429 lines
14 KiB
C

// SPU readback example
// adapted from PsyQ's sample : psyq/psx/sample/sound/CDVOL, main.c,v 1.14 1997/05/02 13:05:21 by ayako
// Schnappy 11-2021
#include <sys/types.h>
#include <stdio.h>
#include <stdint.h>
#include <kernel.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
// CD library
#include <libcd.h>
// SPU library
#include <libspu.h>
#include "../thirdparty/nugget/common/syscalls/syscalls.h"
#define printf ramsyscall_printf
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 + (VMODE << 4) // Screen height : If VMODE is 0 = 240, if VMODE is 1 = 256
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 0 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 7 // Text Field Height
#define OTLEN 8 // Ordering Table Length
// Number of bars
#define BARNUM 2
// Peak cursor width
#define TSIZE 10
// Bar size / 2
#define BSIZE 128
// Top Y coordinate of Left volume bar
#define BARTOP 100
// Bottom Y coordinates of Left volume bar
#define BARBOTTOM ((BARTOP)+5)
// Vertical spacing
#define MARGIN 40
// Bars left coordinates
#define MINBAR CENTERX - BSIZE
// Bars right coordinates
#define MAXBAR ( CENTERX + BSIZE + TSIZE )
// Bars IDs
#define LEFTBAR 0
#define RIGHTBAR 1
// Return absolute value of a number
#define ABS(x) (((x)<0)?(-(x)):(x))
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
uint8_t primbuff[2][32768]; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
uint8_t *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
uint8_t db = 0; // index of which buffer is used, values 0, 1
// SPU attributes
SpuCommonAttr spuSettings;
// SPU IRQ address
uint16_t SpuIrqAddr;
// SPU decoded data buffer
SpuDecodedData decodedData;
// CD volume: current sample's max values
ulong leftMax, rightMax;
// Last 2 seconds's peak volume values
ulong leftPeak, rightPeak;
// Primitives for drawing the VU-metre, double buffered
// Blue : background bar
POLY_F4 * bar[BARNUM];
// White : current value
POLY_F4 * current[BARNUM];
// Red : volume peak in the last 3 seconds
POLY_F4 * peak[BARNUM];
// Colors for the VU-metre
CVECTOR bg = {0,90,255};
CVECTOR fg = {255,190,0};
CVECTOR cursor = {255,40,0};
void init(void)
{
ResetGraph(0); // Initialize drawing engine with a complete reset (0)
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES); // Set display area for both &disp[0] and &disp[1]
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES); // &disp[0] is on top of &disp[1]
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES); // Set draw for both &draw[0] and &draw[1]
SetDefDrawEnv(&draw[1], 0, 0 , SCREENXRES, SCREENYRES); // &draw[0] is below &draw[1]
// Set video mode
if (VMODE){ SetVideoMode(MODE_PAL);}
SetDispMask(1); // Display on screen
setRGB0(&draw[0], 50, 50, 50); // set color for first draw area
setRGB0(&draw[1], 50, 50, 50); // set color for second draw area
draw[0].isbg = 1; // set mask for draw areas. 1 means repainting the area with the RGB color each frame
draw[1].isbg = 1;
PutDispEnv(&disp[db]); // set the disp and draw environnments
PutDrawEnv(&draw[db]);
FntLoad(960, 0); // Load font to vram at 960,0(+128)
// Top bar
FntOpen (MINBAR, BARTOP - 10, 200, 150, 0, 64);
// Bottom bar
FntOpen (MINBAR, BARTOP - 10 + (MARGIN), 200, 150, 0, 64);
// Debug
FntOpen (32, SCREENYRES - 74, SCREENXRES - 64, 64, 0, 200);
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
void initPrimitives(void)
{
// Set primitives from primbuff[]
bar[0] = (POLY_F4 *)nextpri;
bar[1] = (POLY_F4 *)nextpri + sizeof(POLY_F4);
current[0] = (POLY_F4 *)nextpri + (sizeof(POLY_F4) * 2);
current[1] = (POLY_F4 *)nextpri + (sizeof(POLY_F4) * 3);
peak[0] = (POLY_F4 *)nextpri + (sizeof(POLY_F4) * 4);
peak[1] = (POLY_F4 *)nextpri + (sizeof(POLY_F4) * 5);
// Set each primitive to their default settings
for (int i = 0; i < BARNUM; i++)
{
// Volume bar background is blue
SetPolyF4 ( bar[i] );
setRGB0 ( bar[i], bg.r,bg.g,bg.b );
setXY4 ( bar[i],
MINBAR, BARTOP + i * MARGIN, /* NW */
MAXBAR, BARTOP + i * MARGIN, /* NE */
MINBAR, BARBOTTOM + i * MARGIN, /* SW */
MAXBAR, BARBOTTOM + i * MARGIN); /* SE */
// Current volume is light purple-ish
SetPolyF4 (current[i]);
setRGB0 ( current[i], fg.r,fg.g,fg.b);
setXY4 ( current[i],
MINBAR, BARTOP + i * MARGIN,
MINBAR + TSIZE, BARTOP + i * MARGIN,
MINBAR, BARBOTTOM + i * MARGIN,
MINBAR + TSIZE, BARBOTTOM + i * MARGIN);
// Initialize peak cursor
SetPolyF4 ( peak[i] );
setRGB0 ( peak[i], cursor.r,cursor.g,cursor.b);
setXY4 ( peak[i],
MINBAR, BARTOP + i * MARGIN,
MINBAR + TSIZE, BARTOP + i * MARGIN,
MINBAR, BARBOTTOM + i * MARGIN,
MINBAR + TSIZE, BARBOTTOM + i * MARGIN);
}
}
// Unused - should be called whenever this madness needs to be ended
void terminate(void)
{
// Turn SPU irq off
SpuSetIRQ (SPU_OFF);
// Clear callback functions
SpuSetIRQCallback ((SpuIRQCallbackProc) NULL);
SpuSetTransferCallback ((SpuTransferCallbackProc) NULL);
// Reset SPU settings
spuSettings.mask = (SPU_COMMON_MVOLL |
SPU_COMMON_MVOLR |
SPU_COMMON_CDVOLL |
SPU_COMMON_CDVOLR |
SPU_COMMON_CDMIX
);
spuSettings.mvol.left = 0;
spuSettings.mvol.right = 0;
spuSettings.cd.volume.left = 0;
spuSettings.cd.volume.right = 0;
spuSettings.cd.mix = SPU_OFF;
SpuSetCommonAttr (&spuSettings);
// Stop CD
CdStop ();
// Stop SPU processing
SpuQuit ();
// Re-init display env
ResetGraph (3);
// stop callback processing
StopCallback ();
}
// Print corresponding data for each volume bar
void printDataInfo(void)
{
// We're using 2 streams
FntPrint (0, "L: %04x peak/%04x\n", leftMax, leftPeak);
FntPrint (1, "R: %04x peak/%04x\n", rightMax, rightPeak);
FntFlush (0);
FntFlush (1);
}
// SPU IRQ calback function
void eachIRQ (void)
{
SpuSetIRQ (SPU_OFF); /**/
SpuReadDecodeData (&decodedData, SPU_CDONLY); /**/
}
// DMA Transfer callback function
void eachDMA (void)
{
if (SpuIrqAddr == 0x0)
SpuIrqAddr = 0x200;
else
SpuIrqAddr = 0x0;
// Change IRQ address
SpuSetIRQAddr (SpuIrqAddr);
// Turn SPU IRQ requests on
SpuSetIRQ (SPU_ON);
}
void findSampleMaxVolume(void)
{
// Search maximum volume value of the SPU decoded data
// SPU buffer data range adresses
long dataLowerAdress, dataUpperAdress;
// Current sample's max and working value
short maxL = 0, tmpL;
short maxR = 0, tmpR;
// Timers for the Peak cursor, reset after 120 iterations.
static long timeCursorL = 0, timeCursorR = 0;
// Find SPU data range according to current half we're working on
if (SpuIrqAddr == 0x0) {
/* 1st part is available */
dataLowerAdress = 0x0;
dataUpperAdress = 0x1ff;
} else {
/* 2nd part is available */
dataLowerAdress = 0x200;
dataUpperAdress = 0x3ff;
}
// Examine and find max volume in the data range
for (long i = dataLowerAdress; i < dataUpperAdress; i ++) {
// Examine SPU decoded data
tmpL = ABS(decodedData.cd_left[i]);
tmpR = ABS(decodedData.cd_right[i]);
// Only keep maximum value for this sample
if (maxL < tmpL ) {
maxL = tmpL ;
}
if (maxR < tmpR ) {
maxR = tmpR;
}
}
leftMax = (long) maxL;
rightMax = (long) maxR;
// Peak level
if (leftPeak < leftMax) {
leftPeak = leftMax;
timeCursorL = 0;
}
if (rightPeak < rightMax) {
rightPeak = rightMax;
timeCursorR = 0;
}
// Peak cursors: hold 2s@60fps.
// Increment counters until 120 is reached, then set cursors position to current leftMax/rightMax values
if (timeCursorL < 120) {
timeCursorL ++;
} else {
timeCursorL = 0;
leftPeak = leftMax;
}
if (timeCursorR < 120) {
timeCursorR ++;
} else {
timeCursorR = 0;
rightPeak = rightMax;
}
}
int main(void)
{
// Values used to switch CD track after
u_int counter = 0;
int8_t flip = 1;
// These will hold the normalised values of leftMax/rightMax, leftPeak/rightPeak
long lMax, rMax, lPeak, rPeak;
// Init display
init();
// Init CD system
CdInit ();
// Init Spu
SpuInit();
// Initialize SPU related variables
leftMax = rightMax = 0;
leftPeak = rightPeak = 0;
// Fill SPU data buffers with 0s
for (int i = 0; i < SPU_DECODEDDATA_SIZE; i ++) {
decodedData.cd_left[i] = 0;
decodedData.cd_right[i] = 0;
}
// SPU setup
// Set master & CD volume to max
spuSettings.mask = (SPU_COMMON_MVOLL |
SPU_COMMON_MVOLR |
SPU_COMMON_CDVOLL |
SPU_COMMON_CDVOLR |
SPU_COMMON_CDMIX);
// Master volume should be in range 0x0000 - 0x3fff
spuSettings.mvol.left = 0x3fff;
spuSettings.mvol.right = 0x3fff;
// Cd volume should be in range 0x0000 - 0x7fff
spuSettings.cd.volume.left = 0x7fff;
spuSettings.cd.volume.right = 0x7fff;
// Enable CD input ON
spuSettings.cd.mix = SPU_ON;
// Apply settings
SpuSetCommonAttr(&spuSettings);
// Set transfer mode
SpuSetTransferMode(SPU_TRANSFER_BY_DMA);
// Callbacks setup
// Set Transfer callback
(void) SpuSetTransferCallback ((SpuTransferCallbackProc) eachDMA);
// set IRQ callback
SpuSetIRQCallback ((SpuIRQCallbackProc) eachIRQ);
// Initialize SPU IRQ address
SpuIrqAddr = 0x200;
// Set IRQ address
SpuSetIRQAddr (SpuIrqAddr);
// Turn interrupt request ON
SpuSetIRQ(SPU_ON);
// CD Playback setup
// Play second audio track
// Get CD TOC
CdlLOC loc[100];
int ntoc;
while ((ntoc = CdGetToc(loc)) == 0) { /* Read TOC */
printf("No TOC found: please use CD-DA disc...\n");
FntPrint(2, "No TOC found: please use CD-DA disc...\n");
}
// Prevent out of bound pos
for (int i = 1; i < ntoc; i++) {
CdIntToPos(CdPosToInt(&loc[i]) - 74, &loc[i]);
}
// Those array will hold the return values of the CD commands
u_char param[4], result[8];
// Set CD parameters ; Report Mode ON, CD-DA ON. See LibeOver47.pdf, p.188
param[0] = CdlModeRept|CdlModeDA;
CdControlB (CdlSetmode, param, 0); /* set mode */
VSync (3); /* wait three vsync times */
// Play second track in toc array
CdControlB (CdlPlay, (u_char *)&loc[3], 0); /* play */
// Graphics setup
initPrimitives();
while (1)
{
counter++;
ClearOTagR(ot[db], OTLEN);
// Normalize volume
lMax = (leftMax * 256) / 0x8000 + MINBAR;
rMax = (rightMax * 256) / 0x8000 + MINBAR;
lPeak = (leftPeak * 256) / 0x8000 + MINBAR;
rPeak = (rightPeak * 256) / 0x8000 + MINBAR;
// Update primitives XY coordinates
setXY4 ( current[LEFTBAR],
MINBAR, BARTOP,
lMax + TSIZE, BARTOP,
MINBAR, BARBOTTOM,
lMax + TSIZE, BARBOTTOM);
setXY4 (current[RIGHTBAR],
MINBAR, BARTOP + MARGIN,
rMax + TSIZE, BARTOP + MARGIN,
MINBAR, BARBOTTOM + MARGIN,
rMax + TSIZE, BARBOTTOM + MARGIN);
setXY4 (peak[LEFTBAR],
lPeak, BARTOP,
lPeak + TSIZE, BARTOP,
lPeak, BARBOTTOM,
lPeak + TSIZE, BARBOTTOM);
setXY4 (peak[RIGHTBAR],
rPeak, BARTOP + MARGIN,
rPeak + TSIZE, BARTOP + MARGIN,
rPeak, BARBOTTOM + MARGIN,
rPeak + TSIZE, BARBOTTOM + MARGIN);
// Add prims to ordering table from bottom to top
for ( int i = 0; i < BARNUM; i++) {
addPrim(ot[db][OTLEN - 1], bar[i]);
addPrim(ot[db][OTLEN - 2], current[i]);
addPrim(ot[db][OTLEN - 3], peak[i]);
}
// Get current track number ~ every second
// See LibeOver47.pdf, p.188
if (counter%50 == 0){
CdReady(1, &result[0]);
// current track number can also be obtained with
// CdControlB (CdlGetlocP, 0, &result[0]);
}
// Switch track after ~ 20 seconds
if (counter%(50*20) == 0){
// Flip can have a value of 1 or -1
flip *= -1;
uint8_t nextTrackIndex = result[1] + flip;
// Send CD command to switch track
CdControlB (CdlPlay, (u_char *)&loc[ nextTrackIndex ], 0);
}
// Update current and peak values
findSampleMaxVolume();
// Print bar's infos
printDataInfo();
// Draw debug stream
FntPrint(2, "Hello SPU readback ! %d\n", counter);
FntPrint(2, "Current track: %d\n", result[1] );
FntPrint(2, "L: %08d, R: %08d\n", leftMax, rightMax);
FntPrint(2, "SPU Addr: 0x%03x ", SpuIrqAddr );
FntFlush(2);
// Update display
display();
}
return 0;
}