// Hello free cycles ! // // Ref : /psyq/DOCS/Devrefs/Inlinref.pdf, p.18 // /psyq/psx/sample/scea/GTE // https://psx-spx.consoledev.net/geometrytransformationenginegte/ // PSX / Z+ // screen / //coordinate +-----X+ //system / | // eye | Y+ // // Credits, thanks : Nicolas Noble, Sickle, Lameguy64 @ psxdev discord : https://discord.com/invite/N2mmwp // https://discord.com/channels/642647820683444236/663664210525290507/834831466100949002 #include #include #include #include #include // OldWorld PsyQ has a inline_c.h file for inline GTE functions. We have to use the one at https://github.com/grumpycoders/pcsx-redux/blob/07f9b02d1dbb68f57a9f5b9773041813c55a4913/src/mips/psyq/include/inline_n.h // because the real GTE commands are needed in nugget : https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-coordinate-calculation-commands #include // RAM -> CPU and CPU -> GTE macros : #include "../includes/CPUMAC.H" #define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL #define SCREENXRES 320 // Screen width #define SCREENYRES 240 + (VMODE << 4) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256 #define CENTERX ( SCREENXRES >> 1 ) // Center of screen on x #define CENTERY ( SCREENYRES >> 1 ) // Center of screen on y #define MARGINX 0 // margins for text display #define MARGINY 32 #define FONTSIZE 8 * 7 // Text Field Height #define OTLEN 10 // Ordering Table Length DISPENV disp[2]; // Double buffered DISPENV and DRAWENV DRAWENV draw[2]; u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0] short db = 0; // index of which buffer is used, values 0, 1 // DCache setup #define dc_camdirp ((sshort*) getScratchAddr(0)) #define dc_ip ((uchar*) getScratchAddr(1)) #define dc_opzp ((slong*) getScratchAddr(2)) #define dc_wmatp ((MATRIX*) getScratchAddr(3)) #define dc_cmatp ((MATRIX*) getScratchAddr(9)) #define dc_sxytbl ((DVECTOR*) getScratchAddr(15)) void init(void) { ResetGraph(0); // Initialize and setup the GTE InitGeom(); //~ SetGeomOffset(CENTERX,CENTERY); gte_SetGeomOffset(CENTERX,CENTERY); gte_SetGeomScreen(CENTERX); // Set display environment SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES); SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); // Set draw environment SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES); if (VMODE){ SetVideoMode(MODE_PAL);} SetDispMask(1); // Set background color setRGB0(&draw[0], 50, 50, 50); setRGB0(&draw[1], 50, 50, 50); draw[0].isbg = 1; draw[1].isbg = 1; PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); FntLoad(960, 0); FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 ); } void display(void) { // Wait for drawing DrawSync(0); // Wait for vsync VSync(1); // Flip DISP and DRAW env PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); DrawOTag(&ot[db][OTLEN - 1]); // Flip db index db = !db; // Get next primitive in buffer nextpri = primbuff[db]; } int main(void) { long p, flag, OTz; SVECTOR rotVector = {0}; SVECTOR rotVector4 = {0}; // Initialize rotation vector {x, y, z} - ALWAYS ! VECTOR transVector = {0, 0, CENTERX, 0}; // Initialize translation vector {x, y, z} SVECTOR vertPos[4] = { { 0, -32, 0, 0 }, // Vert 1 { 32, 0, 0, 0 }, // Vert 2 { -32, 0, 0, 0 }, { 0, 32, 0, 0 } }; // Vert 3 MATRIX workMatrix = {0}; POLY_F3 * poly = {0}; // pointer to a POLY_F4 POLY_F4 * poly4 = {0}; // pointer to a POLY_F4 init(); // Declare registers register ulong ur0 asm("$16"); register ulong ur1 asm("$17"); register ulong ur2 asm("$18"); register ulong ur3 asm("$19"); register ulong ur4 asm("$20"); register ulong ur5 asm("$21"); while (1) { // Set Ordering table ClearOTagR(ot[db], OTLEN); // Cast next primitives in buffer as a POLY_F3 and a POLY_F4 (see display() ) poly = (POLY_F3 *)nextpri; nextpri += sizeof(POLY_F3); poly4 = (POLY_F4 *)nextpri; // Set matrices - Move to left of screen // Draw on the left part of the screen transVector.vx = -CENTERX/2; // Increment rotation angle on Y axis rotVector.vy += 1; // Find rotation matrix from vector, store in RotMatrix_gte(&rotVector, &workMatrix); // Ditto for translation TransMatrix(&workMatrix, &transVector); // Set the matrices we just found gte_SetRotMatrix(&workMatrix); gte_SetTransMatrix(&workMatrix); // Draw a Tri and a Quad // Copy Tri vertices from ram to cpu registers casting as ulong so that ur0 (len 32bits) contains vx and vy (2 * 8bits) // Hence the use of vx, vz members cpu_ldr(ur0,(ulong*)&vertPos[0].vx); // Put vx, vy value in ur0 cpu_ldr(ur1,(ulong*)&vertPos[0].vz); // Put vz, pad value in ur1 cpu_ldr(ur2,(ulong*)&vertPos[1].vx); cpu_ldr(ur3,(ulong*)&vertPos[1].vz); cpu_ldr(ur4,(ulong*)&vertPos[2].vx); cpu_ldr(ur5,(ulong*)&vertPos[2].vz); // Load the gte registers from the cpu registers (gte-cpu move 1 cycle) - mtc2 %0, $0; cpu_gted0(ur0); cpu_gted1(ur1); cpu_gted2(ur2); cpu_gted3(ur3); cpu_gted4(ur4); cpu_gted5(ur5); // Tri RotTransPers3 // The two last cpu->gte copy will happen during the 2 nops in gte_rtpt() gte_rtpt(); // Fill the cpu registers with the Quad vertices cpu_ldr(ur0,(ulong*)&vertPos[0].vx); cpu_ldr(ur1,(ulong*)&vertPos[0].vz); cpu_ldr(ur2,(ulong*)&vertPos[1].vx); cpu_ldr(ur3,(ulong*)&vertPos[1].vz); cpu_ldr(ur4,(ulong*)&vertPos[2].vx); cpu_ldr(ur5,(ulong*)&vertPos[2].vz); // Get nclip value, and win two cycles gte_nclip(); // Copy Tri 's screen coordinates from gte registers to d-cache. gte_stsxy3c(&dc_sxytbl[0]); // Set matrices - Move to right of screen transVector.vx = CENTERX/2; // Increment rot on X/Y axis rotVector4.vy -= 1 ; rotVector4.vx -= 1 ; // Set matrices RotMatrix_gte(&rotVector4, &workMatrix); TransMatrix(&workMatrix, &transVector); gte_SetRotMatrix(&workMatrix); gte_SetTransMatrix(&workMatrix); // Load the gte registers from the cpu registers (gte-cpu move 1 cycle) - mtc2 %0, $0; cpu_gted0(ur0); cpu_gted1(ur1); cpu_gted2(ur2); cpu_gted3(ur3); cpu_gted4(ur4); cpu_gted5(ur5); // Quad RotTransPers3 // Getting 2 cycles back thanks to nops gte_rtpt(); // gte_nclip() has 2 nops, lets use them to load the remaining vertex data from ram->cpu register cpu_ldr(ur0,(ulong*)&vertPos[3].vx); cpu_ldr(ur1,(ulong*)&vertPos[3].vz); // Calculate nclip (outer product) gte_nclip(); // Copy result to d-cache + 3 gte_stsxy3c(&dc_sxytbl[3]); // Copy from cpu-gte cpu_gted0(ur0); cpu_gted1(ur1); // Quad last vertex RotTransPers // These two last cpu->gte load are free :p gte_rtps(); gte_nclip(); // Copy last vertex value to d-cache gte_stsxy(&dc_sxytbl[6]); // Get p, flag, OTz gte_stdp(&p); gte_stflg(&flag); gte_stszotz(&OTz); // That's 10 cycles we won back ? // Copy vertices data from d-cache to ram // Tri *(unsigned long long*)&poly->x0 = *(unsigned long long*)&dc_sxytbl[0]; *(ulong*)&poly->x2 = *(ulong*)&dc_sxytbl[2]; // Quad *(unsigned long long*)&poly4->x0 = *(unsigned long long*)&dc_sxytbl[3]; *(unsigned long long*)&poly4->x2 = *(unsigned long long*)&dc_sxytbl[5]; // Initialize polygons setPolyF3(poly); setRGB0(poly, 255, 0, 255); setPolyF4(poly4); setRGB0(poly4, 0, 255, 255); // Add to OT addPrim(ot[db], poly); addPrim(ot[db], poly4); // Display text FntPrint("Hello Free cycles !\n"); FntFlush(-1); display(); } return 0; }