nolibgs_hello_worlds/hello_cubetex_stp/hello_cubetex_stp.c

223 lines
10 KiB
C

// Demo the different settings and rates for pixel and primitive semi-transparency on a cube
// Controls :
// SELECT : Switch semi-transparency on/off on primitives
// START : Cycle semi-transparency rates on/off on primitives
// Schnappy 07-2021
#include <sys/types.h>
#include <libgte.h>
#include <libgpu.h>
#include <libetc.h>
#include <libapi.h>
//~ #include <stdio.h>
// Sample vector model
#include "cubetex.c"
#define VMODE 0
// Number of primitives to draw
#define NUM_PRIM 3
#define SCREENXRES 320
#define SCREENYRES 240
#define CENTERX SCREENXRES/2
#define CENTERY SCREENYRES/2
#define MARGINX 16 // margins for text display
#define MARGINY 16
#define OTLEN 2048 // Maximum number of OT entries
#define PRIMBUFFLEN 32768 // Maximum number of POLY_GT3 primitives
// Display and draw environments, double buffered
DISPENV disp[2];
DRAWENV draw[2];
u_long ot[2][OTLEN]; // Ordering table (contains addresses to primitives)
char primbuff[2][PRIMBUFFLEN]; // Primitive list // That's our prim buffer
char * nextpri = primbuff[0]; // Primitive counter
short db = 0; // Current buffer counter
// Store TIM files in an array so we can iterate over them - see 'cubetex.c' for TIM_FILE struct and declaration
TIM_FILE * timFiles[3];
TIM_IMAGE timImages[3];
// Prototypes
void init(void);
void display(void);
void LoadTexture(TIM_FILE * tim, TIM_IMAGE * tparam);
void init(){
// Reset the GPU before doing anything and the controller
PadInit(0);
ResetGraph(0);
// Initialize and setup the GTE
InitGeom();
SetGeomOffset(CENTERX, CENTERY); // x, y offset
SetGeomScreen(CENTERX); // Distance between eye and screen
// Set the display and draw environments
SetDefDispEnv(&disp[0], 0, 0 , SCREENXRES, SCREENYRES);
SetDefDispEnv(&disp[1], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[0], 0, SCREENYRES, SCREENXRES, SCREENYRES);
SetDefDrawEnv(&draw[1], 0, 0, SCREENXRES, SCREENYRES);
if (VMODE)
{
SetVideoMode(MODE_PAL);
disp[0].screen.y += 8;
disp[1].screen.y += 8;
}
SetDispMask(1);
setRGB0(&draw[0], 0, 0, 255);
setRGB0(&draw[1], 0, 0, 255);
draw[0].isbg = 1;
draw[1].isbg = 1;
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
// Init font system
FntLoad(960, 0);
FntOpen(MARGINX, MARGINY, SCREENXRES - MARGINX * 2, SCREENXRES - MARGINY * 2, 0, 512 );
}
void display(void){
DrawSync(0);
VSync(0);
PutDispEnv(&disp[db]);
PutDrawEnv(&draw[db]);
DrawOTag(&ot[db][OTLEN - 1]);
db = !db;
nextpri = primbuff[db];
}
void LoadTexture(TIM_FILE * tim, TIM_IMAGE * tparam){ // This part is from Lameguy64's tutorial series : lameguy64.net/svn/pstutorials/chapter1/3-textures.html login/pw: annoyingmous
OpenTIM((u_long*)tim); // Open the tim binary data, feed it the address of the data in memory
ReadTIM(tparam); // This read the header of the TIM data and sets the corresponding members of the TIM_IMAGE structure
LoadImage(tparam->prect, tparam->paddr); // Transfer the data from memory to VRAM at position prect.x, prect.y
DrawSync(0); // Wait for the drawing to end
if (tparam->mode & 0x8){ // check 4th bit // If 4th bit == 1, TIM has a CLUT
LoadImage(tparam->crect, tparam->caddr); // Load it to VRAM at position crect.x, crect.y
DrawSync(0); // Wait for drawing to end
}
}
int main() {
// Populate array with pointers to TIM data
timFiles[0] = &_binary_TIM_stpOnBlack_tim_start;
timFiles[1] = &_binary_TIM_stpOnNonBlack_tim_start;
timFiles[2] = &_binary_TIM_stpOn8bpp_tim_start;
// Pad values
int pad, oldPad;
// Set semi-transparency on (1) and off (0)
int stpFlag = 0;
// Set primitive semi-transparency rate - See LibOver47.pdf, p.107
int stpRate = 0;
// If set, rotate cube
int rotateCube = 1;
// Array of pointers to a POLY_G4 we iterate over
POLY_GT3 * poly[NUM_PRIM];
// Rotation vector
SVECTOR rotVector={ 496, 0, 0, 0 };
// Translation vector
VECTOR transVector= { -SCREENXRES/NUM_PRIM, -SCREENYRES/NUM_PRIM, SCREENXRES, 0};
// Init Disp/Drawenv, Font, etc.
init();
// Load textures to VRAM
for (char tim = 0; tim < NUM_PRIM; tim++){
LoadTexture(timFiles[tim], &timImages[tim]);
}
// Main loop
while (1) {
// Work matrix
MATRIX Work= {0} ;
// Triangle counters array - one for each cube
long curTriangle[3] = {0,0,0};
// Clear the current OT
ClearOTagR(ot[db], OTLEN);
// Rotate cube
if(rotateCube) rotVector.vy += 10;
// Apply Transl, Rot, then matrix
RotMatrix(&rotVector, &Work);
TransMatrix(&Work, &transVector);
SetRotMatrix(&Work);
SetTransMatrix(&Work);
// Draw NUM_PRIM primitives
for (int prim = 0; prim < NUM_PRIM; prim++){
// Draw prims with an offset based on iteration number
// A bit messy but the cubes are drawn where we want them :)
transVector.vx = ( SCREENXRES/NUM_PRIM + ( prim * (SCREENXRES/NUM_PRIM + 48) )) - SCREENXRES + 56 ;
transVector.vy = SCREENYRES/NUM_PRIM - SCREENYRES + 86;
// Add vertical offset to second cube
if ( prim == 1) {
transVector.vy = SCREENYRES/NUM_PRIM + 48;
}
// Apply transl matrix
TransMatrix(&Work, &transVector);
SetTransMatrix(&Work);
// modelCube is a TMESH, len member == # vertices, but here it's # of triangle... So, for each tri * 3 vertices ...
for (int i = 0; i < (modelCube.len * 3); i += 3) {
// t == vertex count, p == depth cueing interpolation value, OTz == value to create Z-ordered OT, Flag == see LibOver47.pdf, p.143
long p, OTz, Flag;
// cast nextpri as POLY_GT3
poly[prim] = (POLY_GT3 *)nextpri;
// Initialize the primitive and set its color values
SetPolyGT3(poly[prim]);
// Get TPAGE
poly[prim]->tpage = getTPage( timImages[prim].mode&0x3, stpRate,
timImages[prim].prect->x,
timImages[prim].prect->y
);
// Set RGB colors for each vertex
setRGB0(poly[prim] , modelCube.c[i].r , modelCube.c[i].g , modelCube.c[i].b);
setRGB1(poly[prim], modelCube.c[i+2].r, modelCube.c[i+2].g, modelCube.c[i+2].b);
setRGB2(poly[prim], modelCube.c[i+1].r, modelCube.c[i+1].g, modelCube.c[i+1].b);
// If 8/4bpp, load CLUT to vram
if ( (timImages[prim].mode & 0x3) < 2 ) {
setClut( poly[prim],
timImages[prim].crect->x,
timImages[prim].crect->y
);
}
// Set stpFlag
SetSemiTrans(poly[prim], stpFlag);
// Set UV coordinates
setUV3(poly[prim], modelCube.u[i].vx, modelCube.u[i].vy,
modelCube.u[i+2].vx, modelCube.u[i+2].vy,
modelCube.u[i+1].vx, modelCube.u[i+1].vy);
// Rotate, translate, and project the vectors and output the results into a primitive
// curTriangle, +1, +2 point to the vertices index of the triangle we're drawing.
OTz = RotTransPers(&modelCube_mesh[ modelCube_index[ curTriangle[prim] ] ] , ( long * ) &poly[prim]->x0, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[ modelCube_index[ curTriangle[prim] + 2] ], ( long*) &poly[prim]->x1, &p, &Flag);
OTz += RotTransPers(&modelCube_mesh[ modelCube_index[ curTriangle[prim] + 1] ], ( long * ) &poly[prim]->x2, &p, &Flag);
// Average OTz value for 3 vertices
// OTz is 1/4 of screen to vertex length
OTz /= 3;
// If OTz is in range (not to close)
if ((OTz > 0) && (OTz < OTLEN))
// Add to ordering table, at index OTz-2
AddPrim(&ot[ db ][ OTz-2 ], poly[prim]);
// Increment next primitive address
nextpri += sizeof(POLY_GT3);
// Increment to next triangle
curTriangle[prim] += 3;
}
}
// Get pad input
pad = PadRead(0);
// If select button is used
if ( pad & PADselect && !(oldPad & PADselect) ){
// Flip STP flag
stpFlag = !stpFlag;
// Set flag to avoir misfire
oldPad = pad;
}
// Reset flag when button released
if ( !(pad & PADselect) && oldPad & PADselect) {
oldPad = pad;
}
// If start button is used
if ( pad & PADstart && !( oldPad & PADstart ) ){
// Switch STP rates
stpRate > 2 ? stpRate = 0 : stpRate++;
// Set flag to avoir misfire
oldPad = pad;
}
// Reset flag when button released
if (!(pad & PADstart) && oldPad & PADstart) {
oldPad = pad;
}
FntPrint("Hello semi-transparency !\nPrim STP (push Select) : %d\nSTP rate (push start): %d\n\n\n\n\n\n\n\n\n\n\n\n", stpFlag, stpRate);
FntPrint(" stp on black stp on col index\n\n\n\n\n\n\n\n\n\n\n\n");
FntPrint(" stp on non-black");
FntFlush(-1);
display();
}
return 0;
}