ajout des programmes test : manette 3 boutons et imu

This commit is contained in:
Philippe Roy 2023-04-28 14:41:01 +02:00
parent 24207b0ed3
commit 5bb633d7a7
9 changed files with 6431 additions and 3 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,270 @@
// I2Cdev library collection - Main I2C device class header file
// Abstracts bit and byte I2C R/W functions into a convenient class
// 6/9/2012 by Jeff Rowberg <jeff@rowberg.net>
//
// Changelog:
// 2012-06-09 - fix major issue with reading > 32 bytes at a time with Arduino Wire
// - add compiler warnings when using outdated or IDE or limited I2Cdev implementation
// 2011-11-01 - fix write*Bits mask calculation (thanks sasquatch @ Arduino forums)
// 2011-10-03 - added automatic Arduino version detection for ease of use
// 2011-10-02 - added Gene Knight's NBWire TwoWire class implementation with small modifications
// 2011-08-31 - added support for Arduino 1.0 Wire library (methods are different from 0.x)
// 2011-08-03 - added optional timeout parameter to read* methods to easily change from default
// 2011-08-02 - added support for 16-bit registers
// - fixed incorrect Doxygen comments on some methods
// - added timeout value for read operations (thanks mem @ Arduino forums)
// 2011-07-30 - changed read/write function structures to return success or byte counts
// - made all methods static for multi-device memory savings
// 2011-07-28 - initial release
/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
#ifndef _I2CDEV_H_
#define _I2CDEV_H_
// -----------------------------------------------------------------------------
// I2C interface implementation setting
// -----------------------------------------------------------------------------
#define I2CDEV_IMPLEMENTATION I2CDEV_ARDUINO_WIRE
// comment this out if you are using a non-optimal IDE/implementation setting
// but want the compiler to shut up about it
#define I2CDEV_IMPLEMENTATION_WARNINGS
// -----------------------------------------------------------------------------
// I2C interface implementation options
// -----------------------------------------------------------------------------
#define I2CDEV_ARDUINO_WIRE 1 // Wire object from Arduino
#define I2CDEV_BUILTIN_NBWIRE 2 // Tweaked Wire object from Gene Knight's NBWire project
// ^^^ NBWire implementation is still buggy w/some interrupts!
#define I2CDEV_BUILTIN_FASTWIRE 3 // FastWire object from Francesco Ferrara's project
// ^^^ FastWire implementation in I2Cdev is INCOMPLETE!
#ifndef BUFFER_LENGTH
#define BUFFER_LENGTH 32
#endif
// -----------------------------------------------------------------------------
// Arduino-style "Serial.print" debug constant (uncomment to enable)
// -----------------------------------------------------------------------------
//#define I2CDEV_SERIAL_DEBUG
#ifdef ARDUINO
#if ARDUINO < 100
#include "WProgram.h"
#else
#include "Arduino.h"
#endif
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include <Wire.h>
#endif
#else
#include "ArduinoWrapper.h"
#endif
// 1000ms default read timeout (modify with "I2Cdev::readTimeout = [ms];")
#define I2CDEV_DEFAULT_READ_TIMEOUT 1000
class I2Cdev {
public:
I2Cdev();
static int8_t readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t* data,
uint16_t timeout = I2Cdev::readTimeout);
static int8_t readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t* data,
uint16_t timeout = I2Cdev::readTimeout);
static int8_t readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t* data,
uint16_t timeout = I2Cdev::readTimeout);
static int8_t readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t* data,
uint16_t timeout = I2Cdev::readTimeout);
static int8_t readByte(uint8_t devAddr, uint8_t regAddr, uint8_t* data, uint16_t timeout = I2Cdev::readTimeout);
static int8_t readWord(uint8_t devAddr, uint8_t regAddr, uint16_t* data, uint16_t timeout = I2Cdev::readTimeout);
static int8_t readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data,
uint16_t timeout = I2Cdev::readTimeout);
static int8_t readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data,
uint16_t timeout = I2Cdev::readTimeout);
static bool writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data);
static bool writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data);
static bool writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data);
static bool writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data);
static bool writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data);
static bool writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data);
static bool writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data);
static bool writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data);
static uint16_t readTimeout;
};
#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
//////////////////////
// FastWire 0.2
// This is a library to help faster programs to read I2C devices.
// Copyright(C) 2011
// Francesco Ferrara
//////////////////////
/* Master */
#define TW_START 0x08
#define TW_REP_START 0x10
/* Master Transmitter */
#define TW_MT_SLA_ACK 0x18
#define TW_MT_SLA_NACK 0x20
#define TW_MT_DATA_ACK 0x28
#define TW_MT_DATA_NACK 0x30
#define TW_MT_ARB_LOST 0x38
/* Master Receiver */
#define TW_MR_ARB_LOST 0x38
#define TW_MR_SLA_ACK 0x40
#define TW_MR_SLA_NACK 0x48
#define TW_MR_DATA_ACK 0x50
#define TW_MR_DATA_NACK 0x58
#define TW_OK 0
#define TW_ERROR 1
class Fastwire {
private:
static boolean waitInt();
public:
static void setup(int khz, boolean pullup);
static byte write(byte device, byte address, byte value);
static byte readBuf(byte device, byte address, byte* data, byte num);
};
#endif
#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE
// NBWire implementation based heavily on code by Gene Knight <Gene@Telobot.com>
// Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html
// Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html
#define NBWIRE_BUFFER_LENGTH 32
class TwoWire {
private:
static uint8_t rxBuffer[];
static uint8_t rxBufferIndex;
static uint8_t rxBufferLength;
static uint8_t txAddress;
static uint8_t txBuffer[];
static uint8_t txBufferIndex;
static uint8_t txBufferLength;
// static uint8_t transmitting;
static void (*user_onRequest)(void);
static void (*user_onReceive)(int);
static void onRequestService(void);
static void onReceiveService(uint8_t*, int);
public:
TwoWire();
void begin();
void begin(uint8_t);
void begin(int);
void beginTransmission(uint8_t);
//void beginTransmission(int);
uint8_t endTransmission(uint16_t timeout = 0);
void nbendTransmission(void (*function)(int)) ;
uint8_t requestFrom(uint8_t, int, uint16_t timeout = 0);
//uint8_t requestFrom(int, int);
void nbrequestFrom(uint8_t, int, void (*function)(int));
void send(uint8_t);
void send(uint8_t*, uint8_t);
//void send(int);
void send(char*);
uint8_t available(void);
uint8_t receive(void);
void onReceive(void (*)(int));
void onRequest(void (*)(void));
};
#define TWI_READY 0
#define TWI_MRX 1
#define TWI_MTX 2
#define TWI_SRX 3
#define TWI_STX 4
#define TW_WRITE 0
#define TW_READ 1
#define TW_MT_SLA_NACK 0x20
#define TW_MT_DATA_NACK 0x30
#define CPU_FREQ 16000000L
#define TWI_FREQ 100000L
#define TWI_BUFFER_LENGTH 32
/* TWI Status is in TWSR, in the top 5 bits: TWS7 - TWS3 */
#define TW_STATUS_MASK (_BV(TWS7)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|_BV(TWS3))
#define TW_STATUS (TWSR & TW_STATUS_MASK)
#define TW_START 0x08
#define TW_REP_START 0x10
#define TW_MT_SLA_ACK 0x18
#define TW_MT_SLA_NACK 0x20
#define TW_MT_DATA_ACK 0x28
#define TW_MT_DATA_NACK 0x30
#define TW_MT_ARB_LOST 0x38
#define TW_MR_ARB_LOST 0x38
#define TW_MR_SLA_ACK 0x40
#define TW_MR_SLA_NACK 0x48
#define TW_MR_DATA_ACK 0x50
#define TW_MR_DATA_NACK 0x58
#define TW_ST_SLA_ACK 0xA8
#define TW_ST_ARB_LOST_SLA_ACK 0xB0
#define TW_ST_DATA_ACK 0xB8
#define TW_ST_DATA_NACK 0xC0
#define TW_ST_LAST_DATA 0xC8
#define TW_SR_SLA_ACK 0x60
#define TW_SR_ARB_LOST_SLA_ACK 0x68
#define TW_SR_GCALL_ACK 0x70
#define TW_SR_ARB_LOST_GCALL_ACK 0x78
#define TW_SR_DATA_ACK 0x80
#define TW_SR_DATA_NACK 0x88
#define TW_SR_GCALL_DATA_ACK 0x90
#define TW_SR_GCALL_DATA_NACK 0x98
#define TW_SR_STOP 0xA0
#define TW_NO_INFO 0xF8
#define TW_BUS_ERROR 0x00
//#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))
//#define _SFR_BYTE(sfr) _MMIO_BYTE(_SFR_ADDR(sfr))
#ifndef sbi // set bit
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif // sbi
#ifndef cbi // clear bit
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif // cbi
extern TwoWire Wire;
#endif // I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE
#endif /* _I2CDEV_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,997 @@
// I2Cdev library collection - MPU6050 I2C device class
// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
// 10/3/2011 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
// ... - ongoing debug release
// NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
// DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
// YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
#ifndef _MPU6050_H_
#define _MPU6050_H_
#include "I2Cdev.h"
#include <avr/pgmspace.h>
//Magnetometer Registers
#define MPU9150_RA_MAG_ADDRESS 0x0C
#define MPU9150_RA_MAG_XOUT_L 0x03
#define MPU9150_RA_MAG_XOUT_H 0x04
#define MPU9150_RA_MAG_YOUT_L 0x05
#define MPU9150_RA_MAG_YOUT_H 0x06
#define MPU9150_RA_MAG_ZOUT_L 0x07
#define MPU9150_RA_MAG_ZOUT_H 0x08
#define MPU6050_ADDRESS_AD0_LOW 0x68 // address pin low (GND), default for InvenSense evaluation board
#define MPU6050_ADDRESS_AD0_HIGH 0x69 // address pin high (VCC)
#define MPU6050_DEFAULT_ADDRESS MPU6050_ADDRESS_AD0_LOW
#define MPU6050_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN
#define MPU6050_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN
#define MPU6050_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN
#define MPU6050_RA_XA_OFFS_H 0x06 //[15:0] XA_OFFS
#define MPU6050_RA_XA_OFFS_L_TC 0x07
#define MPU6050_RA_YA_OFFS_H 0x08 //[15:0] YA_OFFS
#define MPU6050_RA_YA_OFFS_L_TC 0x09
#define MPU6050_RA_ZA_OFFS_H 0x0A //[15:0] ZA_OFFS
#define MPU6050_RA_ZA_OFFS_L_TC 0x0B
#define MPU6050_RA_XG_OFFS_USRH 0x13 //[15:0] XG_OFFS_USR
#define MPU6050_RA_XG_OFFS_USRL 0x14
#define MPU6050_RA_YG_OFFS_USRH 0x15 //[15:0] YG_OFFS_USR
#define MPU6050_RA_YG_OFFS_USRL 0x16
#define MPU6050_RA_ZG_OFFS_USRH 0x17 //[15:0] ZG_OFFS_USR
#define MPU6050_RA_ZG_OFFS_USRL 0x18
#define MPU6050_RA_SMPLRT_DIV 0x19
#define MPU6050_RA_CONFIG 0x1A
#define MPU6050_RA_GYRO_CONFIG 0x1B
#define MPU6050_RA_ACCEL_CONFIG 0x1C
#define MPU6050_RA_FF_THR 0x1D
#define MPU6050_RA_FF_DUR 0x1E
#define MPU6050_RA_MOT_THR 0x1F
#define MPU6050_RA_MOT_DUR 0x20
#define MPU6050_RA_ZRMOT_THR 0x21
#define MPU6050_RA_ZRMOT_DUR 0x22
#define MPU6050_RA_FIFO_EN 0x23
#define MPU6050_RA_I2C_MST_CTRL 0x24
#define MPU6050_RA_I2C_SLV0_ADDR 0x25
#define MPU6050_RA_I2C_SLV0_REG 0x26
#define MPU6050_RA_I2C_SLV0_CTRL 0x27
#define MPU6050_RA_I2C_SLV1_ADDR 0x28
#define MPU6050_RA_I2C_SLV1_REG 0x29
#define MPU6050_RA_I2C_SLV1_CTRL 0x2A
#define MPU6050_RA_I2C_SLV2_ADDR 0x2B
#define MPU6050_RA_I2C_SLV2_REG 0x2C
#define MPU6050_RA_I2C_SLV2_CTRL 0x2D
#define MPU6050_RA_I2C_SLV3_ADDR 0x2E
#define MPU6050_RA_I2C_SLV3_REG 0x2F
#define MPU6050_RA_I2C_SLV3_CTRL 0x30
#define MPU6050_RA_I2C_SLV4_ADDR 0x31
#define MPU6050_RA_I2C_SLV4_REG 0x32
#define MPU6050_RA_I2C_SLV4_DO 0x33
#define MPU6050_RA_I2C_SLV4_CTRL 0x34
#define MPU6050_RA_I2C_SLV4_DI 0x35
#define MPU6050_RA_I2C_MST_STATUS 0x36
#define MPU6050_RA_INT_PIN_CFG 0x37
#define MPU6050_RA_INT_ENABLE 0x38
#define MPU6050_RA_DMP_INT_STATUS 0x39
#define MPU6050_RA_INT_STATUS 0x3A
#define MPU6050_RA_ACCEL_XOUT_H 0x3B
#define MPU6050_RA_ACCEL_XOUT_L 0x3C
#define MPU6050_RA_ACCEL_YOUT_H 0x3D
#define MPU6050_RA_ACCEL_YOUT_L 0x3E
#define MPU6050_RA_ACCEL_ZOUT_H 0x3F
#define MPU6050_RA_ACCEL_ZOUT_L 0x40
#define MPU6050_RA_TEMP_OUT_H 0x41
#define MPU6050_RA_TEMP_OUT_L 0x42
#define MPU6050_RA_GYRO_XOUT_H 0x43
#define MPU6050_RA_GYRO_XOUT_L 0x44
#define MPU6050_RA_GYRO_YOUT_H 0x45
#define MPU6050_RA_GYRO_YOUT_L 0x46
#define MPU6050_RA_GYRO_ZOUT_H 0x47
#define MPU6050_RA_GYRO_ZOUT_L 0x48
#define MPU6050_RA_EXT_SENS_DATA_00 0x49
#define MPU6050_RA_EXT_SENS_DATA_01 0x4A
#define MPU6050_RA_EXT_SENS_DATA_02 0x4B
#define MPU6050_RA_EXT_SENS_DATA_03 0x4C
#define MPU6050_RA_EXT_SENS_DATA_04 0x4D
#define MPU6050_RA_EXT_SENS_DATA_05 0x4E
#define MPU6050_RA_EXT_SENS_DATA_06 0x4F
#define MPU6050_RA_EXT_SENS_DATA_07 0x50
#define MPU6050_RA_EXT_SENS_DATA_08 0x51
#define MPU6050_RA_EXT_SENS_DATA_09 0x52
#define MPU6050_RA_EXT_SENS_DATA_10 0x53
#define MPU6050_RA_EXT_SENS_DATA_11 0x54
#define MPU6050_RA_EXT_SENS_DATA_12 0x55
#define MPU6050_RA_EXT_SENS_DATA_13 0x56
#define MPU6050_RA_EXT_SENS_DATA_14 0x57
#define MPU6050_RA_EXT_SENS_DATA_15 0x58
#define MPU6050_RA_EXT_SENS_DATA_16 0x59
#define MPU6050_RA_EXT_SENS_DATA_17 0x5A
#define MPU6050_RA_EXT_SENS_DATA_18 0x5B
#define MPU6050_RA_EXT_SENS_DATA_19 0x5C
#define MPU6050_RA_EXT_SENS_DATA_20 0x5D
#define MPU6050_RA_EXT_SENS_DATA_21 0x5E
#define MPU6050_RA_EXT_SENS_DATA_22 0x5F
#define MPU6050_RA_EXT_SENS_DATA_23 0x60
#define MPU6050_RA_MOT_DETECT_STATUS 0x61
#define MPU6050_RA_I2C_SLV0_DO 0x63
#define MPU6050_RA_I2C_SLV1_DO 0x64
#define MPU6050_RA_I2C_SLV2_DO 0x65
#define MPU6050_RA_I2C_SLV3_DO 0x66
#define MPU6050_RA_I2C_MST_DELAY_CTRL 0x67
#define MPU6050_RA_SIGNAL_PATH_RESET 0x68
#define MPU6050_RA_MOT_DETECT_CTRL 0x69
#define MPU6050_RA_USER_CTRL 0x6A
#define MPU6050_RA_PWR_MGMT_1 0x6B
#define MPU6050_RA_PWR_MGMT_2 0x6C
#define MPU6050_RA_BANK_SEL 0x6D
#define MPU6050_RA_MEM_START_ADDR 0x6E
#define MPU6050_RA_MEM_R_W 0x6F
#define MPU6050_RA_DMP_CFG_1 0x70
#define MPU6050_RA_DMP_CFG_2 0x71
#define MPU6050_RA_FIFO_COUNTH 0x72
#define MPU6050_RA_FIFO_COUNTL 0x73
#define MPU6050_RA_FIFO_R_W 0x74
#define MPU6050_RA_WHO_AM_I 0x75
#define MPU6050_TC_PWR_MODE_BIT 7
#define MPU6050_TC_OFFSET_BIT 6
#define MPU6050_TC_OFFSET_LENGTH 6
#define MPU6050_TC_OTP_BNK_VLD_BIT 0
#define MPU6050_VDDIO_LEVEL_VLOGIC 0
#define MPU6050_VDDIO_LEVEL_VDD 1
#define MPU6050_CFG_EXT_SYNC_SET_BIT 5
#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3
#define MPU6050_CFG_DLPF_CFG_BIT 2
#define MPU6050_CFG_DLPF_CFG_LENGTH 3
#define MPU6050_EXT_SYNC_DISABLED 0x0
#define MPU6050_EXT_SYNC_TEMP_OUT_L 0x1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L 0x2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L 0x3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L 0x4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L 0x5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L 0x6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L 0x7
#define MPU6050_DLPF_BW_256 0x00
#define MPU6050_DLPF_BW_188 0x01
#define MPU6050_DLPF_BW_98 0x02
#define MPU6050_DLPF_BW_42 0x03
#define MPU6050_DLPF_BW_20 0x04
#define MPU6050_DLPF_BW_10 0x05
#define MPU6050_DLPF_BW_5 0x06
#define MPU6050_GCONFIG_FS_SEL_BIT 4
#define MPU6050_GCONFIG_FS_SEL_LENGTH 2
#define MPU6050_GYRO_FS_250 0x00
#define MPU6050_GYRO_FS_500 0x01
#define MPU6050_GYRO_FS_1000 0x02
#define MPU6050_GYRO_FS_2000 0x03
#define MPU6050_ACONFIG_XA_ST_BIT 7
#define MPU6050_ACONFIG_YA_ST_BIT 6
#define MPU6050_ACONFIG_ZA_ST_BIT 5
#define MPU6050_ACONFIG_AFS_SEL_BIT 4
#define MPU6050_ACONFIG_AFS_SEL_LENGTH 2
#define MPU6050_ACONFIG_ACCEL_HPF_BIT 2
#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH 3
#define MPU6050_ACCEL_FS_2 0x00
#define MPU6050_ACCEL_FS_4 0x01
#define MPU6050_ACCEL_FS_8 0x02
#define MPU6050_ACCEL_FS_16 0x03
#define MPU6050_DHPF_RESET 0x00
#define MPU6050_DHPF_5 0x01
#define MPU6050_DHPF_2P5 0x02
#define MPU6050_DHPF_1P25 0x03
#define MPU6050_DHPF_0P63 0x04
#define MPU6050_DHPF_HOLD 0x07
#define MPU6050_TEMP_FIFO_EN_BIT 7
#define MPU6050_XG_FIFO_EN_BIT 6
#define MPU6050_YG_FIFO_EN_BIT 5
#define MPU6050_ZG_FIFO_EN_BIT 4
#define MPU6050_ACCEL_FIFO_EN_BIT 3
#define MPU6050_SLV2_FIFO_EN_BIT 2
#define MPU6050_SLV1_FIFO_EN_BIT 1
#define MPU6050_SLV0_FIFO_EN_BIT 0
#define MPU6050_MULT_MST_EN_BIT 7
#define MPU6050_WAIT_FOR_ES_BIT 6
#define MPU6050_SLV_3_FIFO_EN_BIT 5
#define MPU6050_I2C_MST_P_NSR_BIT 4
#define MPU6050_I2C_MST_CLK_BIT 3
#define MPU6050_I2C_MST_CLK_LENGTH 4
#define MPU6050_CLOCK_DIV_348 0x0
#define MPU6050_CLOCK_DIV_333 0x1
#define MPU6050_CLOCK_DIV_320 0x2
#define MPU6050_CLOCK_DIV_308 0x3
#define MPU6050_CLOCK_DIV_296 0x4
#define MPU6050_CLOCK_DIV_286 0x5
#define MPU6050_CLOCK_DIV_276 0x6
#define MPU6050_CLOCK_DIV_267 0x7
#define MPU6050_CLOCK_DIV_258 0x8
#define MPU6050_CLOCK_DIV_500 0x9
#define MPU6050_CLOCK_DIV_471 0xA
#define MPU6050_CLOCK_DIV_444 0xB
#define MPU6050_CLOCK_DIV_421 0xC
#define MPU6050_CLOCK_DIV_400 0xD
#define MPU6050_CLOCK_DIV_381 0xE
#define MPU6050_CLOCK_DIV_364 0xF
#define MPU6050_I2C_SLV_RW_BIT 7
#define MPU6050_I2C_SLV_ADDR_BIT 6
#define MPU6050_I2C_SLV_ADDR_LENGTH 7
#define MPU6050_I2C_SLV_EN_BIT 7
#define MPU6050_I2C_SLV_BYTE_SW_BIT 6
#define MPU6050_I2C_SLV_REG_DIS_BIT 5
#define MPU6050_I2C_SLV_GRP_BIT 4
#define MPU6050_I2C_SLV_LEN_BIT 3
#define MPU6050_I2C_SLV_LEN_LENGTH 4
#define MPU6050_I2C_SLV4_RW_BIT 7
#define MPU6050_I2C_SLV4_ADDR_BIT 6
#define MPU6050_I2C_SLV4_ADDR_LENGTH 7
#define MPU6050_I2C_SLV4_EN_BIT 7
#define MPU6050_I2C_SLV4_INT_EN_BIT 6
#define MPU6050_I2C_SLV4_REG_DIS_BIT 5
#define MPU6050_I2C_SLV4_MST_DLY_BIT 4
#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5
#define MPU6050_MST_PASS_THROUGH_BIT 7
#define MPU6050_MST_I2C_SLV4_DONE_BIT 6
#define MPU6050_MST_I2C_LOST_ARB_BIT 5
#define MPU6050_MST_I2C_SLV4_NACK_BIT 4
#define MPU6050_MST_I2C_SLV3_NACK_BIT 3
#define MPU6050_MST_I2C_SLV2_NACK_BIT 2
#define MPU6050_MST_I2C_SLV1_NACK_BIT 1
#define MPU6050_MST_I2C_SLV0_NACK_BIT 0
#define MPU6050_INTCFG_INT_LEVEL_BIT 7
#define MPU6050_INTCFG_INT_OPEN_BIT 6
#define MPU6050_INTCFG_LATCH_INT_EN_BIT 5
#define MPU6050_INTCFG_INT_RD_CLEAR_BIT 4
#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT 3
#define MPU6050_INTCFG_FSYNC_INT_EN_BIT 2
#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT 1
#define MPU6050_INTCFG_CLKOUT_EN_BIT 0
#define MPU6050_INTMODE_ACTIVEHIGH 0x00
#define MPU6050_INTMODE_ACTIVELOW 0x01
#define MPU6050_INTDRV_PUSHPULL 0x00
#define MPU6050_INTDRV_OPENDRAIN 0x01
#define MPU6050_INTLATCH_50USPULSE 0x00
#define MPU6050_INTLATCH_WAITCLEAR 0x01
#define MPU6050_INTCLEAR_STATUSREAD 0x00
#define MPU6050_INTCLEAR_ANYREAD 0x01
#define MPU6050_INTERRUPT_FF_BIT 7
#define MPU6050_INTERRUPT_MOT_BIT 6
#define MPU6050_INTERRUPT_ZMOT_BIT 5
#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT 4
#define MPU6050_INTERRUPT_I2C_MST_INT_BIT 3
#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT 2
#define MPU6050_INTERRUPT_DMP_INT_BIT 1
#define MPU6050_INTERRUPT_DATA_RDY_BIT 0
// TODO: figure out what these actually do
// UMPL source code is not very obivous
#define MPU6050_DMPINT_5_BIT 5
#define MPU6050_DMPINT_4_BIT 4
#define MPU6050_DMPINT_3_BIT 3
#define MPU6050_DMPINT_2_BIT 2
#define MPU6050_DMPINT_1_BIT 1
#define MPU6050_DMPINT_0_BIT 0
#define MPU6050_MOTION_MOT_XNEG_BIT 7
#define MPU6050_MOTION_MOT_XPOS_BIT 6
#define MPU6050_MOTION_MOT_YNEG_BIT 5
#define MPU6050_MOTION_MOT_YPOS_BIT 4
#define MPU6050_MOTION_MOT_ZNEG_BIT 3
#define MPU6050_MOTION_MOT_ZPOS_BIT 2
#define MPU6050_MOTION_MOT_ZRMOT_BIT 0
#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT 7
#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT 4
#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT 3
#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT 2
#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT 1
#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT 0
#define MPU6050_PATHRESET_GYRO_RESET_BIT 2
#define MPU6050_PATHRESET_ACCEL_RESET_BIT 1
#define MPU6050_PATHRESET_TEMP_RESET_BIT 0
#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT 5
#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH 2
#define MPU6050_DETECT_FF_COUNT_BIT 3
#define MPU6050_DETECT_FF_COUNT_LENGTH 2
#define MPU6050_DETECT_MOT_COUNT_BIT 1
#define MPU6050_DETECT_MOT_COUNT_LENGTH 2
#define MPU6050_DETECT_DECREMENT_RESET 0x0
#define MPU6050_DETECT_DECREMENT_1 0x1
#define MPU6050_DETECT_DECREMENT_2 0x2
#define MPU6050_DETECT_DECREMENT_4 0x3
#define MPU6050_USERCTRL_DMP_EN_BIT 7
#define MPU6050_USERCTRL_FIFO_EN_BIT 6
#define MPU6050_USERCTRL_I2C_MST_EN_BIT 5
#define MPU6050_USERCTRL_I2C_IF_DIS_BIT 4
#define MPU6050_USERCTRL_DMP_RESET_BIT 3
#define MPU6050_USERCTRL_FIFO_RESET_BIT 2
#define MPU6050_USERCTRL_I2C_MST_RESET_BIT 1
#define MPU6050_USERCTRL_SIG_COND_RESET_BIT 0
#define MPU6050_PWR1_DEVICE_RESET_BIT 7
#define MPU6050_PWR1_SLEEP_BIT 6
#define MPU6050_PWR1_CYCLE_BIT 5
#define MPU6050_PWR1_TEMP_DIS_BIT 3
#define MPU6050_PWR1_CLKSEL_BIT 2
#define MPU6050_PWR1_CLKSEL_LENGTH 3
#define MPU6050_CLOCK_INTERNAL 0x00
#define MPU6050_CLOCK_PLL_XGYRO 0x01
#define MPU6050_CLOCK_PLL_YGYRO 0x02
#define MPU6050_CLOCK_PLL_ZGYRO 0x03
#define MPU6050_CLOCK_PLL_EXT32K 0x04
#define MPU6050_CLOCK_PLL_EXT19M 0x05
#define MPU6050_CLOCK_KEEP_RESET 0x07
#define MPU6050_PWR2_LP_WAKE_CTRL_BIT 7
#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH 2
#define MPU6050_PWR2_STBY_XA_BIT 5
#define MPU6050_PWR2_STBY_YA_BIT 4
#define MPU6050_PWR2_STBY_ZA_BIT 3
#define MPU6050_PWR2_STBY_XG_BIT 2
#define MPU6050_PWR2_STBY_YG_BIT 1
#define MPU6050_PWR2_STBY_ZG_BIT 0
#define MPU6050_WAKE_FREQ_1P25 0x0
#define MPU6050_WAKE_FREQ_2P5 0x1
#define MPU6050_WAKE_FREQ_5 0x2
#define MPU6050_WAKE_FREQ_10 0x3
#define MPU6050_BANKSEL_PRFTCH_EN_BIT 6
#define MPU6050_BANKSEL_CFG_USER_BANK_BIT 5
#define MPU6050_BANKSEL_MEM_SEL_BIT 4
#define MPU6050_BANKSEL_MEM_SEL_LENGTH 5
#define MPU6050_WHO_AM_I_BIT 6
#define MPU6050_WHO_AM_I_LENGTH 6
#define MPU6050_DMP_MEMORY_BANKS 8
#define MPU6050_DMP_MEMORY_BANK_SIZE 256
#define MPU6050_DMP_MEMORY_CHUNK_SIZE 16
// note: DMP code memory blocks defined at end of header file
class MPU6050 {
public:
MPU6050();
MPU6050(uint8_t address);
void initialize();
bool testConnection();
// AUX_VDDIO register
uint8_t getAuxVDDIOLevel();
void setAuxVDDIOLevel(uint8_t level);
// SMPLRT_DIV register
uint8_t getRate();
void setRate(uint8_t rate);
// CONFIG register
uint8_t getExternalFrameSync();
void setExternalFrameSync(uint8_t sync);
uint8_t getDLPFMode();
void setDLPFMode(uint8_t bandwidth);
// GYRO_CONFIG register
uint8_t getFullScaleGyroRange();
void setFullScaleGyroRange(uint8_t range);
// ACCEL_CONFIG register
bool getAccelXSelfTest();
void setAccelXSelfTest(bool enabled);
bool getAccelYSelfTest();
void setAccelYSelfTest(bool enabled);
bool getAccelZSelfTest();
void setAccelZSelfTest(bool enabled);
uint8_t getFullScaleAccelRange();
void setFullScaleAccelRange(uint8_t range);
uint8_t getDHPFMode();
void setDHPFMode(uint8_t mode);
// FF_THR register
uint8_t getFreefallDetectionThreshold();
void setFreefallDetectionThreshold(uint8_t threshold);
// FF_DUR register
uint8_t getFreefallDetectionDuration();
void setFreefallDetectionDuration(uint8_t duration);
// MOT_THR register
uint8_t getMotionDetectionThreshold();
void setMotionDetectionThreshold(uint8_t threshold);
// MOT_DUR register
uint8_t getMotionDetectionDuration();
void setMotionDetectionDuration(uint8_t duration);
// ZRMOT_THR register
uint8_t getZeroMotionDetectionThreshold();
void setZeroMotionDetectionThreshold(uint8_t threshold);
// ZRMOT_DUR register
uint8_t getZeroMotionDetectionDuration();
void setZeroMotionDetectionDuration(uint8_t duration);
// FIFO_EN register
bool getTempFIFOEnabled();
void setTempFIFOEnabled(bool enabled);
bool getXGyroFIFOEnabled();
void setXGyroFIFOEnabled(bool enabled);
bool getYGyroFIFOEnabled();
void setYGyroFIFOEnabled(bool enabled);
bool getZGyroFIFOEnabled();
void setZGyroFIFOEnabled(bool enabled);
bool getAccelFIFOEnabled();
void setAccelFIFOEnabled(bool enabled);
bool getSlave2FIFOEnabled();
void setSlave2FIFOEnabled(bool enabled);
bool getSlave1FIFOEnabled();
void setSlave1FIFOEnabled(bool enabled);
bool getSlave0FIFOEnabled();
void setSlave0FIFOEnabled(bool enabled);
// I2C_MST_CTRL register
bool getMultiMasterEnabled();
void setMultiMasterEnabled(bool enabled);
bool getWaitForExternalSensorEnabled();
void setWaitForExternalSensorEnabled(bool enabled);
bool getSlave3FIFOEnabled();
void setSlave3FIFOEnabled(bool enabled);
bool getSlaveReadWriteTransitionEnabled();
void setSlaveReadWriteTransitionEnabled(bool enabled);
uint8_t getMasterClockSpeed();
void setMasterClockSpeed(uint8_t speed);
// I2C_SLV* registers (Slave 0-3)
uint8_t getSlaveAddress(uint8_t num);
void setSlaveAddress(uint8_t num, uint8_t address);
uint8_t getSlaveRegister(uint8_t num);
void setSlaveRegister(uint8_t num, uint8_t reg);
bool getSlaveEnabled(uint8_t num);
void setSlaveEnabled(uint8_t num, bool enabled);
bool getSlaveWordByteSwap(uint8_t num);
void setSlaveWordByteSwap(uint8_t num, bool enabled);
bool getSlaveWriteMode(uint8_t num);
void setSlaveWriteMode(uint8_t num, bool mode);
bool getSlaveWordGroupOffset(uint8_t num);
void setSlaveWordGroupOffset(uint8_t num, bool enabled);
uint8_t getSlaveDataLength(uint8_t num);
void setSlaveDataLength(uint8_t num, uint8_t length);
// I2C_SLV* registers (Slave 4)
uint8_t getSlave4Address();
void setSlave4Address(uint8_t address);
uint8_t getSlave4Register();
void setSlave4Register(uint8_t reg);
void setSlave4OutputByte(uint8_t data);
bool getSlave4Enabled();
void setSlave4Enabled(bool enabled);
bool getSlave4InterruptEnabled();
void setSlave4InterruptEnabled(bool enabled);
bool getSlave4WriteMode();
void setSlave4WriteMode(bool mode);
uint8_t getSlave4MasterDelay();
void setSlave4MasterDelay(uint8_t delay);
uint8_t getSlate4InputByte();
// I2C_MST_STATUS register
bool getPassthroughStatus();
bool getSlave4IsDone();
bool getLostArbitration();
bool getSlave4Nack();
bool getSlave3Nack();
bool getSlave2Nack();
bool getSlave1Nack();
bool getSlave0Nack();
// INT_PIN_CFG register
bool getInterruptMode();
void setInterruptMode(bool mode);
bool getInterruptDrive();
void setInterruptDrive(bool drive);
bool getInterruptLatch();
void setInterruptLatch(bool latch);
bool getInterruptLatchClear();
void setInterruptLatchClear(bool clear);
bool getFSyncInterruptLevel();
void setFSyncInterruptLevel(bool level);
bool getFSyncInterruptEnabled();
void setFSyncInterruptEnabled(bool enabled);
bool getI2CBypassEnabled();
void setI2CBypassEnabled(bool enabled);
bool getClockOutputEnabled();
void setClockOutputEnabled(bool enabled);
// INT_ENABLE register
uint8_t getIntEnabled();
void setIntEnabled(uint8_t enabled);
bool getIntFreefallEnabled();
void setIntFreefallEnabled(bool enabled);
bool getIntMotionEnabled();
void setIntMotionEnabled(bool enabled);
bool getIntZeroMotionEnabled();
void setIntZeroMotionEnabled(bool enabled);
bool getIntFIFOBufferOverflowEnabled();
void setIntFIFOBufferOverflowEnabled(bool enabled);
bool getIntI2CMasterEnabled();
void setIntI2CMasterEnabled(bool enabled);
bool getIntDataReadyEnabled();
void setIntDataReadyEnabled(bool enabled);
// INT_STATUS register
uint8_t getIntStatus();
bool getIntFreefallStatus();
bool getIntMotionStatus();
bool getIntZeroMotionStatus();
bool getIntFIFOBufferOverflowStatus();
bool getIntI2CMasterStatus();
bool getIntDataReadyStatus();
// ACCEL_*OUT_* registers
void getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my,
int16_t* mz);
void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz);
void getAcceleration(int16_t* x, int16_t* y, int16_t* z);
int16_t getAccelerationX();
int16_t getAccelerationY();
int16_t getAccelerationZ();
// TEMP_OUT_* registers
int16_t getTemperature();
// GYRO_*OUT_* registers
void getRotation(int16_t* x, int16_t* y, int16_t* z);
int16_t getRotationX();
int16_t getRotationY();
int16_t getRotationZ();
// EXT_SENS_DATA_* registers
uint8_t getExternalSensorByte(int position);
uint16_t getExternalSensorWord(int position);
uint32_t getExternalSensorDWord(int position);
// MOT_DETECT_STATUS register
bool getXNegMotionDetected();
bool getXPosMotionDetected();
bool getYNegMotionDetected();
bool getYPosMotionDetected();
bool getZNegMotionDetected();
bool getZPosMotionDetected();
bool getZeroMotionDetected();
// I2C_SLV*_DO register
void setSlaveOutputByte(uint8_t num, uint8_t data);
// I2C_MST_DELAY_CTRL register
bool getExternalShadowDelayEnabled();
void setExternalShadowDelayEnabled(bool enabled);
bool getSlaveDelayEnabled(uint8_t num);
void setSlaveDelayEnabled(uint8_t num, bool enabled);
// SIGNAL_PATH_RESET register
void resetGyroscopePath();
void resetAccelerometerPath();
void resetTemperaturePath();
// MOT_DETECT_CTRL register
uint8_t getAccelerometerPowerOnDelay();
void setAccelerometerPowerOnDelay(uint8_t delay);
uint8_t getFreefallDetectionCounterDecrement();
void setFreefallDetectionCounterDecrement(uint8_t decrement);
uint8_t getMotionDetectionCounterDecrement();
void setMotionDetectionCounterDecrement(uint8_t decrement);
// USER_CTRL register
bool getFIFOEnabled();
void setFIFOEnabled(bool enabled);
bool getI2CMasterModeEnabled();
void setI2CMasterModeEnabled(bool enabled);
void switchSPIEnabled(bool enabled);
void resetFIFO();
void resetI2CMaster();
void resetSensors();
// PWR_MGMT_1 register
void reset();
bool getSleepEnabled();
void setSleepEnabled(bool enabled);
bool getWakeCycleEnabled();
void setWakeCycleEnabled(bool enabled);
bool getTempSensorEnabled();
void setTempSensorEnabled(bool enabled);
uint8_t getClockSource();
void setClockSource(uint8_t source);
// PWR_MGMT_2 register
uint8_t getWakeFrequency();
void setWakeFrequency(uint8_t frequency);
bool getStandbyXAccelEnabled();
void setStandbyXAccelEnabled(bool enabled);
bool getStandbyYAccelEnabled();
void setStandbyYAccelEnabled(bool enabled);
bool getStandbyZAccelEnabled();
void setStandbyZAccelEnabled(bool enabled);
bool getStandbyXGyroEnabled();
void setStandbyXGyroEnabled(bool enabled);
bool getStandbyYGyroEnabled();
void setStandbyYGyroEnabled(bool enabled);
bool getStandbyZGyroEnabled();
void setStandbyZGyroEnabled(bool enabled);
// FIFO_COUNT_* registers
uint16_t getFIFOCount();
// FIFO_R_W register
uint8_t getFIFOByte();
void setFIFOByte(uint8_t data);
void getFIFOBytes(uint8_t* data, uint8_t length);
// WHO_AM_I register
uint8_t getDeviceID();
void setDeviceID(uint8_t id);
// ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
// XG_OFFS_TC register
uint8_t getOTPBankValid();
void setOTPBankValid(bool enabled);
int8_t getXGyroOffset();
void setXGyroOffset(int8_t offset);
// YG_OFFS_TC register
int8_t getYGyroOffset();
void setYGyroOffset(int8_t offset);
// ZG_OFFS_TC register
int8_t getZGyroOffset();
void setZGyroOffset(int8_t offset);
// X_FINE_GAIN register
int8_t getXFineGain();
void setXFineGain(int8_t gain);
// Y_FINE_GAIN register
int8_t getYFineGain();
void setYFineGain(int8_t gain);
// Z_FINE_GAIN register
int8_t getZFineGain();
void setZFineGain(int8_t gain);
// XA_OFFS_* registers
int16_t getXAccelOffset();
void setXAccelOffset(int16_t offset);
// YA_OFFS_* register
int16_t getYAccelOffset();
void setYAccelOffset(int16_t offset);
// ZA_OFFS_* register
int16_t getZAccelOffset();
void setZAccelOffset(int16_t offset);
// XG_OFFS_USR* registers
int16_t getXGyroOffsetUser();
void setXGyroOffsetUser(int16_t offset);
// YG_OFFS_USR* register
int16_t getYGyroOffsetUser();
void setYGyroOffsetUser(int16_t offset);
// ZG_OFFS_USR* register
int16_t getZGyroOffsetUser();
void setZGyroOffsetUser(int16_t offset);
// INT_ENABLE register (DMP functions)
bool getIntPLLReadyEnabled();
void setIntPLLReadyEnabled(bool enabled);
bool getIntDMPEnabled();
void setIntDMPEnabled(bool enabled);
// DMP_INT_STATUS
bool getDMPInt5Status();
bool getDMPInt4Status();
bool getDMPInt3Status();
bool getDMPInt2Status();
bool getDMPInt1Status();
bool getDMPInt0Status();
// INT_STATUS register (DMP functions)
bool getIntPLLReadyStatus();
bool getIntDMPStatus();
// USER_CTRL register (DMP functions)
bool getDMPEnabled();
void setDMPEnabled(bool enabled);
void resetDMP();
// BANK_SEL register
void setMemoryBank(uint8_t bank, bool prefetchEnabled = false, bool userBank = false);
// MEM_START_ADDR register
void setMemoryStartAddress(uint8_t address);
// MEM_R_W register
uint8_t readMemoryByte();
void writeMemoryByte(uint8_t data);
void readMemoryBlock(uint8_t* data, uint16_t dataSize, uint8_t bank = 0, uint8_t address = 0);
bool writeMemoryBlock(const uint8_t* data, uint16_t dataSize, uint8_t bank = 0, uint8_t address = 0, bool verify = true,
bool useProgMem = false);
bool writeProgMemoryBlock(const uint8_t* data, uint16_t dataSize, uint8_t bank = 0, uint8_t address = 0,
bool verify = true);
bool writeDMPConfigurationSet(const uint8_t* data, uint16_t dataSize, bool useProgMem = false);
bool writeProgDMPConfigurationSet(const uint8_t* data, uint16_t dataSize);
// DMP_CFG_1 register
uint8_t getDMPConfig1();
void setDMPConfig1(uint8_t config);
// DMP_CFG_2 register
uint8_t getDMPConfig2();
void setDMPConfig2(uint8_t config);
// special methods for MotionApps 2.0 implementation
#ifdef MPU6050_INCLUDE_DMP_MOTIONAPPS20
uint8_t* dmpPacketBuffer;
uint16_t dmpPacketSize;
uint8_t dmpInitialize();
bool dmpPacketAvailable();
uint8_t dmpSetFIFORate(uint8_t fifoRate);
uint8_t dmpGetFIFORate();
uint8_t dmpGetSampleStepSizeMS();
uint8_t dmpGetSampleFrequency();
int32_t dmpDecodeTemperature(int8_t tempReg);
// Register callbacks after a packet of FIFO data is processed
//uint8_t dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
//uint8_t dmpUnregisterFIFORateProcess(inv_obj_func func);
uint8_t dmpRunFIFORateProcesses();
// Setup FIFO for various output
uint8_t dmpSendQuaternion(uint_fast16_t accuracy);
uint8_t dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendPacketNumber(uint_fast16_t accuracy);
uint8_t dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);
// Get Fixed Point data from FIFO
uint8_t dmpGetAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetQuaternion(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuaternion(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuaternion(Quaternion* q, const uint8_t* packet = 0);
uint8_t dmpGet6AxisQuaternion(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGet6AxisQuaternion(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGet6AxisQuaternion(Quaternion* q, const uint8_t* packet = 0);
uint8_t dmpGetRelativeQuaternion(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetRelativeQuaternion(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetRelativeQuaternion(Quaternion* data, const uint8_t* packet = 0);
uint8_t dmpGetGyro(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyro(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyro(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpSetLinearAccelFilterCoefficient(float coef);
uint8_t dmpGetLinearAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccel(VectorInt16* v, VectorInt16* vRaw, VectorFloat* gravity);
uint8_t dmpGetLinearAccelInWorld(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccelInWorld(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, VectorInt16* vReal, Quaternion* q);
uint8_t dmpGetGyroAndAccelSensor(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroAndAccelSensor(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroAndAccelSensor(VectorInt16* g, VectorInt16* a, const uint8_t* packet = 0);
uint8_t dmpGetGyroSensor(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroSensor(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroSensor(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetControlData(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetTemperature(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGravity(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGravity(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGravity(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetGravity(VectorFloat* v, Quaternion* q);
uint8_t dmpGetUnquantizedAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetUnquantizedAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetUnquantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetQuantizedAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuantizedAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetExternalSensorData(int32_t* data, uint16_t size, const uint8_t* packet = 0);
uint8_t dmpGetEIS(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetEuler(float* data, Quaternion* q);
uint8_t dmpGetYawPitchRoll(float* data, Quaternion* q, VectorFloat* gravity);
// Get Floating Point data from FIFO
uint8_t dmpGetAccelFloat(float* data, const uint8_t* packet = 0);
uint8_t dmpGetQuaternionFloat(float* data, const uint8_t* packet = 0);
uint8_t dmpProcessFIFOPacket(const unsigned char* dmpData);
uint8_t dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t* processed = NULL);
uint8_t dmpSetFIFOProcessedCallback(void (*func)(void));
uint8_t dmpInitFIFOParam();
uint8_t dmpCloseFIFO();
uint8_t dmpSetGyroDataSource(uint8_t source);
uint8_t dmpDecodeQuantizedAccel();
uint32_t dmpGetGyroSumOfSquare();
uint32_t dmpGetAccelSumOfSquare();
void dmpOverrideQuaternion(long* q);
uint16_t dmpGetFIFOPacketSize();
#endif
// special methods for MotionApps 4.1 implementation
#ifdef MPU6050_INCLUDE_DMP_MOTIONAPPS41
uint8_t* dmpPacketBuffer;
uint16_t dmpPacketSize;
uint8_t dmpInitialize();
bool dmpPacketAvailable();
uint8_t dmpSetFIFORate(uint8_t fifoRate);
uint8_t dmpGetFIFORate();
uint8_t dmpGetSampleStepSizeMS();
uint8_t dmpGetSampleFrequency();
int32_t dmpDecodeTemperature(int8_t tempReg);
// Register callbacks after a packet of FIFO data is processed
//uint8_t dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
//uint8_t dmpUnregisterFIFORateProcess(inv_obj_func func);
uint8_t dmpRunFIFORateProcesses();
// Setup FIFO for various output
uint8_t dmpSendQuaternion(uint_fast16_t accuracy);
uint8_t dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendPacketNumber(uint_fast16_t accuracy);
uint8_t dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);
// Get Fixed Point data from FIFO
uint8_t dmpGetAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetQuaternion(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuaternion(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuaternion(Quaternion* q, const uint8_t* packet = 0);
uint8_t dmpGet6AxisQuaternion(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGet6AxisQuaternion(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGet6AxisQuaternion(Quaternion* q, const uint8_t* packet = 0);
uint8_t dmpGetRelativeQuaternion(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetRelativeQuaternion(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetRelativeQuaternion(Quaternion* data, const uint8_t* packet = 0);
uint8_t dmpGetGyro(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyro(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyro(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetMag(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpSetLinearAccelFilterCoefficient(float coef);
uint8_t dmpGetLinearAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccel(VectorInt16* v, VectorInt16* vRaw, VectorFloat* gravity);
uint8_t dmpGetLinearAccelInWorld(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccelInWorld(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, VectorInt16* vReal, Quaternion* q);
uint8_t dmpGetGyroAndAccelSensor(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroAndAccelSensor(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroAndAccelSensor(VectorInt16* g, VectorInt16* a, const uint8_t* packet = 0);
uint8_t dmpGetGyroSensor(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroSensor(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGyroSensor(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetControlData(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetTemperature(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGravity(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGravity(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetGravity(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetGravity(VectorFloat* v, Quaternion* q);
uint8_t dmpGetUnquantizedAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetUnquantizedAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetUnquantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetQuantizedAccel(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuantizedAccel(int16_t* data, const uint8_t* packet = 0);
uint8_t dmpGetQuantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
uint8_t dmpGetExternalSensorData(int32_t* data, uint16_t size, const uint8_t* packet = 0);
uint8_t dmpGetEIS(int32_t* data, const uint8_t* packet = 0);
uint8_t dmpGetEuler(float* data, Quaternion* q);
uint8_t dmpGetYawPitchRoll(float* data, Quaternion* q, VectorFloat* gravity);
// Get Floating Point data from FIFO
uint8_t dmpGetAccelFloat(float* data, const uint8_t* packet = 0);
uint8_t dmpGetQuaternionFloat(float* data, const uint8_t* packet = 0);
uint8_t dmpProcessFIFOPacket(const unsigned char* dmpData);
uint8_t dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t* processed = NULL);
uint8_t dmpSetFIFOProcessedCallback(void (*func)(void));
uint8_t dmpInitFIFOParam();
uint8_t dmpCloseFIFO();
uint8_t dmpSetGyroDataSource(uint8_t source);
uint8_t dmpDecodeQuantizedAccel();
uint32_t dmpGetGyroSumOfSquare();
uint32_t dmpGetAccelSumOfSquare();
void dmpOverrideQuaternion(long* q);
uint16_t dmpGetFIFOPacketSize();
#endif
private:
uint8_t devAddr;
uint8_t buffer[14];
};
#endif /* _MPU6050_H_ */

View File

@ -0,0 +1,313 @@
#include "Wire.h"
/******************************************************************************
* imu-test.ino
* @title: Test du capteur IMU (liaison série)
* @project: Blender-EduTech - Tutoriel : Tutoriel 3 Labyrinthe à bille - Interfacer la scène 3D avec une carte Arduino
* @lang: fr
* @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
* @copyright: Copyright (C) 2023 Philippe Roy
* @license: GNU GPL
*
******************************************************************************/
/******************************************************************************
* I2C
******************************************************************************/
// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"
#include "MPU6050.h"
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 accelgyro;
I2Cdev I2C_M;
uint8_t buffer_m[6];
int16_t ax, ay, az;
int16_t gx, gy, gz;
int16_t mx, my, mz;
float heading;
float tiltheading;
float Axyz[3];
float roll;
float pitch;
float roll_deg;
float pitch_deg;
String roll_txt;
String pitch_txt;
/******************************************************************************
* Pupitre
******************************************************************************/
// Adressage Led Arduino
const int led = 13; // Led de mouvement (onboard)
const int led_com = 10; // Led de communication modele 3d-> arduino
// Adressage Entrees Arduino
// const int bt_a_m = A1; // Bouton A+ (verin droit)
// const int bt_a_d = A0; // Bouton A- (verin droit)
// const int bt_b_m = A3; // Bouton B+ (verin gauche arrière)
// const int bt_b_d = A2; // Bouton B- (verin gauche arrière)
// const int bt_c_m = 3; // Bouton C+ (verin gauche avant)
// const int bt_c_d = 2; // Bouton C- (verin gauche avant)
// Entrees numeriques (modele 3D)
// bool bt_a_m_num=false ; // Bouton A+ (verin droit)
// bool bt_a_d_num=false; // Bouton A- (verin droit)
// bool bt_b_m_num=false; // Bouton B+ (verin gauche arrière)
// bool bt_b_d_num=false; // Bouton B- (verin gauche arrière)
// bool bt_c_m_num=false; // Bouton C+ (verin gauche avant)
// bool bt_c_d_num=false; // Bouton C- (verin gauche avant)
// // Adressage Sorties Arduino
// const int v_a_v = 5; // Mouvement A (verin droit) : Vitesse (grove fil blanc)
// const int v_a_s = 4; // Mouvement A (verin droit) : Sens (grove fil jaune)
// const int v_b_v = 7; // Mouvement B (verin gauche arriere) : Vitesse (grove fil blanc)
// const int v_b_s = 6; // Mouvement B (verin gauche arriere) : Sens (grove fil jaune)
// const int v_c_v = 9; // Mouvement C (verin gauche avant) : Vitesse (grove fil blanc)
// const int v_c_s = 8; // Mouvement C (verin gauche avant) : Sens (grove fil jaune)
/******************************************************************************
* Communication serie
******************************************************************************/
String serial_msg = ""; // Message
bool serial_msg_complet = false; // Flag de message complet
/******************************************************************************
* Initialisation
******************************************************************************/
void setup() {
// Configure les broches des entrees
// pinMode(bt_a_m, INPUT);
// pinMode(bt_a_d, INPUT);
// pinMode(bt_b_m, INPUT);
// pinMode(bt_b_d, INPUT);
// pinMode(bt_c_m, INPUT);
// pinMode(bt_c_d, INPUT);
// // Configure les broches des sorties
// pinMode(v_a_v, OUTPUT);
// pinMode(v_a_s, OUTPUT);
// pinMode(v_b_v, OUTPUT);
// pinMode(v_b_s, OUTPUT);
// pinMode(v_c_v, OUTPUT);
// pinMode(v_c_s, OUTPUT);
pinMode(led, OUTPUT); // Led de mouvement
pinMode(led_com, OUTPUT); // Led de communication modele 3d-> arduino
digitalWrite(led, LOW);
digitalWrite(led_com, LOW);
// Moniteur serie
Serial.begin(115200); // 7 fps
/* Serial.begin(38400); */ // 6 fps
/* Serial.begin(9600); */ // trop lent 2fps
// I2C
Wire.begin();
Serial.println("Initializing I2C devices...");
accelgyro.initialize();
}
/******************************************************************************
* Boucle principale
******************************************************************************/
void loop() {
// /*****
// * Communication : modele 3d -> arduino
// *****/
// if (serial_msg_complet) {
// if (serial_msg =="Bp Am R\n") bt_a_m_num=false;
// if (serial_msg =="Bp Am\n") bt_a_m_num=true;
// if (serial_msg =="Bp Ad R\n") bt_a_d_num=false;
// if (serial_msg =="Bp Ad\n") bt_a_d_num=true;
// if (serial_msg =="Bp Bm R\n") bt_b_m_num=false;
// if (serial_msg =="Bp Bm\n") bt_b_m_num=true;
// if (serial_msg =="Bp Bd R\n") bt_b_d_num=false;
// if (serial_msg =="Bp Bd\n") bt_b_d_num=true;
// if (serial_msg =="Bp Cm R\n") bt_c_m_num=false;
// if (serial_msg =="Bp Cm\n") bt_c_m_num=true;
// if (serial_msg =="Bp Cd R\n") bt_c_d_num=false;
// if (serial_msg =="Bp Cd\n") bt_c_d_num=true;
// /* Serial.println("Echo : "+serial_msg); */
// serial_msg = "";
// serial_msg_complet = false;
// }
// /*****
// * Verin A (verin droit)
// *****/
// // Bouton physique : LOW = actif et HIGH = pas actif
// // Bouton numérique (modele 3d) : true = actif et false = pas actif
// // A+ (sortie de tige)
// if ((digitalRead(bt_a_m) == LOW || bt_a_m_num) && digitalRead(bt_a_d) == HIGH && !bt_a_d_num) {
// /* Serial.println("A+"); */
// digitalWrite(v_a_v, HIGH); // Mouvement A : Vitesse (fil blanc)
// digitalWrite(v_a_s, LOW); // Mouvement A : Sens trigo (fil jaune)
// digitalWrite(led, HIGH);
// }
// // A- (rentrée de tige)
// if ((digitalRead(bt_a_d) == LOW || bt_a_d_num) && digitalRead(bt_a_m) == HIGH && !bt_a_m_num) {
// /* Serial.println("A-"); */
// digitalWrite(v_a_v, HIGH); // Mouvement A : Vitesse (fil blanc)
// digitalWrite(v_a_s, HIGH); // Mouvement A : Sens horaire (fil jaune)
// digitalWrite(led, HIGH);
// }
// // Stop A
// if (digitalRead(bt_a_m) == LOW && (digitalRead(bt_a_d) == LOW || bt_a_d_num)){ // Ordres contradictoires
// /* Serial.println("Stop A"); */
// digitalWrite(v_a_v, LOW); // Mouvement A : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// if (digitalRead(bt_a_d) == LOW && (digitalRead(bt_a_m) == LOW || bt_a_m_num)){ // Ordres contradictoires
// /* Serial.println("Stop A"); */
// digitalWrite(v_a_v, LOW); // Mouvement A : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// if (digitalRead(bt_a_m) == HIGH && digitalRead(bt_a_d) == HIGH && !bt_a_m_num && !bt_a_d_num){ // Aucun ordre
// /* Serial.println("Stop A"); */
// digitalWrite(v_a_v, LOW); // Mouvement A : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// /*****
// * Verin B (verin gauche arriere)
// *****/
// // B+ (sortie de tige)
// if ((digitalRead(bt_b_m) == LOW || bt_b_m_num) && digitalRead(bt_b_d) == HIGH && !bt_b_d_num) {
// /* Serial.println("B+"); */
// digitalWrite(v_b_v, HIGH); // Mouvement B : Vitesse (fil blanc)
// digitalWrite(v_b_s, LOW); // Mouvement B : Sens trigo (fil jaune)
// digitalWrite(led, HIGH);
// }
// // B- (rentrée de tige)
// if ((digitalRead(bt_b_d) == LOW || bt_b_d_num) && digitalRead(bt_b_m) == HIGH && !bt_b_m_num) {
// /* Serial.println("B-"); */
// digitalWrite(v_b_v, HIGH); // Mouvement B : Vitesse (fil blanc)
// digitalWrite(v_b_s, HIGH); // Mouvement B : Sens horaire (fil jaune)
// digitalWrite(led, HIGH);
// }
// // Stop B
// if (digitalRead(bt_b_m) == LOW && (digitalRead(bt_b_d) == LOW || bt_b_d_num)){ // Ordres contradictoires
// /* Serial.println("Stop B"); */
// digitalWrite(v_b_v, LOW); // Mouvement B : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// if (digitalRead(bt_b_d) == LOW && (digitalRead(bt_b_m) == LOW || bt_b_m_num)){ // Ordres contradictoires
// /* Serial.println("Stop B"); */
// digitalWrite(v_b_v, LOW); // Mouvement B : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// if (digitalRead(bt_b_m) == HIGH && digitalRead(bt_b_d) == HIGH && !bt_b_m_num && !bt_b_d_num){ // Aucun ordre
// /* Serial.println("Stop B"); */
// digitalWrite(v_b_v, LOW); // Mouvement B : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// /*****
// * Verin C (verin gauche avant)
// *****/
// // C+ (sortie de tige)
// if ((digitalRead(bt_c_m) == LOW || bt_c_m_num) && digitalRead(bt_c_d) == HIGH && !bt_c_d_num) {
// /* Serial.println("C+"); */
// digitalWrite(v_c_v, HIGH); // Mouvement C : Vitesse (fil blanc)
// digitalWrite(v_c_s, LOW); // Mouvement C : Sens trigo (fil jaune)
// digitalWrite(led, HIGH);
// }
// // C- (rentrée de tige)
// if ((digitalRead(bt_c_d) == LOW || bt_c_d_num) && digitalRead(bt_c_m) == HIGH && !bt_c_m_num) {
// /* Serial.println("C-"); */
// digitalWrite(v_c_v, HIGH); // Mouvement C : Vitesse (fil blanc)
// digitalWrite(v_c_s, HIGH); // Mouvement C : Sens horaire (fil jaune)
// digitalWrite(led, HIGH);
// }
// // Stop C
// if (digitalRead(bt_c_m) == LOW && (digitalRead(bt_c_d) == LOW || bt_c_d_num)){ // Ordres contradictoires
// /* Serial.println("Stop C"); */
// digitalWrite(v_c_v, LOW); // Mouvement C : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// if (digitalRead(bt_c_d) == LOW && (digitalRead(bt_c_m) == LOW || bt_c_m_num)){ // Ordres contradictoires
// /* Serial.println("Stop C"); */
// digitalWrite(v_c_v, LOW); // Mouvement C : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
// if (digitalRead(bt_c_m) == HIGH && digitalRead(bt_c_d) == HIGH && !bt_c_m_num && !bt_c_d_num){ // Aucun ordre
// /* Serial.println("Stop C"); */
// digitalWrite(v_c_v, LOW); // Mouvement C : Vitesse nulle (fil blanc)
// digitalWrite(led, LOW);
// }
/*****
* Lecture des accelerations
*****/
accelgyro.getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz);
Axyz[0] = (double) ax / 16384;
Axyz[1] = (double) ay / 16384;
Axyz[2] = (double) az / 16384;
roll = asin(-Axyz[0]);
roll_deg = roll*57.3;
roll_txt = String(roll_deg);
/* pitch = asin(Axyz[1]/cos(roll)); */
pitch = -asin(Axyz[1]/cos(roll)); // dépend du positionnement du capteur (X vers la droite, Y vers l'arriere, Z vers le haut)
pitch_deg = pitch*57.3;
pitch_txt = String(pitch_deg);
/*****
* Communication : arduino -> modele 3d
*****/
/* Serial.println("Roll (Rx): "+String(roll*57.3) + " Pitch (Ry): " + String(pitch*57.3) + */
/* " bt_a_m: " + String(digitalRead(bt_a_m)) + " bt_a_d: " + String(digitalRead(bt_a_d)) + */
/* " bt_b_m: " + String(digitalRead(bt_b_m)) + " bt_b_d: " + String(digitalRead(bt_b_d)) + */
/* " bt_c_m: " + String(digitalRead(bt_c_m)) + " bt_c_d: " + String(digitalRead(bt_c_d))); */
// Serial.println("Roll (Rx): "+ roll_txt + " Pitch (Ry): " + pitch_txt +
// " bt_a_m: " + digitalRead(bt_a_m) + " bt_a_d: " + digitalRead(bt_a_d) +
// " bt_b_m: " + digitalRead(bt_b_m) + " bt_b_d: " + digitalRead(bt_b_d) +
// " bt_c_m: " + digitalRead(bt_c_m) + " bt_c_d: " + digitalRead(bt_c_d));
Serial.println("Roll (Rx): "+ roll_txt + " Pitch (Ry): " + pitch_txt);
/* delay(300); */
}
/******************************************************************************
* Evenements provoques par la communication serie
******************************************************************************/
// void serialEvent() {
// while (Serial.available()) {
// char inChar = (char)Serial.read();
// serial_msg += inChar;
// if (inChar == '\n') {
// serial_msg_complet = true;
// }
// }
// }

View File

@ -0,0 +1,80 @@
import pyfirmata # Communication carte
import time
import signal # Interruptions systeme
import sys
###############################################################################
# manette-test.py :
# @title: Test de la manette 4 boutons et joystick (protocol Firmata)
# @project: Blender-EduTech - Tutoriel : Tutoriel 3 Labyrinthe à bille - Interfacer la scène 3D avec une carte Arduino
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2023 Philippe Roy
# @license: GNU GPL
#
# Commandes simples avec une manette 4 boutons et un joystick
#
###############################################################################
###############################################################################
# Communication avec la carte Arduino
###############################################################################
carte = pyfirmata.Arduino('COM4') # Windows
#carte = pyfirmata.Arduino('/dev/ttyACM0') # GNU/Linux
print("Communication Carte Arduino établie")
# Iterateur pour les entrees
it = pyfirmata.util.Iterator(carte)
it.start()
# Fermer proprement la communication avec la carte Arduino lors de l'arret du programme
def sigint_handler(signal, frame):
print ('Interruption du programme capturee.')
carte.exit()
time.sleep(1)
sys.exit(0)
###############################################################################
# Definition entrees - sorties
###############################################################################
# Definition entrees
bt_a = carte.get_pin('d:2:i')
bt_r = carte.get_pin('d:3:i')
bt_g = carte.get_pin('d:4:i')
bt_d = carte.get_pin('d:5:i')
# led = carte.get_pin('d:13:o')
###############################################################################
# Boucle principale
###############################################################################
while True:
##
# Manette
##
if bt_a.read() == True and bt_r.read() == False:
print("X+")
if bt_a.read() == False and bt_r.read() == True:
print("X-")
if bt_g.read() == True and bt_d.read() == False:
print("Y+")
if bt_g.read() == False and bt_d.read() == True :
print("Y-")
##
# Cadencement
##
time.sleep(0.1)
##
# Capture de l'interruption du programme
##
signal.signal(signal.SIGINT, sigint_handler)

View File

@ -0,0 +1,64 @@
import pyfirmata
import time
import signal
import sys
###############################################################################
# pyfirmata-test.py :
# @title: Test de l'environnement Python pour Arduino via pyFirmata
# @project:
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2021-2022 Philippe Roy
# @license: GNU GPL
#
# Ce programme est un programme test pour vérifier si l'environnement Python pour Arduino est opérationnel.
# Il y a deux conditions pour son fonctionnement :
# - le programme de la carte Arduino doit être 'StandardFirmata',
# - la bibliothèque Python 'pyFirmata' doit être installée sur l'ordinateur.
#
# Il faut que la led de la carte Arduino clignote.
#
###############################################################################
# Explication dans la console
print("Ce programme est un programme test pour vérifier si l'environnement Python pour Arduino est opérationnel.")
print("Il faut que la led de carte Arduino clignote.")
print("")
print("Il y a deux conditions pour son fonctionnement :")
print("- le programme de la carte Arduino doit être 'StandardFirmata',")
print("- la bibliothèque Python 'pyFirmata' doit être installée sur l'ordinateur.")
print("")
# Connexion à la carte Arduino
#carte = pyfirmata.Arduino('/dev/ttyACM0')
carte = pyfirmata.Arduino('COM4')
print("Communication Carte Arduino établie")
# Itérateur pour les entrées
it = pyfirmata.util.Iterator(carte)
it.start()
# Définition entrées-sorties
led = carte.get_pin('d:13:o')
# Fermer proprement la communication avec la carte Arduino lors de l'arrêt du programme
def sigint_handler(signal, frame):
carte.exit()
time.sleep(1)
sys.exit(0)
# Boucle principale
while True:
led.write(1)
print("Led carte allumée")
time.sleep(1)
led.write(0)
print("Led carte éteinte")
time.sleep(1)
# Capture de l'interruption du programme
signal.signal(signal.SIGINT, sigint_handler)

View File

@ -24,11 +24,12 @@ Il se décompose en 4 parties :
### Tutoriel 3 : Interfacer la scène 3D avec une carte Arduino - En cours d'écriture
- Installer les bibliothèques pySerial et pyFirmata
- Créer une manette avec 4 boutons binaires (fichiers résultats : 3-1-labyrinthe.blend, 3-1-labyrinthe.py)
- Créer une manette avec un capteur de position (fichiers résultats : 3-2-labyrinthe.blend, 3-2-labyrinthe.py, 3-2-labyrinthe.ino)
- Déplacer le plateau avec une manette (4 boutons binaires et/ou joystick) ; fichiers résultats : 3-1-labyrinthe-manette.blend, 3-1-labyrinthe-manette.py
- Déplacer le plateau avec une centrale inertielle (IMU) ; fichiers résultats : 3-2-labyrinthe-imu.blend, 3-2-labyrinthe-imu.py, 3-2-labyrinthe-imu.ino
- Déplacer le plateau avec un détecteur de geste ; fichiers résultats : 3-3-labyrinthe-gest.blend, 3-3-labyrinthe-gest.py, 3-3-labyrinthe-gest.ino
### Tutoriel 4 : Interfacer la scène 3D avec une carte micro:bit - En cours d'écriture
- Installer la bibliothèque pySerial
- Créer une manette avec une carte micro:bit
- Fichiers résultats : 4-labyrinthe.blend, 4-labyrinthe.py, 4-labyrinthe-carte.py)
- Fichiers résultats : 4-labyrinthe.blend, 4-labyrinthe.py, 4-labyrinthe-carte.py