/* primdrawG.c, by Schnappy, 12-2020 - Draw a gouraud shaded mesh exported as a TMESH by the blender <= 2.79b plugin io_export_psx_tmesh.py based on primdraw.c by Lameguy64 (http://www.psxdev.net/forum/viewtopic.php?f=64&t=537) 2014 Meido-Tek Productions. Demonstrates: - Using a primitive OT to draw triangles without libgs. - Using the GTE to rotate, translate, and project 3D primitives. Controls: Start - Toggle interactive/non-interactive mode. Select - Reset object's position and angles. L1/L2 - Move object closer/farther. L2/R2 - Rotate object (XY). Up/Down/Left/Right - Rotate object (XZ/YZ). Triangle/Cross/Square/Circle - Move object up/down/left/right. */ /* PSX screen coordinate system * * Z+ * / * / * +------X+ * /| * / | * / Y+ * eye */ #include #include #include #include #include // Sample vector model #include "cube.c" #define VMODE 0 #define SCREENXRES 320 #define SCREENYRES 240 #define CENTERX SCREENXRES/2 #define CENTERY SCREENYRES/2 #define OTLEN 2048 // Maximum number of OT entries #define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives // Display and draw environments, double buffered DISPENV disp[2]; DRAWENV draw[2]; u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives) char primbuff[2][PRIMBUFFLEN] = {0}; // Primitive list // That's our prim buffer char * nextpri = primbuff[0]; // Primitive counter short db = 0; // Current buffer counter long t, p, OTz, Flag; // t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143 // Lighting // See PsyQ's LibOver47.pdf, p.133 for more details on the purpose of each component and full calculations. // Far color : This is the color used to fade to when the mesh is far from the cam (NearFog) CVECTOR BGc = {150, 50, 75, 0}; // Back color VECTOR BKc = {128, 128, 128, 0}; // Light rotation angle SVECTOR lgtang = {0, 0, 0}; // These will be used to store the light rotation matrix, cube rotation matrix, and composite light matrix. MATRIX rotlgt, rotcube, light; // Local Light Matrix : Direction and reach of each light source. // Each light points in the direction aligned with the axis, hence direction is in the same coordinate system as the PSX (see l.23-30 of this file) // Negative/positive value denotes light direction on corresponding axis // -4096 > Value < 4096 denotes reach/intensity of light source MATRIX lgtmat = { // X Y Z -ONE, -ONE, ONE, // Lightsource 1 : here, the light source is at the Bottom-Left of the screen, and points into the screen. 0, 0, 0, // Lightsource 2 0, 0, 0, // Lightsource 3 }; // Local Color Matrix // Set color of each light source (L) // Value range : 0 > x < 4096 MATRIX cmat = { // L1 L2 L3 4096, 0, 0, // R 4096, 0, 0, // G 4096, 0, 0 // B }; // Prototypes void init(void); void display(void); //~ void LoadTexture(u_long * tim, TIM_IMAGE * tparam); void init(){ // Reset the GPU before doing anything and the controller PadInit(0); ResetGraph(0); // Initialize and setup the GTE InitGeom(); SetGeomOffset(CENTERX, CENTERY); // x, y offset SetGeomScreen(CENTERX); // Distance between eye and screen // Set the display and draw environments SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES); SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES); if (VMODE) { SetVideoMode(MODE_PAL); disp[0].screen.y += 8; disp[1].screen.y += 8; } // Set light env // Set far color SetFarColor( BGc.r, BGc.g, BGc.b ); // Set Ambient color SetBackColor( BKc.vx, BKc.vy, BKc.vz ); // Set Color matrix SetColorMatrix(&cmat); // Set Fog settings SetFogNearFar( 1200, 2200, SCREENXRES ); setRGB0(&draw[0], 0, 0, 255); setRGB0(&draw[1], 0, 0, 255); draw[0].isbg = 1; draw[1].isbg = 1; PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); // Init font system FntLoad(960, 0); FntOpen(16, 16, 196, 64, 0, 256); } void display(void){ DrawSync(0); VSync(0); PutDispEnv(&disp[db]); PutDrawEnv(&draw[db]); SetDispMask(1); DrawOTag(ot[db] + OTLEN - 1); db = !db; nextpri = primbuff[db]; } int main() { int i; int PadStatus; int TPressed=0; int AutoRotate=1; // Rotating cube POLY_G3 * poly; SVECTOR Rotate={ ONE/6,ONE/6,ONE/6 }; // Rotation coordinates VECTOR Trans={ -SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates VECTOR Scale={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096 MATRIX Matrix={0}; // Matrix data for the GTE // Static cube POLY_G3 * poly1; // pointer to a POLY_G4 SVECTOR Rotate1={ ONE/6, ONE/6, ONE/6, 0 }; // Rotation coordinates VECTOR Trans1={ SCREENXRES/2, 0, CENTERX * 3, 0 }; // Translation coordinates VECTOR Scale1={ ONE/2, ONE/2, ONE/2, 0 }; // Scaling coordinates : ONE == 4096 MATRIX Matrix1={0}; // Matrix data for the GTE init(); // Main loop while (1) { // Read pad status PadStatus = PadRead(0); if (AutoRotate == 0) { if (PadStatus & PADL1) Trans.vz -= 4; if (PadStatus & PADR1) Trans.vz += 4; if (PadStatus & PADL2) Rotate.vz -= 8; if (PadStatus & PADR2) Rotate.vz += 8; if (PadStatus & PADLup) Rotate.vx -= 8; if (PadStatus & PADLdown) Rotate.vx += 8; if (PadStatus & PADLleft) Rotate.vy -= 8; if (PadStatus & PADLright) Rotate.vy += 8; if (PadStatus & PADRup) Trans.vy -= 2; if (PadStatus & PADRdown) Trans.vy += 2; if (PadStatus & PADRleft) Trans.vx -= 2; if (PadStatus & PADRright) Trans.vx += 2; } if (PadStatus & PADstart) { if (TPressed == 0) { AutoRotate = (AutoRotate + 1) & 1; Rotate.vy = Rotate.vx = Rotate.vz = ONE/6; Scale.vx = Scale.vy = Scale.vz = ONE/2; Trans.vx = -SCREENXRES/2; Trans.vy = 0; Trans.vz = CENTERX * 3; } TPressed = 1; } else { TPressed = 0; } if (AutoRotate) { Rotate.vy += 8; // Pan Rotate.vx += 8; // Tilt //~ Rotate.vz += 8; // Roll } // Clear the current OT ClearOTagR(ot[db], OTLEN); // Render the sample vector model t=0; // modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ... for (i = 0; i < (modelCube.len*3); i += 3) { poly = (POLY_G3 *)nextpri; // Initialize the primitive and set its color values SetPolyG3(poly); // Rotate, translate, and project the vectors and output the results into a primitive // Could be replaced with one call with RotTransPers3() OTz = RotTransPers(&modelCube_mesh[modelCube_index[t]] , (long*)&poly->x0, &p, &Flag); OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+2]], (long*)&poly->x1, &p, &Flag); OTz += RotTransPers(&modelCube_mesh[modelCube_index[t+1]], (long*)&poly->x2, &p, &Flag); // Find light color // Work color vectors CVECTOR outCol, outCol1, outCol2 = { 0,0,0,0 }; // Find local color from three normal vectors and perform depth cueing. // Could be replaced with one call with NormalColorDpq3() NormalColorDpq(&modelCube.n[ modelCube_index[t+0] ], &modelCube.c[i+0], p, &outCol); NormalColorDpq(&modelCube.n[ modelCube_index[t+2] ], &modelCube.c[i+2], p, &outCol1); NormalColorDpq(&modelCube.n[ modelCube_index[t+1] ], &modelCube.c[i+1], p, &outCol2); // Set vertex colors setRGB0(poly, outCol.r, outCol.g , outCol.b); setRGB1(poly, outCol1.r, outCol1.g, outCol1.b); setRGB2(poly, outCol2.r, outCol2.g, outCol2.b); // Sort the primitive into the OT OTz /= 3; if ((OTz > 0) && (OTz < OTLEN)) AddPrim(&ot[db][OTz-2], poly); nextpri += sizeof(POLY_G3); t+=3; } // Find and apply light rotation matrix //~ // Find rotmat from light angles RotMatrix_gte(&lgtang, &rotlgt); // Find rotmat from cube angles RotMatrix_gte(&Rotate, &rotcube); // RotMatrix cube * RotMatrix light MulMatrix0(&rotcube, &rotlgt, &rotlgt); // Light Matrix * RotMatrix light MulMatrix0(&lgtmat, &rotlgt, &light); // Set new light matrix SetLightMatrix(&light); // Convert and set the matrices // Find Rotation matrix from object's angles RotMatrix(&Rotate, &Matrix); // Find Scale matrix from object's angles ScaleMatrix(&Matrix, &Scale); // Find Translation matrix from object's angles TransMatrix(&Matrix, &Trans); // Set GTE's rotation matrix SetRotMatrix(&Matrix); // Set GTE's Translation matrix SetTransMatrix(&Matrix); // Draw static cube t=0; for (i = 0; i < (modelCube1.len*3); i += 3) { poly1 = (POLY_G3 *)nextpri; SetPolyG3(poly1); OTz = RotTransPers(&modelCube1_mesh[modelCube1_index[t]] , (long*)&poly1->x0, &p, &Flag); OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+2]], (long*)&poly1->x1, &p, &Flag); OTz += RotTransPers(&modelCube1_mesh[modelCube1_index[t+1]], (long*)&poly1->x2, &p, &Flag); CVECTOR outCol = { 0,0,0,0 }; CVECTOR outCol1 = { 0,0,0,0 }; CVECTOR outCol2 = { 0,0,0,0 }; NormalColorDpq(&modelCube1.n[ modelCube1_index[t+0] ], &modelCube1.c[i+0], p, &outCol); NormalColorDpq(&modelCube1.n[ modelCube1_index[t+2] ], &modelCube1.c[i+2], p, &outCol1); NormalColorDpq(&modelCube1.n[ modelCube1_index[t+1] ], &modelCube1.c[i+1], p, &outCol2); setRGB0(poly1, outCol.r, outCol.g , outCol.b); setRGB1(poly1, outCol1.r, outCol1.g, outCol1.b); setRGB2(poly1, outCol2.r, outCol2.g, outCol2.b); OTz /= 3; if ((OTz > 0) && (OTz < OTLEN)) AddPrim(&ot[db][OTz-2], poly1); nextpri += sizeof(POLY_G3); t+=3; } // See l.216 RotMatrix_gte(&lgtang, &rotlgt); RotMatrix_gte(&Rotate1, &rotcube); MulMatrix0(&rotcube, &rotlgt, &rotlgt); MulMatrix0(&lgtmat, &rotlgt, &light); SetLightMatrix(&light); // See l.227 RotMatrix(&Rotate1, &Matrix1); ScaleMatrix(&Matrix1, &Scale1); TransMatrix(&Matrix1, &Trans1); SetRotMatrix(&Matrix1); SetTransMatrix(&Matrix1); FntPrint("Hello lightsources !\n"); FntFlush(-1); display(); } return 0; }