nolibgs_hello_worlds/hello_poly_gt/hello_poly_gt.c

214 lines
7.4 KiB
C

// With help from Nicolas Noble, Jaby smoll Seamonstah
// Based on Lameguy64's tutorial series : http://lameguy64.net/svn/pstutorials/chapter1/2-graphics.html
//
// From ../psyq/addons/graphics/MESH/RMESH/TUTO0.C :
//
/* PSX screen coordinate system
*
* Z+
* /
* /
* +------X+
* /|
* / |
* / Y+
* eye */
#include <sys/types.h>
#include <stdio.h>
#include <libgte.h>
#include <libetc.h>
#include <libgpu.h>
#define VMODE 0 // Video Mode : 0 : NTSC, 1: PAL
#define SCREENXRES 320 // Screen width
#define SCREENYRES 240 // Screen height
#define CENTERX SCREENXRES/2 // Center of screen on x
#define CENTERY SCREENYRES/2 // Center of screen on y
#define MARGINX 32 // margins for text display
#define MARGINY 32
#define FONTSIZE 8 * 5 // Text Field Height
#define OTLEN 8 // Ordering Table Length
DISPENV disp[2]; // Double buffered DISPENV and DRAWENV
DRAWENV draw[2];
u_long ot[2][OTLEN]; // double ordering table of length 8 * 32 = 256 bits / 32 bytes
char primbuff[2][32768]; // double primitive buffer of length 32768 * 8 = 262.144 bits / 32,768 Kbytes
char *nextpri = primbuff[0]; // pointer to the next primitive in primbuff. Initially, points to the first bit of primbuff[0]
short db = 0; // index of which buffer is used, values 0, 1
// 16bpp TIM
extern unsigned long _binary____TIM_bousai_tim_start[];
extern unsigned long _binary____TIM_bousai_tim_end[];
extern unsigned long _binary____TIM_bousai_tim_length;
TIM_IMAGE bousai;
MATRIX identity(int num) // generate num x num matrix
{
int row, col;
MATRIX matrix;
for (row = 0; row < num; row++)
{
for (col = 0; col < num; col++)
{
if (row == col)
matrix.m[row][col] = 4096;
else
matrix.m[row][col] = 0;
}
}
return matrix;
}
void LoadTexture(u_long * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM(tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
void init(void)
{
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX,CENTERY);
SetGeomScreen(CENTERX);
SetDefDispEnv(&disp[0], 0, 0, SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1); // Display on screen
setRGB0(&draw[0], 128, 128, 128);
setRGB0(&draw[1], 128, 128, 128);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
FntLoad(960, 0);
FntOpen(MARGINX, SCREENYRES - MARGINY - FONTSIZE, SCREENXRES - MARGINX * 2, FONTSIZE, 0, 280 );
}
void display(void)
{
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
int main(void)
{
int i;
MATRIX IDMATRIX = identity(3); // Generate 3x3 identity matrix
POLY_GT4 *poly = {0}; // pointer to a POLY_G4
SVECTOR RotVector = {0, 0, 0}; // Initialize rotation vector {x, y, z}
VECTOR MovVector = {0, 0, 120, 0}; // Initialize translation vector {x, y, z}
SVECTOR VertPos[4] = { // Set initial vertices position relative to 0,0 - see here : https://psx.arthus.net/docs/poly_f4.jpg
{-32, -32, 0 }, // Vert 1
{-32, 32, 0 }, // Vert 2
{ 32, -32, 0 }, // Vert 3
{ 32, 32, 0 } // Vert 4
};
MATRIX PolyMatrix = IDMATRIX;
DR_TPAGE * bousai_tpage;
long polydepth;
long polyflag;
init();
LoadTexture(_binary____TIM_bousai_tim_start, &bousai);
while (1)
{
ClearOTagR(ot[db], OTLEN);
poly = (POLY_GT4 *)nextpri; // Set poly to point to the address of the next primitiv in the buffer
// Set transform matrices for this polygon
RotMatrix(&RotVector, &PolyMatrix); // Apply rotation matrix
TransMatrix(&PolyMatrix, &MovVector); // Apply translation matrix
SetRotMatrix(&PolyMatrix); // Set default rotation matrix
SetTransMatrix(&PolyMatrix); // Set default transformation matrix
setPolyGT4(poly); // Initialize poly as a POLY_F4
poly->tpage = getTPage(bousai.mode&0x3, 0, bousai.prect->x, bousai.prect->y);
setRGB0(poly, 128, 128, 128); // Set vertice 1 color
setRGB1(poly, 255, 0, 0); // Set vertice 2 color
setRGB2(poly, 0, 255, 0); // Set vertice 3 color
setRGB3(poly, 0, 0, 255); // Set vertice 4 color
RotTransPers4(
&VertPos[0], &VertPos[1], &VertPos[2], &VertPos[3],
(long*)&poly->x0, (long*)&poly->x1, (long*)&poly->x2, (long*)&poly->x3,
&polydepth,
&polyflag
); // Perform coordinate and perspective transformation for 4 vertices
setUV4(poly, 0, 0, 0, 144, 144, 0, 144, 144); // Set UV coordinates in order Top Left, Bottom Left, Top Right, Bottom Right
RotVector.vx += 8; // Apply rotation on Z-axis. On PSX, the Z-axis is pointing away from the screen.
addPrim(ot[db], poly); // add poly to the Ordering table
nextpri += sizeof(POLY_GT4); // increment nextpri address with size of a POLY_F4 struct
FntPrint("Hello textured shaded !");
FntFlush(-1);
display();
}
return 0;
}