/* primdrawG.c, by Schnappy, 12-2020 - Draw a gouraud shaded mesh exported as a TMESH by the blender <= 2.79b plugin io_export_psx_tmesh.py based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537) 2014 Meido-Tek Productions. Demonstrates: - Using a primitive OT to draw triangles without libgs. - Using the GTE to rotate, translate, and project 3D primitives. Controls: Start - Toggle interactive/non-interactive mode. Select - Reset object's position and angles. L1/L2 - Move object closer/farther. L2/R2 - Rotate object (XY). Up/Down/Left/Right - Rotate object (XZ/YZ). Triangle/Cross/Square/Circle - Move object up/down/left/right. */ /* PSX screen coordinate system * * Z+ * / * / * +------X+ * /| * / | * / Y+ * eye */ #include #include #include #include #include // Sample vector model #include "../includes/cube.c" #define VMODE 0 #define SCREENXRES 320 #define SCREENYRES 240 #define CENTERX SCREENXRES/2 #define CENTERY SCREENYRES/2 #define OTLEN 2048 // Maximum number of OT entries #define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives // Display and draw environments, double buffered DISPENV disp[2]; DRAWENV draw[2]; u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives) char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer char * nextpri = primbuff[0]; // Primitive counter short db = 0; // Current buffer counter // Prototypes void init(void); void display(void); //~ void LoadTexture(u_long * tim, TIM_IMAGE * tparam); void init(){ // Reset the GPU before doing anything and the controller PadInit(0); ResetGraph(0); // Initialize and setup the GTE InitGeom(); SetGeomOffset(CENTERX, CENTERY); // x, y offset SetGeomScreen(CENTERX); // Distance between eye and screen // Set the display and draw environments SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES); SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES); if (VMODE) { SetVideoMode(MODE_PAL); disp[0].screen.y += 8; disp[1].screen.y += 8; } SetDispMask(1); // Display on screen setRGB0(&draw[0], 0, 128, 255); setRGB0(&draw[1], 0, 128, 255); draw[0].isbg = 1; draw[1].isbg = 1; PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); // Init font system FntLoad(960, 0); FntOpen(16, 16, 196, 64, 0, 256); } void display(void){ DrawSync(0); VSync(0); PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); DrawOTag(&ot[db][OTLEN - 1]); db = !db; nextpri = primbuff[db]; } int main() { int i; int PadStatus; int TPressed=0; int AutoRotate=1; long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143 POLY_G3 *poly = {0}; // pointer to a POLY_G4 SVECTOR Rotate={ 0 }; // Rotation coordinates VECTOR Trans={ 0, 0, CENTERX * 3, 0 }; // Translation coordinates // Scaling coordinates VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // ONE == 4096 MATRIX Matrix={0}; // Matrix data for the GTE init(); // Main loop while (1) { // Read pad status PadStatus = PadRead(0); if (AutoRotate == 0) { if (PadStatus & PADL1) Trans.vz -= 4; if (PadStatus & PADR1) Trans.vz += 4; if (PadStatus & PADL2) Rotate.vz -= 8; if (PadStatus & PADR2) Rotate.vz += 8; if (PadStatus & PADLup) Rotate.vx -= 8; if (PadStatus & PADLdown) Rotate.vx += 8; if (PadStatus & PADLleft) Rotate.vy -= 8; if (PadStatus & PADLright) Rotate.vy += 8; if (PadStatus & PADRup) Trans.vy -= 2; if (PadStatus & PADRdown) Trans.vy += 2; if (PadStatus & PADRleft) Trans.vx -= 2; if (PadStatus & PADRright) Trans.vx += 2; if (PadStatus & PADselect) { Rotate.vx = Rotate.vy = Rotate.vz = 0; Scale.vx = Scale.vy = Scale.vz = ONE/2; Trans.vx = Trans.vy = 0; Trans.vz = CENTERX * 3; } } if (PadStatus & PADstart) { if (TPressed == 0) { AutoRotate = (AutoRotate + 1) & 1; Rotate.vx = Rotate.vy = Rotate.vz = 0; Scale.vx = Scale.vy = Scale.vz = ONE/2; Trans.vx = Trans.vy = 0; Trans.vz = CENTERX * 3; } TPressed = 1; } else { TPressed = 0; } if (AutoRotate) { Rotate.vy += 8; // Pan Rotate.vx += 8; // Tilt //~ Rotate.vz += 8; // Roll } // Clear the current OT ClearOTagR(ot[db], OTLEN); // Convert and set the matrixes RotMatrix(&Rotate, &Matrix); TransMatrix(&Matrix, &Trans); ScaleMatrix(&Matrix, &Scale); SetRotMatrix(&Matrix); SetTransMatrix(&Matrix); // Render the sample vector model t=0; // modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ... for (i = 0; i < (modelCube.len*3); i += 3) { poly = (POLY_G3 *)nextpri; // Initialize the primitive and set its color values SetPolyG3(poly); setRGB0(poly, modelCube.c[i].r , modelCube.c[i].g , modelCube.c[i].b); setRGB1(poly, modelCube.c[i+2].r, modelCube.c[i+2].g, modelCube.c[i+2].b); setRGB2(poly, modelCube.c[i+1].r, modelCube.c[i+1].g, modelCube.c[i+1].b); // Rotate, translate, and project the vectors and output the results into a primitive OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag); OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag); OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag); // Sort the primitive into the OT OTz /= 3; if ((OTz > 0) && (OTz < OTLEN)) AddPrim(&ot[db][OTz-2], poly); nextpri += sizeof(POLY_G3); t+=3; } FntPrint("Hello gouraud shaded cube!\n"); FntFlush(-1); display(); } return 0; }