nolibgs_hello_worlds/hello_sprt.c
2020-12-22 19:25:47 +01:00

233 lines
7.9 KiB
C

#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 32 // margins for text display
#define MARGINY 44
#define FONTSIZE 8 * 3 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768] = {1}; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// Embed TIM files
// See https://github.com/ABelliqueux/nolibgs_hello_worlds#embedding-binary-data-in-a-ps-exe
// 16bpp TIM
extern unsigned long _binary_TIM_TIM16_tim_start[];
extern unsigned long _binary_TIM_TIM16_tim_end[];
extern unsigned long _binary_TIM_TIM16_tim_length;
// 8bpp TIM
extern unsigned long _binary_TIM_TIM8_tim_start[];
extern unsigned long _binary_TIM_TIM8_tim_end[];
extern unsigned long _binary_TIM_TIM8_TIM_length;
// 4bpp TIM
extern unsigned long _binary_TIM_TIM4_tim_start[];
extern unsigned long _binary_TIM_TIM4_tim_end[];
extern unsigned long _binary_TIM_TIM4_tim_length;
TIM_IMAGE TIM_16;
TIM_IMAGE TIM_8;
TIM_IMAGE TIM_4;
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
setRGB0(&draw[0], 50, 50, 50);
setRGB0(&draw[1], 50, 50, 50);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
SetDispMask(1);
DrawOTag(ot[db] + OTLEN - 1);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
SPRT * sprt_16b; // Define 3 pointers to SPRT struct
SPRT * sprt_8b;
SPRT * sprt_4b;
DR_TPAGE * tpage_16b; // Define 3 pointers to DR_TPAGE struct. We need three because our images are on three
DR_TPAGE * tpage_8b; // different texture pages.
DR_TPAGE * tpage_4b;
init();
LoadTexture(_binary_TIM_TIM16_tim_start, &TIM_16); // Load everything to vram
LoadTexture(_binary_TIM_TIM8_tim_start, &TIM_8);
LoadTexture(_binary_TIM_TIM4_tim_start, &TIM_4);
while (1)
{
ClearOTagR(ot[db], OTLEN);
// Loading a 16 bit TIM
sprt_16b = (SPRT *)nextpri; // Cast whats at nexpri as a SPRT named sprt_16b
setSprt(sprt_16b); // Initialize the SPRT struct
setRGB0(sprt_16b, 128, 128, 128); // Set RGB color. 128,128,128 is neutral. You can color the image by adjusting these values
setXY0(sprt_16b, 28, MARGINY); // Set sprite position
setWH(sprt_16b, 64, 128 ); // Set sprite width and height
addPrim(ot[db], sprt_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(SPRT); // increment nextpri so that it points just after sprt_16b in the primitive buffer
// Set Texture page for the 16bit tim : 768, 0 - No CLUT
// Note : You need to use setDrawTPage each time you want to use a texture that's on a different texture page
tpage_16b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_16b, 0, 1, // Set the Texture Page the texture we want resides on.
getTPage(TIM_16.mode&0x3, 0, // Here we are using bitmasking to deduce the picture mode : &0x3
TIM_16.prect->x, TIM_16.prect->y)); // In binary, 3 is 11, so we only keep the first two bits
// Values can be 00 (0), 01 (1), 10(2), respectively, 4bpp, 8bpp, 15bpp, 24bpp. See Fileformat47.pdf, p.180
// Similarly, we could use bitmasking to deduce if there is a CLUT by bitmasking the 4th bit : if(TIM_IMAGE.mode & 0x8) LoadImage... :
addPrim(ot[db], tpage_16b); // add the sprite primitive to the ordering table
nextpri += sizeof(DR_TPAGE); // Advance next primitive address
// Loading a 8 bit TIM
sprt_8b = (SPRT *)nextpri;
setSprt(sprt_8b);
setRGB0(sprt_8b, 128, 128, 128);
setXY0(sprt_8b, sprt_16b->x0 + sprt_16b->w + 32, MARGINY);
setWH(sprt_8b, 64, 128 );
setClut(sprt_8b, TIM_8.crect->x, TIM_8.crect->y); // Only difference here is we set the CLUT to the position of the VRAM we loaded the palette earlier (see LoadTexture())
addPrim(ot[db], sprt_8b);
nextpri += sizeof(SPRT);
// Set Texture page for the 8bit tim : 512, 256 - CLUT is at 0, 480
tpage_8b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_8b, 0, 1,
getTPage(TIM_8.mode&0x3, 0,
TIM_8.prect->x, TIM_8.prect->y));
addPrim(ot[db], tpage_8b);
nextpri += sizeof(DR_TPAGE);
// Loading a 4 bit TIM
sprt_4b = (SPRT *)nextpri;
setSprt(sprt_4b);
setRGB0(sprt_4b, 128, 128, 128);
setXY0(sprt_4b, sprt_8b->x0 + sprt_8b->w + 32, MARGINY);
setWH(sprt_4b, 64, 128 );
setClut(sprt_4b, TIM_4.crect->x, TIM_4.crect->y);
addPrim(ot[db], sprt_4b);
nextpri += sizeof(SPRT);
// Set Texture page for the 8bit tim : 512, 256 - CLUT is at 0, 480
tpage_4b = (DR_TPAGE*)nextpri;
setDrawTPage(tpage_4b, 0, 1,
getTPage(TIM_4.mode&0x3, 0,
TIM_4.prect->x, TIM_4.prect->y));
addPrim(ot[db], tpage_4b);
nextpri += sizeof(DR_TPAGE);
FntPrint("16 Bit! ");
FntPrint("8 Bit! ");
FntPrint("4 Bit!\n\n");
FntPrint("Check VRAM in emu to see the dif");
FntFlush(-1);
display();
}
return 0;
}