEARDecN; //~ Release rate mode = Linear Decrease
voiceAttributes.ar = 0x0; //~ Attack rate
voiceAttributes.dr = 0x0; //~ Decay rate
voiceAttributes.rr = 0x0; //~ Release rate
voiceAttributes.sr = 0x0; //~ Sustain rate
voiceAttributes.sl = 0xf; //~ Sustain level
SpuSetVoiceAttr(&voiceAttributes); // set attributes
}
void playSFX(void){
SpuSetKey(SpuOn,SPU_0CH); // Set several channels by ORing each channel bit ; ex : SpuSetKey(SpuOn,SPU_0CH | SPU_3CH | SPU_8CH); channels 0, 3, 8 are on.
}
int main(void)
{
short counter = 0;
const VAGhdr * VAGfileHeader = (VAGhdr *) _binary_VAG_hello_poly_vag_start; // get header of VAG file
// From libover47.pdf :
// The sampling frequency of the original audio file can be used to determine the pitch
// at which to play the VAG. pitch = (sampling frequency << 12)/44100L
// Ex: 44.1kHz=0x1000 22.05kHz=0x800 etc
unsigned int pitch = (SWAP_ENDIAN32(VAGfileHeader->samplingFrequency) << 12) / 44100L;
SpuInit(); // Initialize SPU. Called only once.
initSnd();
//~ // First VAG
vag_spu_address = SpuMalloc(SWAP_ENDIAN32(VAGfileHeader->dataSize)); // Allocate an area of dataSize bytes in the sound buffer.
spu_start_address = SpuSetTransferStartAddr(vag_spu_address); // Sets a starting address in the sound buffer
get_start_addr = SpuGetTransferStartAddr(); // SpuGetTransferStartAddr() returns current sound buffer transfer start address.
transSize = sendVAGtoRAM(SWAP_ENDIAN32(VAGfileHeader->dataSize), _binary_VAG_hello_poly_vag_start);
// set VAG to channel
setVoiceAttr(pitch, SPU_0CH, vag_spu_address);
initGraph();
while (1)
{
if(!counter){
playSFX();
counter = 180;
}
FntPrint("\nPitch : %08x-%dKhz", pitch, (SWAP_ENDIAN32(VAGfileHeader->samplingFrequency)) );
FntPrint("\nSet Start addr : %08x", vag_spu_address);
FntPrint("\nReturn start addr : %08x", spu_start_address);
FntPrint("\nGet Start addr : %08x", get_start_addr);
FntPrint("\nSend size : %08x", SWAP_ENDIAN32(VAGfileHeader->dataSize));
FntPrint("\nReturn size : %08x\n", transSize);
FntPrint("\nCounter : %d\n", counter);
FntFlush(-1);
counter --;
display();
}
return 0;
}

275
hello_vag/hello_vag.c Normal file
View File

@ -0,0 +1,275 @@
// VAGDEMO2020 by Schnappy
// December 2020
// Based on VAGDEMO_FIXED by Yagotzirck
// Based on VAGDEMO by Shadow
// based on psyq/addons/sound/TUTO3.C
//
//
// Load a VAG file to SPU sound buffer and play it back.
//
// WAV creation: use ffmpeg to create a 16-bit ADPCM mono WAV file - change -ar to reduce filesize (and quality)
// $ ffmpeg -i input.mp3 -acodec pcm_s16le -ac 1 -ar 44100 output.wav
//
// WAV to VAG convertion using WAV2VAG : https://github.com/ColdSauce/psxsdk/blob/master/tools/wav2vag.c
// change -freq according to the -ar setting above
// $ wav2vag input.wav output.vag -sraw16 -freq=44100 (-L)
//
// Alternatively, you can use PsyQ VAGEDIT.EXE to change the sampling frequency of an existing VAG file.
//
// Docs : see libformat47.pdf p.209
// libover47.pdf, p.271
// libref47.pdf, p.980
// URLS : http://psx.arthus.net/code/VAG/
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
// Sound system
#include <libsnd.h>
#include <libspu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
short db = 0; // index of which buffer is used, values 0, 1
// Sound stuff
#define MALLOC_MAX 3 // Max number of time we can call SpuMalloc
//~ // convert Little endian to Big endian
#define SWAP_ENDIAN32(x) (((x)>>24) | (((x)>>8) & 0xFF00) | (((x)<<8) & 0x00FF0000) | ((x)<<24))
typedef struct VAGheader{ // All the values in this header must be big endian
char id[4]; // VAGp 4 bytes -> 1 char * 4
unsigned int version; // 4 bytes
unsigned int reserved; // 4 bytes
unsigned int dataSize; // (in bytes) 4 bytes
unsigned int samplingFrequency;// 4 bytes
char reserved2[12]; // 12 bytes -> 1 char * 12
char name[16]; // 16 bytes -> 1 char * 16
// Waveform data after that
}VAGhdr;
SpuCommonAttr commonAttributes; // structure for changing common voice attributes
SpuVoiceAttr voiceAttributes ; // structure for changing individual voice attributes
u_long vag_spu_address; // address allocated in memory for first sound file
// DEBUG : these allow printing values for debugging
u_long spu_start_address;
u_long get_start_addr;
u_long transSize;
// Memory management table ; allow MALLOC_MAX calls to SpuMalloc() - ibref47.pdf p.1044
char spu_malloc_rec[SPU_MALLOC_RECSIZ * (2 + MALLOC_MAX+1)];
// VAG files
// We're using GrumpyCoder's Nugget wrapper to compile the code with a modern GCC : https://github.com/grumpycoders/pcsx-redux/tree/main/src/mips/psyq
// To include binary files in the exe, add your VAG files to the SRCS variable in Makefile
// and in common.mk, add this rule to include *.vag files :
//
//~ %.o: %.vag
//~ $(PREFIX)-objcopy -I binary --set-section-alignment .data=4 --rename-section .data=.rodata,alloc,load,readonly,data,contents -O elf32-tradlittlemips -B mips $< $@
// hello_poly.vag - 44100 Khz
extern unsigned char _binary____VAG_hello_poly_vag_start[]; // filename must begin with _binary_ followed by the full path, with . and / replaced, and then suffixed with _ and end with _start[]; or end[];
extern unsigned char _binary____VAG_hello_poly_vag_end[]; // Going up one directory level is 4 '_' : ____ as ./ is replaced by __
// https://discord.com/channels/642647820683444236/663664210525290507/780866265077383189
void initGraph(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(8, 60, 304, 200, 0, 500 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
db = !db;
}
// Audio initialisation & functions
void initSnd(void){
SpuInitMalloc(MALLOC_MAX, spu_malloc_rec); // Maximum number of blocks, mem. management table address.
commonAttributes.mask = (SPU_COMMON_MVOLL | SPU_COMMON_MVOLR); // Mask which attributes to set
commonAttributes.mvol.left = 0x3fff; // Master volume left
commonAttributes.mvol.right = 0x3fff; // see libref47.pdf, p.1058
SpuSetCommonAttr(&commonAttributes); // set attributes
SpuSetIRQ(SPU_OFF);
}
u_long sendVAGtoRAM(unsigned int VAG_data_size, unsigned char *VAG_data){
u_long size;
SpuSetTransferMode(SpuTransByDMA); // DMA transfer; can do other processing during transfer
size = SpuWrite (VAG_data + sizeof(VAGhdr), VAG_data_size); // transfer VAG_data_size bytes from VAG_data address to sound buffer
SpuIsTransferCompleted (SPU_TRANSFER_WAIT); // Checks whether transfer is completed and waits for completion
return size;
}
void setVoiceAttr(unsigned int pitch, long channel, unsigned long soundAddr ){
voiceAttributes.mask= //~ Attributes (bit string, 1 bit per attribute)
(
SPU_VOICE_VOLL |
SPU_VOICE_VOLR |
SPU_VOICE_PITCH |
SPU_VOICE_WDSA |
SPU_VOICE_ADSR_AMODE |
SPU_VOICE_ADSR_SMODE |
SPU_VOICE_ADSR_RMODE |
SPU_VOICE_ADSR_AR |
SPU_VOICE_ADSR_DR |
SPU_VOICE_ADSR_SR |
SPU_VOICE_ADSR_RR |
SPU_VOICE_ADSR_SL
);
voiceAttributes.voice = channel; //~ Voice (low 24 bits are a bit string, 1 bit per voice )
voiceAttributes.volume.left = 0x1000; //~ Volume
voiceAttributes.volume.right = 0x1000; //~ Volume
voiceAttributes.pitch = pitch; //~ Interval (set pitch)
voiceAttributes.addr = soundAddr; //~ Waveform data start address
voiceAttributes.a_mode = SPU_VOICE_LINEARIncN; //~ Attack rate mode = Linear Increase - see libref47.pdf p.1091
voiceAttributes.s_mode = SPU_VOICE_LINEARIncN; //~ Sustain rate mode = Linear Increase
voiceAttributes.r_mode = SPU_VOICE_LINEARDecN; //~ Release rate mode = Linear Decrease
voiceAttributes.ar = 0x0; //~ Attack rate
voiceAttributes.dr = 0x0; //~ Decay rate
voiceAttributes.rr = 0x0; //~ Release rate
voiceAttributes.sr = 0x0; //~ Sustain rate
voiceAttributes.sl = 0xf; //~ Sustain level
SpuSetVoiceAttr(&voiceAttributes); // set attributes
}
void playSFX(void){
SpuSetKey(SpuOn,SPU_0CH); // Set several channels by ORing each channel bit ; ex : SpuSetKey(SpuOn,SPU_0CH | SPU_3CH | SPU_8CH); channels 0, 3, 8 are on.
}
int main(void)
{
short counter = 0;
const VAGhdr * VAGfileHeader = (VAGhdr *) _binary____VAG_hello_poly_vag_start; // get header of VAG file
// From libover47.pdf :
// The sampling frequency of the original audio file can be used to determine the pitch
// at which to play the VAG. pitch = (sampling frequency << 12)/44100L
// Ex: 44.1kHz=0x1000 22.05kHz=0x800 etc
unsigned int pitch = (SWAP_ENDIAN32(VAGfileHeader->samplingFrequency) << 12) / 44100L;
SpuInit(); // Initialize SPU. Called only once.
initSnd();
//~ // First VAG
vag_spu_address = SpuMalloc(SWAP_ENDIAN32(VAGfileHeader->dataSize)); // Allocate an area of dataSize bytes in the sound buffer.
spu_start_address = SpuSetTransferStartAddr(vag_spu_address); // Sets a starting address in the sound buffer
get_start_addr = SpuGetTransferStartAddr(); // SpuGetTransferStartAddr() returns current sound buffer transfer start address.
transSize = sendVAGtoRAM(SWAP_ENDIAN32(VAGfileHeader->dataSize), _binary____VAG_hello_poly_vag_start);
// set VAG to channel
setVoiceAttr(pitch, SPU_0CH, vag_spu_address);
initGraph();
while (1)
{
if(!counter){
playSFX();
counter = 180;
}
FntPrint("\nPitch : %08x-%dKhz", pitch, (SWAP_ENDIAN32(VAGfileHeader->samplingFrequency)) );
FntPrint("\nSet Start addr : %08x", vag_spu_address);
FntPrint("\nReturn start addr : %08x", spu_start_address);
FntPrint("\nGet Start addr : %08x", get_start_addr);
FntPrint("\nSend size : %08x", SWAP_ENDIAN32(VAGfileHeader->dataSize));
FntPrint("\nReturn size : %08x\n", transSize);
FntPrint("\nCounter : %d\n", counter);
FntFlush(-1);
counter --;
display();
}
return 0;
}

86
hello_world.c Normal file
View File

@ -0,0 +1,86 @@
// This is stolen from Lameguy64 tutorial : http://lameguy64.net/svn/pstutorials/chapter1/1-display.html
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0); // Initialize drawing engine with a complete reset (0)
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES); // Set display area for both &disp[0] and &disp[1]
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); // &disp[0] is on top of &disp[1]
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); // Set draw for both &draw[0] and &draw[1]
SetDefDrawEnv(&draw[1], 0, 0 , SCREENXRES, SCREENYRES); // &draw[0] is below &draw[1]
if (VMODE) // PAL
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8; // add offset : 240 + 8 + 8 = 256
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50); // set color for first draw area
setRGB0(&draw[1], 50, 50, 50); // set color for second draw area
draw[0].isbg = 1; // set mask for draw areas. 1 means repainting the area with the RGB color each frame
draw[1].isbg = 1;
PutDispEnv(&disp[db]); // set the disp and draw environnments
PutDrawEnv(&draw[db]);
FntLoad(960, 0); // Load font to vram at 960,0(+128)
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 ); // FntOpen(x, y, width, height, black_bg, max. nbr. chars
}
void display(void)
{
DrawSync(0); // Wait for all drawing to terminate
VSync(0); // Wait for the next vertical blank
PutDispEnv(&disp[db]); // set alternate disp and draw environnments
PutDrawEnv(&draw[db]);
SetDispMask(1); // Display on screen
db = !db; // flip db value (0 or 1)
}
int main(void)
{
init(); // execute init()
while (1) // infinite loop
{
FntPrint("Hello world !"); // Send string to print stream
FntFlush(-1); // Draw printe stream
display(); // Execute display()
}
return 0;
}

86
hello_world/hello_world.c Normal file
View File

@ -0,0 +1,86 @@
// This is stolen from Lameguy64 tutorial : http://lameguy64.net/svn/pstutorials/chapter1/1-display.html
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
short db = 0; // index of which buffer is used, values 0, 1
void init(void)
{
ResetGraph(0); // Initialize drawing engine with a complete reset (0)
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES); // Set display area for both &disp[0] and &disp[1]
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); // &disp[0] is on top of &disp[1]
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); // Set draw for both &draw[0] and &draw[1]
SetDefDrawEnv(&draw[1], 0, 0 , SCREENXRES, SCREENYRES); // &draw[0] is below &draw[1]
if (VMODE) // PAL
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8; // add offset : 240 + 8 + 8 = 256
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50); // set color for first draw area
setRGB0(&draw[1], 50, 50, 50); // set color for second draw area
draw[0].isbg = 1; // set mask for draw areas. 1 means repainting the area with the RGB color each frame
draw[1].isbg = 1;
PutDispEnv(&disp[db]); // set the disp and draw environnments
PutDrawEnv(&draw[db]);
FntLoad(960, 0); // Load font to vram at 960,0(+128)
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 ); // FntOpen(x, y, width, height, black_bg, max. nbr. chars
}
void display(void)
{
DrawSync(0); // Wait for all drawing to terminate
VSync(0); // Wait for the next vertical blank
PutDispEnv(&disp[db]); // set alternate disp and draw environnments
PutDrawEnv(&draw[db]);
SetDispMask(1); // Display on screen
db = !db; // flip db value (0 or 1)
}
int main(void)
{
init(); // execute init()
while (1) // infinite loop
{
FntPrint("Hello world !"); // Send string to print stream
FntFlush(-1); // Draw printe stream
display(); // Execute display()
}
return 0;
}