Tutoriel 6 : déplacement manuel

This commit is contained in:
Philippe Roy 2023-10-18 00:09:25 +02:00
parent e825067dc6
commit e00e7c037b
25 changed files with 331258 additions and 928 deletions

View File

@ -1,6 +1,7 @@
#include "Servo.h"
#include "Wire.h" #include "Wire.h"
#include "Grove_LED_Matrix_Driver_HT16K33.h"
#include "MPU6050.h" #include "MPU6050.h"
#include <stdlib.h>
/****************************************************************************** /******************************************************************************
* 6-labyrinthe-arduino.ino * 6-labyrinthe-arduino.ino
@ -10,11 +11,43 @@
* @authors: Philippe Roy <philippe.roy@ac-grenoble.fr> * @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
* @copyright: Copyright (C) 2023 Philippe Roy * @copyright: Copyright (C) 2023 Philippe Roy
* @license: GNU GPL * @license: GNU GPL
*
******************************************************************************/ ******************************************************************************/
/****************************************************************************** /******************************************************************************
* IMU - I2C * Précautions :
* - Régler l'alimentation à 6V DC - 3 A maxi
* - Brochage pupitre : joystick -> A0, bouton -> D2, voyant -> D3
* - Brochage capteur : IMU en I2C
* - Brochage actionneurs : axes (x,y) -> D5/D6 (x,y)
* - Mettre les servomoteurs à 45° soit 1000 µs
******************************************************************************/
/******************************************************************************
* Servomoteurs
* Alimentation par servoteur : 6V DC à 1.5 A
******************************************************************************/
Servo servo_x; // Servomoteur axe x
Servo servo_y; // Servomoteur axe y
const int servo_x_pin = 5; // Servomoteur axe x sur broche D5
const int servo_y_pin = 6; // Servomoteur axe y sur broche D6
int angle_x_ms; // Angle en µs : 500 -> 0° ; 1500->90° et 2500-> 180°
int angle_y_ms; // Angle en µs : 500 -> 0° ; 1500->90° et 2500-> 180°
const float servo_pas_maxi = 20; // Pas angulaire (µs) maxi (pas de calcul en int)
const int servo_pas_auto = 5; // Pas angulaire (µs) pour le mode auto-horizontalité
int servo_pas = 0; // Pas angulaire (µs) du mouvement en cours (pas propotionel au joystick)
/******************************************************************************
* Pupitre : joystick + 1 bouton + 1 voyant
******************************************************************************/
const int bt_pin = 2; // Bouton du mode d'auto-horizontalité sur la broche D2
const int led_pin = 3; // Led du mode d'auto-horizontalité sur la broche D3
const int jstk_x_pin = A1; // Joystick axe x sur la broche A1
const int jstk_y_pin = A0; // Joystick axe y sur la broche A0
/******************************************************************************
* Capteur IMU - I2C
******************************************************************************/ ******************************************************************************/
MPU6050 accelgyro; MPU6050 accelgyro;
@ -31,18 +64,9 @@ String roll_txt;
String pitch_txt; String pitch_txt;
String serial_msg_int_txt; String serial_msg_int_txt;
/****************************************************************************** bool auto_horizontal = false; // Flag du mode de la mise à l'auto-horizontalité
* Led Matrix - I2C bool auto_horizontal_mvt = false; // Flag du mouvement de l'auto-horizontalité
******************************************************************************/ const int auto_horizontal_sensibilite = 1; // Angle maxi pour l'auto-horizontalité
Matrix_8x8 matrix;
/******************************************************************************
* Communication serie
******************************************************************************/
String serial_msg = ""; // Message
bool serial_msg_complet = false; // Flag de message complet
/****************************************************************************** /******************************************************************************
* Initialisation * Initialisation
@ -50,20 +74,28 @@ bool serial_msg_complet = false; // Flag de message complet
void setup() { void setup() {
// Liaison série // Liaison série
Serial.begin(115200); Serial.begin(115200);
// IMU // Servomoteurs
Wire.begin(); servo_x.attach(servo_x_pin); // Brochage
accelgyro.initialize(); servo_y.attach(servo_y_pin); // Brochage
angle_x_ms = 1000; // 500 -> 0°, 1500 -> 90° et 2500-> 180°
angle_y_ms = 1000; // 500 -> 0°, 1500 -> 90° et 2500-> 180°
servo_x.writeMicroseconds(angle_x_ms); // 1000 -> 45° */
servo_y.writeMicroseconds(angle_y_ms); // 1000 -> 45° */
// Led Matrix // Pupitre
matrix.init(); pinMode(bt_pin, INPUT);
matrix.setBrightness(0); pinMode(jstk_x_pin, INPUT);
matrix.setBlinkRate(BLINK_OFF); pinMode(jstk_y_pin, INPUT);
matrix.clear(); pinMode(led_pin, OUTPUT);
matrix.display();
} // IMU
Wire.begin();
accelgyro.initialize();
Serial.println();
}
/****************************************************************************** /******************************************************************************
* Boucle principale * Boucle principale
@ -94,52 +126,127 @@ void loop() {
Serial.print(","); Serial.print(",");
Serial.print(pitch_txt); Serial.print(pitch_txt);
Serial.println(); Serial.println();
/***** /*****
* Led Matrix : UPBGE -> Arduino * Mouvement manuel : Axe x
*****/ *****/
if (serial_msg_complet) {
matrix.clear();
int xy= serial_msg.toInt(); // Message par chiffre : XY
// Position de la bille en x et y // en C : sur x de 237 à 784 (centre à 510) et sur y de 249 à 773 (centre à 511)
if (xy<90) { // en Python de 0,25 à 0,75 avec une zone morte entre 0,48 et 0,52 (soit 491 et 532 pour une base sur 1024)
int x= xy/10;
int y= xy-(x*10); if ((analogRead(jstk_x_pin) <491) or (analogRead(jstk_x_pin) >532))
matrix.writePixel(x, y, true); {
// Désactivation de l'horizontalité automatique
if (auto_horizontal)
{
auto_horizontal = false;
digitalWrite(led_pin, LOW);
} }
// Mouvement x -
if (analogRead(jstk_x_pin) <491)
{
servo_pas = (servo_pas_maxi/(511-249))*(511-analogRead(jstk_x_pin));
angle_x_ms=angle_x_ms-servo_pas;
}
// Mouvement x +
if (analogRead(jstk_x_pin) >532)
{
servo_pas = (servo_pas_maxi/(773-511))*(analogRead(jstk_x_pin)-511);
angle_x_ms=angle_x_ms+servo_pas;
}
// Fin de course logiciel
if (angle_x_ms<600)
angle_x_ms=600;
if (angle_x_ms>1600)
angle_x_ms=1600;
// Moteur x
servo_x.writeMicroseconds(angle_x_ms);
}
/*****
* Mouvement manuel : Axe y
*****/
// en C : sur x de 249 à 773 (centre à 511) et sur y de 237 à 784 (centre à 510)
// en Python de 0,25 à 0,75 avec une zone morte entre 0,48 et 0,52 (soit 491 et 532 pour une base sur 1024)
if ((analogRead(jstk_y_pin) <491) or (analogRead(jstk_y_pin) >532))
{
// Désactivation de l'horizontalité automatique
if (auto_horizontal)
{
auto_horizontal = false;
digitalWrite(led_pin, LOW);
}
// Mouvement y -
if (analogRead(jstk_y_pin) <491)
{
servo_pas = (servo_pas_maxi/(511-237))*(511-analogRead(jstk_y_pin));
angle_y_ms=angle_y_ms-servo_pas;
}
// Mouvement y +
if (analogRead(jstk_y_pin) >532)
{
servo_pas = (servo_pas_maxi/(784-511))*(analogRead(jstk_y_pin)-511);
angle_y_ms=angle_y_ms+servo_pas;
}
// Fin de course logiciel
if (angle_y_ms<600)
angle_y_ms=600;
if (angle_y_ms>1600)
angle_y_ms=1600;
// Moteur y
servo_y.writeMicroseconds(angle_y_ms);
}
/*****
* Mise à l'horizontale automatique
*****/
if (digitalRead(bt_pin) == HIGH)
auto_horizontal = true;
if (auto_horizontal)
{
digitalWrite(led_pin, HIGH); // Led
auto_horizontal_mvt = false;
// Chute // Mouvement
if (xy==91) { if ((roll_deg < -1) or (roll_deg > 1) or (pitch_deg < -1) or (pitch_deg > 1))
matrix.writeOnePicture(0x81423c0000666600); auto_horizontal_mvt = true;
matrix.display(); if (roll_deg < -1)
delay(1000); angle_y_ms=angle_y_ms-servo_pas_auto;
Serial.println("start"); // Relance le jeu if (roll_deg > 1)
} angle_y_ms=angle_y_ms+servo_pas_auto;
if (pitch_deg < -1)
angle_x_ms=angle_x_ms+servo_pas_auto;
if (pitch_deg > 1)
angle_x_ms=angle_x_ms-servo_pas_auto;
// Victoire // Fin de course logiciel
if (xy==92) matrix.writeOnePicture(0x003c428100666600); if (angle_x_ms<600)
angle_x_ms=600;
if (angle_x_ms>1600)
angle_x_ms=1600;
if (angle_y_ms<600)
angle_y_ms=600;
if (angle_y_ms>1600)
angle_y_ms=1600;
// Affichage // Moteurs x et y
matrix.display(); if (auto_horizontal_mvt)
serial_msg = ""; {
serial_msg_complet = false; servo_x.writeMicroseconds(angle_x_ms);
} servo_y.writeMicroseconds(angle_y_ms);
}
/******************************************************************************
* Évènement provoqué par UPBGE (via la liaison série)
******************************************************************************/
void serialEvent() {
while (Serial.available()) {
char inChar = (char)Serial.read();
serial_msg += inChar;
if (inChar == '\n') {
serial_msg_complet = true;
} }
} }
} }

View File

@ -1,336 +0,0 @@
/*
Grove_LED_Matrix_Driver_HT16K33.cpp
A library for Grove - Grove - LED Matrix Driver(HT16K33 with 8x8 LED Matrix)
Copyright (c) 2018 seeed technology inc.
Website : www.seeed.cc
Author : Jerry Yip
Create Time: 2018-06
Version : 0.1
Change Log :
The MIT License (MIT)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "Grove_LED_Matrix_Driver_HT16K33.h"
#include "Seeed_Font.h"
HT16K33::HT16K33() {
}
void HT16K33::init(uint8_t addr) {
_addr = addr;
// turn on oscillator
I2Cdev::writeBytes(_addr, 0x21, 0, (uint8_t*)NULL);
}
void HT16K33::setBrightness(uint8_t brightness) {
I2Cdev::writeBytes(_addr, (0xE0 | brightness), 0, (uint8_t*)NULL);
}
void HT16K33::setBlinkRate(blink_type_t blink_type) {
I2Cdev::writeBytes(_addr, (0x80 | 0x01 | (blink_type << 1)), 0, (uint8_t*)NULL);
}
Matrix_8x8::Matrix_8x8() {
_orientation = DISPLAY_ROTATE_0;
_offset_x = 0;
_offset_y = 0;
_cursor_start = 0;
_cursor_end = 0;
_cursor_steps = 1;
_ms = 100;
}
void Matrix_8x8::setDisplayOffset(int8_t x, int8_t y) {
if ((x < -8) || (x > 8)) {
return;
}
if ((y < -8) || (y > 8)) {
return;
}
_offset_x = x;
_offset_y = y;
}
void Matrix_8x8::setDisplayOrientation(uint8_t orientation) {
_orientation = (orientation_type_t)orientation;
}
// _cursor_end - _cursor_start >= 1
void Matrix_8x8::display() {
// get data from _big_buffer[] and write to HT16K33
uint8_t line;
if (_cursor_start > _cursor_end) {
uint16_t t;
t = _cursor_start;
_cursor_start = _cursor_end;
_cursor_end = t;
}
for (int32_t i = _cursor_start; i <= _cursor_end; i = i + _cursor_steps) {
for (uint8_t j = 0; j < 8; j++) {
// test
line = _big_buffer[(MAX_BIG_BUFFER_SIZE - 8 - i) + j];
for (uint8_t k = 0; k < 8; k++) {
if (line & 0x01) {
// set 1
_buffer[2 * j] |= (1 << k);
} else {
// set 0
_buffer[2 * j] &= ~(1 << k);
}
line = line >> 1;
}
}
// offset
if (_offset_y > 0) {
for (uint8_t i = 0; i < 8; i++) {
_buffer[2 * i] = (_buffer[2 * i] >> _offset_y);
}
} else if (_offset_y < 0) {
for (uint8_t i = 0; i < 8; i++) {
_buffer[2 * i] = (_buffer[2 * i] << (-_offset_y));
}
}
if (_offset_x > 0) {
for (int8_t i = (7 - _offset_x); i >= 0; i--) {
_buffer[2 * (i + _offset_x)] = _buffer[2 * i];
}
for (uint8_t i = 0; i < _offset_x; i++) {
_buffer[2 * i] = 0;
}
} else if (_offset_x < 0) {
for (uint8_t i = (-_offset_x); i < 8; i++) {
_buffer[2 * (i + _offset_x)] = _buffer[2 * i];
}
for (uint8_t i = (8 + _offset_x); i < 8; i++) {
_buffer[2 * i] = 0;
}
}
I2Cdev::writeBytes(_addr, 0x00, 16, _buffer);
delay(_ms);
}
}
void Matrix_8x8::clear() {
memset(_big_buffer, 0, MAX_BIG_BUFFER_SIZE);
}
void Matrix_8x8::writePixel(uint8_t x, uint16_t y, bool set_on) {
if (x > 7) {
x = 7;
}
if (y > (MAX_BIG_BUFFER_SIZE - 1)) {
y = MAX_BIG_BUFFER_SIZE - 1;
}
uint8_t y_mod8 = y % 8;
// first do spin
switch (_orientation) {
case DISPLAY_ROTATE_0: {
uint8_t t;
t = x;
x = y_mod8;
y_mod8 = t;
x = 7 - x;
}
break;
// case DISPLAY_ROTATE_90:
// break;
case DISPLAY_ROTATE_180: {
uint8_t t;
t = x;
x = y_mod8;
y_mod8 = t;
y_mod8 = 7 - y_mod8;
}
break;
case DISPLAY_ROTATE_270:
y_mod8 = 7 - y_mod8;
x = 7 - x;
break;
}
if (set_on) {
_big_buffer[((MAX_BIG_BUFFER_SIZE / 8 - 1) - (y / 8)) * 8 + y_mod8] |= (1 << x);
} else {
_big_buffer[((MAX_BIG_BUFFER_SIZE / 8 - 1) - (y / 8)) * 8 + y_mod8] &= ~(1 << x);
}
}
void Matrix_8x8::writeBar(uint8_t bar) {
if (bar > 32) {
bar = 32;
}
Matrix_8x8::writeOnePicture(BARS[bar]);
}
void Matrix_8x8::writeIcon(uint8_t num) {
if (num > 28) {
num = 28;
}
Matrix_8x8::writeOnePicture(ICONS[num]);
}
void Matrix_8x8::writeNumber(int32_t number, uint16_t ms_per_digit) {
Matrix_8x8::writeString(String(number), ms_per_digit, ACTION_SCROLLING);
}
void Matrix_8x8::writeString(String s, uint16_t ms_per_letter, action_type_t mode) {
uint8_t pic_number = s.length();
if (pic_number > (MAX_BIG_BUFFER_SIZE / 8)) {
pic_number = MAX_BIG_BUFFER_SIZE / 8;
}
if (pic_number == 0) {
return;
}
const char* p_string = s.c_str();
_cursor_start = 0;
if (mode == ACTION_SCROLLING) {
_cursor_steps = 1;
if (pic_number == 1) {
_cursor_end = 0;
_ms = ms_per_letter;
} else {
_cursor_end = pic_number * 8;
_ms = ms_per_letter / 8;
}
} else {
if (pic_number == 1) {
_cursor_end = 0;
} else {
_cursor_end = pic_number * 8 - 1;
}
_cursor_steps = 8;
_ms = ms_per_letter;
}
uint64_t frame;
uint8_t line;
memset(_big_buffer, 0, MAX_BIG_BUFFER_SIZE);
for (uint8_t m = 0; m < pic_number; m++) {
frame = ASCII[p_string[m] - 32];
for (uint8_t i = 0; i < 8; i++) {
line = (uint8_t)(frame & 0xff);
for (uint8_t j = 7; j != 255; j--) {
if (line & 0x01) {
Matrix_8x8::writePixel(j, i + m * 8);
}
line = line >> 1;
}
frame = frame >> 8;
}
}
}
void Matrix_8x8::writeOnePicture(const uint8_t *pic) {
Matrix_8x8::writePictures(pic, 1, 0, ACTION_SHIFT);
}
// uint64_t pic
void Matrix_8x8::writeOnePicture(uint64_t pic) {
Matrix_8x8::writePictures((uint64_t*)&pic, 1, 0, ACTION_SHIFT);
}
void Matrix_8x8::writePictures(const uint8_t *pic, uint8_t pic_number, uint16_t ms_per_pic, action_type_t mode) {
if (pic_number > (MAX_BIG_BUFFER_SIZE / 8)) {
pic_number = MAX_BIG_BUFFER_SIZE / 8;
}
if (pic_number == 0) {
return;
}
_cursor_start = 0;
if (mode == ACTION_SCROLLING) {
_cursor_steps = 1;
_ms = ms_per_pic / 8;
_cursor_end = pic_number * 8;
} else {
_cursor_end = pic_number * 8 - 1;
_cursor_steps = 8;
_ms = ms_per_pic;
}
uint8_t line;
memset(_big_buffer, 0, MAX_BIG_BUFFER_SIZE);
for (uint8_t i = 0; i < (8 * pic_number); i++) {
line = pic[i];
for (uint8_t j = 0; j < 8; j++) {
if (line & 0x01) {
Matrix_8x8::writePixel(j, i);
}
line = line >> 1;
}
}
}
void Matrix_8x8::writePictures(const uint64_t *pic, uint8_t pic_number, uint16_t ms_per_pic, action_type_t mode) {
if (pic_number > (MAX_BIG_BUFFER_SIZE / 8)) {
pic_number = MAX_BIG_BUFFER_SIZE / 8;
}
if (pic_number == 0) {
return;
}
_cursor_start = 0;
if (mode == ACTION_SCROLLING) {
_cursor_steps = 1;
_ms = ms_per_pic / 8;
_cursor_end = pic_number * 8;
} else {
_cursor_end = pic_number * 8 - 1;
_cursor_steps = 8;
_ms = ms_per_pic;
}
uint64_t frame;
uint8_t line;
memset(_big_buffer, 0, MAX_BIG_BUFFER_SIZE);
for (uint8_t m = 0; m < pic_number; m++) {
frame = pic[m];
for (uint8_t i = 0; i < 8; i++) {
line = (uint8_t)(frame & 0xff);
for (uint8_t j = 7; j != 255; j--) {
if (line & 0x01) {
Matrix_8x8::writePixel(j, i + m * 8);
}
line = line >> 1;
}
frame = frame >> 8;
}
}
}

View File

@ -1,278 +0,0 @@
/*
Grove_LED_Matrix_Driver_HT16K33.h
A library for Grove - LED Matrix Driver(HT16K33 with 8x8 LED Matrix)
Copyright (c) 2018 seeed technology inc.
Website : www.seeed.cc
Author : Jerry Yip
Create Time: 2018-06
Version : 0.1
Change Log :
The MIT License (MIT)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef __GROVE_LED_MATRIX_DRIVER_HT16K33__
#define __GROVE_LED_MATRIX_DRIVER_HT16K33__
#include "I2Cdev.h"
#define HT16K33_DEFAULT_I2C_ADDR 0x70
// 8*48 means this buffer can store 48 pictures, if you
// need more space, please make sure MAX_BIG_BUFFER_SIZE
// is a multiple of 8.
#define MAX_BIG_BUFFER_SIZE (8*20)
enum orientation_type_t {
DISPLAY_ROTATE_0 = 0,
DISPLAY_ROTATE_90,
DISPLAY_ROTATE_180,
DISPLAY_ROTATE_270,
};
enum action_type_t {
ACTION_SCROLLING = 0,
ACTION_SHIFT,
};
enum blink_type_t {
BLINK_OFF = 0,
BLINK_2HZ,
BLINK_1HZ,
};
class HT16K33 {
public:
HT16K33();
void init(uint8_t addr = HT16K33_DEFAULT_I2C_ADDR);
/*************************************************************
Description
Setting the blink rate of matrix
Parameter
blink_type: BLINK_OFF, BLINK_2HZ, BLINK_1HZ
Return
Null.
*************************************************************/
void setBlinkRate(blink_type_t blink_type);
/*************************************************************
Description
Setting the brightness of matrix
Parameter
brightness: 0-15
Return
Null.
*************************************************************/
void setBrightness(uint8_t brightness);
virtual void display();
virtual void clear();
protected:
uint8_t _addr;
};
class Matrix_8x8 : public HT16K33 {
public:
Matrix_8x8();
/*************************************************************
Description
Setting the display offset of x-axis and y-axis.
This function will activate after call display().
Parameter
x: The display offset value of horizontal x-axis, range from -8 to 8.
y: The display offset value of horizontal y-axis, range from -8 to 8.
Return
Null.
*************************************************************/
void setDisplayOffset(int8_t x, int8_t y);
/*************************************************************
Description
Setting the display orientation.
This function will activate after call writeXXX().
Parameter
orientation: DISPLAY_ROTATE_0, DISPLAY_ROTATE_90, DISPLAY_ROTATE_180,
DISPLAY_ROTATE_270, which means the display will rotate 0°, 90°,180° or 270°.
Return
Null.
*************************************************************/
void setDisplayOrientation(uint8_t orientation);
/*************************************************************
Description
Display the pixels stored in display buffer on 8x8 matrix.
This function should be called after writeXXX(). And this
function will block until all the data is shown. For example,
if I call writeString("hello", 1000, ACTION_SCROLLING) and
display(), then the program will block for 5 seconds(5*1000ms)
before it goes to the next sentense.
Parameter
Null.
Return
Null.
*************************************************************/
void display();
/*************************************************************
Description
Clear the display buffer.
This function will display nothing on 8x8 Matrix after call display().
Parameter
Null.
Return
Null.
*************************************************************/
void clear();
/*************************************************************
Description
Set a pixel ON(default) or OFF in display buffer.
Call display() to show display buffer.
Parameter
x: the x-axis position of the pixel
y: the y-axis position of the pixel
set_on: Set the pixel ON(default) or OFF.
Return
Null.
*************************************************************/
void writePixel(uint8_t x, uint16_t y, bool set_on = true);
/*************************************************************
Description
Write a bar in display buffer.
Call display() to show display buffer.
Parameter
bar: 0 - 32. 0 is blank and 32 is full.
Return
Null.
*************************************************************/
void writeBar(uint8_t bar);
/*************************************************************
Description
Write a icon in display buffer.
Call display() to show display buffer.
Parameter
num: 0 - 28.
0 full screen 1 arrow_up 2 arrow_down 3 arrow_right
4 arrow_left 5 triangle_up 6 triangle_down 7 triangle_right
8 triangel_left 9 smile_face_1 10 smile_face_2 11 hearts
12 diamonds 13 clubs 14 spades 15 circle1
16 circle2 17 circle3 18 circle4 19 man
20 woman 21 musical_note_1 22 musical_note_2 23 snow
24 up_down 25 double_! 26 left_right 27 house
28 glasses
Return
Null.
*************************************************************/
void writeIcon(uint8_t num);
/*************************************************************
Description
Write a number(from -2147483648 to 2147483647) in display buffer.
Call display() to show display buffer.
Parameter
number: Set the number you want to display on LED matrix. Number(except 0-9)
will scroll horizontally, the shorter you set the ms_per_digit,
the faster it scrolls. The number range from -2147483648 to 2147483647, if
you want to display larger number, please use writeString().
ms_per_digit: Set the display time(ms) of per digit.
Return
Null.
*************************************************************/
void writeNumber(int32_t number, uint16_t ms_per_digit);
/*************************************************************
Description
Write a String in display buffer.
Call display() to show display buffer.
Parameter
s: A string. The string size should be less than (MAX_BIG_BUFFER_SIZE/8),
the excess part will be ignored.
ms_per_letter: Set the display time(ms) of per letter.
mode: ACTION_SCROLLING: If the size of string is more than 1, scroll the string on the matrix;
ACTION_SHIFT: If the size of string is more than 1, display the letter 1 by 1 on the matrix;
Return
Null.
*************************************************************/
void writeString(String s, uint16_t ms_per_letter, action_type_t mode);
/*************************************************************
Description
Write a picture in display buffer.
Call display() to show display buffer.
Parameter
pic: A pointer of a uint8_t picture array.
Return
Null.
*************************************************************/
void writeOnePicture(const uint8_t *pic);
/*************************************************************
Description
Write a picture in display buffer.
Call display() to show display buffer.
Parameter
pic: A uint64_t type 8x8 matrix picture, you can make it at
https://xantorohara.github.io/led-matrix-editor/#
Return
Null.
*************************************************************/
void writeOnePicture(const uint64_t pic);
/*************************************************************
Description
Write many pictures in display buffer.
Call display() to show display buffer.
Parameter
pic: A pointer
pic_number: The number of pictures, should be less than (MAX_BIG_BUFFER_SIZE/8),
the excess part will be ignored.
ms_per_pic: Set the display time(ms) of per picture.
mode: ACTION_SCROLLING: Scroll the pictures on the matrix;
ACTION_SHIFT: Display the pictures 1 by 1 on the matrix;
Return
Null.
*************************************************************/
void writePictures(const uint8_t *pic, uint8_t pic_number, uint16_t ms_per_pic, action_type_t mode);
void writePictures(const uint64_t *pic, uint8_t pic_number, uint16_t ms_per_pic, action_type_t mode);
private:
// Low1 High1 Low2 High2 ... Low8 High8
uint8_t _buffer[16];
uint8_t _big_buffer[MAX_BIG_BUFFER_SIZE];
uint16_t _cursor_start, _cursor_end, _cursor_steps;
uint16_t _ms;
orientation_type_t _orientation;
int8_t _offset_x, _offset_y;
};
#endif //__GROVE_LED_MATRIX_DRIVER_HT16K33__

View File

@ -1,198 +0,0 @@
/*
Seeed_Font.h
A font library for Grove - Grove - LED Matrix Driver(HT16K33 with 8x8 LED Matrix)
Copyright (c) 2018 seeed technology inc.
Website : www.seeed.cc
Author : Jerry Yip
Create Time: 2018-06
Version : 0.1
Change Log :
The MIT License (MIT)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// start at ascii 32(dec), for example, '0' = ASCII[48-32]
const uint64_t ASCII[] = {
0x0000000000000000, // space
0x180018183c3c1800, // !
0x00000000286c6c00, // "
0x6c6cfe6cfe6c6c00, // #
0x103c403804781000, // $
0x60660c1830660600, // %
0xfc66a6143c663c00, // &
0x0000000c18181800, // '
0x6030181818306000, // (
0x060c1818180c0600, // )
0x006c38fe386c0000, // *
0x0010107c10100000, // +
0x060c0c0c00000000, // ,
0x0000003c00000000, // -
0x0606000000000000, // .
0x00060c1830600000, // /
0x1c2222222222221c, // 0
0x1c08080808080c08, // 1
0x3e0408102020221c, // 2
0x1c2220201820221c, // 3
0x20203e2224283020, // 4
0x1c2220201e02023e, // 5
0x1c2222221e02221c, // 6
0x040404081020203e, // 7
0x1c2222221c22221c, // 8
0x1c22203c2222221c, // 9
0x0018180018180000, // :
0x0c18180018180000, // ;
0x6030180c18306000, // <
0x00003c003c000000, // =
0x060c1830180c0600, // >
0x1800183860663c00, // ?
0x003c421a3a221c00, // @
0x0033333f33331e0c, // A
0x003f66663e66663f, // B
0x003c66030303663c, // C
0x001f36666666361f, // D
0x007f46161e16467f, // E
0x000f06161e16467f, // F
0x007c66730303663c, // G
0x003333333f333333, // H
0x001e0c0c0c0c0c1e, // I
0x001e333330303078, // J
0x006766361e366667, // K
0x007f66460606060f, // L
0x0063636b7f7f7763, // M
0x006363737b6f6763, // N
0x001c36636363361c, // O
0x000f06063e66663f, // P
0x00381e3b3333331e, // Q
0x006766363e66663f, // R
0x001e33380e07331e, // S
0x001e0c0c0c0c2d3f, // T
0x003f333333333333, // U
0x000c1e3333333333, // V
0x0063777f6b636363, // W
0x0063361c1c366363, // X
0x001e0c0c1e333333, // Y
0x007f664c1831637f, // Z
0x7818181818187800, // [
0x006030180c060000, // '\'
0x1e18181818181e00, // ]
0x0000008244281000, // ^
0x7e00000000000000, // _
0x0000000060303000, // `
0x006e333e301e0000, // a
0x003b66663e060607, // b
0x001e3303331e0000, // c
0x006e33333e303038, // d
0x001e033f331e0000, // e
0x000f06060f06361c, // f
0x1f303e33336e0000, // g
0x006766666e360607, // h
0x001e0c0c0c0e000c, // i
0x1e33333030300030, // j
0x0067361e36660607, // k
0x001e0c0c0c0c0c0e, // l
0x00636b7f7f330000, // m
0x00333333331f0000, // n
0x001e3333331e0000, // o
0x0f063e66663b0000, // p
0x78303e33336e0000, // q
0x000f06666e3b0000, // r
0x001f301e033e0000, // s
0x00182c0c0c3e0c08, // t
0x006e333333330000, // u
0x000c1e3333330000, // v
0x00367f7f6b630000, // w
0x0063361c36630000, // x
0x1f303e3333330000, // y
0x003f260c193f0000, // z
0x7018180c18187000, // {
0x0008080808080800, // |
0x0e18183018180e00, // }
0x000000365c000000 // ~
};
const uint64_t ICONS[] = {
0xffffffffffffffff, // 0 full screen
0x383838fe7c381000, // 1 arrow_up
0x10387cfe38383800, // 2 arrow_down
0x10307efe7e301000, // 3 arrow_right
0x1018fcfefc181000, // 4 arrow_left
0xfefe7c7c38381000, // 5 triangle_up
0x1038387c7cfefe00, // 6 triangle_down
0x061e7efe7e1e0600, // 7 triangle_right
0xc0f0fcfefcf0c000, // 8 triangel_left
0x7c92aa82aa827c00, // 9 smile_face_1
0x003c420000660000, // 10 smile_face_2
0x10387cfefeee4400, // 11 hearts
0x10387cfe7c381000, // 12 diamonds
0x381054fe54381000, // 13 clubs
0x38107cfe7c381000, // 14 spades
0x00387c7c7c380000, // 15 circle1
0xffc7838383c7ffff, // 16 circle2
0x0038444444380000, // 17 circle3
0xffc7bbbbbbc7ffff, // 18 circle4
0x0c12129ca0c0f000, // 19 man
0x38444438107c1000, // 20 woman
0x060e0c0808281800, // 21 musical_note_1
0x066eecc88898f000, // 22 musical_note_2
0x105438ee38541000, // 23 snow
0x1038541054381000, // 24 up_down
0x6666006666666600, // 25 double_!
0x002844fe44280000, // 26 left_right
0xfe8282c66c381000, // 27 house
0x002400e7a5bde700 // 28 glasses
};
const uint64_t BARS[] = {
0x0000000000000000,
0x1800000000000000,
0x3c00000000000000,
0x7e00000000000000,
0xff00000000000000,
0xff18000000000000,
0xff3c000000000000,
0xff7e000000000000,
0xffff000000000000,
0xffff180000000000,
0xffff3c0000000000,
0xffff7e0000000000,
0xffffff0000000000,
0xffffff1800000000,
0xffffff3c00000000,
0xffffff7e00000000,
0xffffffff00000000,
0xffffffff18000000,
0xffffffff3c000000,
0xffffffff7e000000,
0xffffffffff000000,
0xffffffffff180000,
0xffffffffff3c0000,
0xffffffffff7e0000,
0xffffffffffff0000,
0xffffffffffff1800,
0xffffffffffff3c00,
0xffffffffffff7e00,
0xffffffffffffff00,
0xffffffffffffff18,
0xffffffffffffff3c,
0xffffffffffffff7e,
0xffffffffffffffff
};

View File

@ -4,10 +4,3 @@
- Wiki : https://wiki.seeedstudio.com/Grove-IMU_9DOF_v2.0/ - Wiki : https://wiki.seeedstudio.com/Grove-IMU_9DOF_v2.0/
- Forge : https://github.com/Seeed-Studio/Grove_IMU_9DOF - Forge : https://github.com/Seeed-Studio/Grove_IMU_9DOF
- Licence : MIT - Licence : MIT
### Grove_LED_Matrix_Driver_HT16K33 :
- Wiki : https://wiki.seeedstudio.com/Grove-Red_LED_Matrix_w_Driver
- Forge : https://github.com/Seeed-Studio/Grove_LED_Matrix_Driver_HT16K33
- Outil en ligne pour générer des caractères : https://xantorohara.github.io/led-matrix-editor/#
- Licence : MIT

View File

@ -57,12 +57,12 @@ def capteur(cont):
# Lecture de la liaison série : programme Arduino : 4-labyrinthe-imu.ino # Lecture de la liaison série : programme Arduino : 4-labyrinthe-imu.ino
serial_msg_in = str(serial_comm.readline()) serial_msg_in = str(serial_comm.readline())
# Mettre la bille à la position de départ avec une vitesse nulle # # Mettre la bille à la position de départ avec une vitesse nulle
if serial_msg_in.find("start")>0: # if serial_msg_in.find("start")>0:
if obj_bille['victoire'] or obj_bille['chute']: # if obj_bille['victoire'] or obj_bille['chute']:
depart() # depart()
# Roll et Pitch # Roll et Pitch : copier la position du plateau réel
if serial_msg_in.find(",")>0: if serial_msg_in.find(",")>0:
txt = serial_msg_in.split(',',2) txt = serial_msg_in.split(',',2)
x_txt = txt[0][2:] x_txt = txt[0][2:]
@ -98,35 +98,35 @@ def cycle(cont):
obj = cont.owner # obj est l'objet associé au contrôleur donc 'Bille' obj = cont.owner # obj est l'objet associé au contrôleur donc 'Bille'
obj['z']=obj.worldPosition.z # la propriété z est mis à jour avec la position globale en z de la bille obj['z']=obj.worldPosition.z # la propriété z est mis à jour avec la position globale en z de la bille
# Écriture de la position de la bille sur la liaison série # # Écriture de la position de la bille sur la liaison série
if obj['victoire']==False and obj['chute']==False: # if obj['victoire']==False and obj['chute']==False:
# obj['x'] = obj.worldPosition.x # de -3.5 à 3.5 # # obj['x'] = obj.worldPosition.x # de -3.5 à 3.5
# obj['y'] = obj.worldPosition.y # de 3.5 à -3.5 # # obj['y'] = obj.worldPosition.y # de 3.5 à -3.5
obj['Lx']=-1*round(obj.worldPosition.x-3.5) # de 7 à 0 # obj['Lx']=-1*round(obj.worldPosition.x-3.5) # de 7 à 0
if obj['Lx']<0: obj['Lx']=0 # if obj['Lx']<0: obj['Lx']=0
if obj['Lx']>7: obj['Lx']=7 # if obj['Lx']>7: obj['Lx']=7
obj['Ly']=-1*round(obj.worldPosition.y-3.5) # de 0 à 7 # obj['Ly']=-1*round(obj.worldPosition.y-3.5) # de 0 à 7
if obj['Ly']<0: obj['Ly']=0 # if obj['Ly']<0: obj['Ly']=0
if obj['Ly']>7: obj['Ly']=7 # if obj['Ly']>7: obj['Ly']=7
serial_msg_out = str(obj['Lx'])+str(obj['Ly'])+"\n" # serial_msg_out = str(obj['Lx'])+str(obj['Ly'])+"\n"
serial_comm.write(serial_msg_out.encode()) # serial_comm.write(serial_msg_out.encode())
# Si l'altitude de bille < -10 et pas de victoire -> chute # # Si l'altitude de bille < -10 et pas de victoire -> chute
if obj['z'] < -10 and obj['victoire'] == False : # if obj['z'] < -10 and obj['victoire'] == False :
# Afficher image de chute sur la matrice de leds # # Afficher image de chute sur la matrice de leds
serial_msg_out = "91\n" # serial_msg_out = "91\n"
serial_comm.write(serial_msg_out.encode()) # serial_comm.write(serial_msg_out.encode())
obj['chute'] = True # obj['chute'] = True
# Départ de la bille # Départ de la bille
def depart(): def depart():
obj_bille = scene.objects['Bille'] obj_bille = scene.objects['Bille']
obj_plateau = scene.objects['Plateau'] obj_plateau = scene.objects['Plateau']
# Replacement du plateau (tous les angles à 0 en plusieurs fois) # # Replacement du plateau (tous les angles à 0 en plusieurs fois)
while obj_plateau.worldOrientation.to_euler().x != 0 and obj_plateau.worldOrientation.to_euler().y !=0 and obj_plateau.worldOrientation.to_euler().z !=0 : # while obj_plateau.worldOrientation.to_euler().x != 0 and obj_plateau.worldOrientation.to_euler().y !=0 and obj_plateau.worldOrientation.to_euler().z !=0 :
obj_plateau.applyRotation((-obj_plateau.worldOrientation.to_euler().x, -obj_plateau.worldOrientation.to_euler().y, -obj_plateau.worldOrientation.to_euler().z), False) # obj_plateau.applyRotation((-obj_plateau.worldOrientation.to_euler().x, -obj_plateau.worldOrientation.to_euler().y, -obj_plateau.worldOrientation.to_euler().z), False)
# Mettre la bille à la position de départ avec une vitesse nulle # Mettre la bille à la position de départ avec une vitesse nulle
obj_bille.worldLinearVelocity=(0, 0, 0) obj_bille.worldLinearVelocity=(0, 0, 0)
@ -140,10 +140,10 @@ def depart():
# Victoire (collision de la bille avec l'arrivée) # Victoire (collision de la bille avec l'arrivée)
def victoire(cont): def victoire(cont):
# Afficher image de victoire sur la matrice de leds # # Afficher image de victoire sur la matrice de leds
serial_msg_out = "92\n" # serial_msg_out = "92\n"
serial_comm.write(serial_msg_out.encode()) # serial_comm.write(serial_msg_out.encode())
scene.objects['Bille']['victoire']=True # scene.objects['Bille']['victoire']=True
# Animation du Panneau victoire # Animation du Panneau victoire
scene.objects['Panneau victoire'].setVisible(True,True) # Afficher le panneau de la victoire scene.objects['Panneau victoire'].setVisible(True,True) # Afficher le panneau de la victoire

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because it is too large Load Diff

BIN
labyrinthe/6-jumeaux/impression3d/poche.stl Normal file → Executable file

Binary file not shown.

View File

@ -121,18 +121,6 @@ void loop() {
pitch_deg = pitch*57.3; pitch_deg = pitch*57.3;
pitch_txt = String(pitch_deg); pitch_txt = String(pitch_deg);
/*****
* Affiche les angles de roulie et de tangage
*****/
/* if (auto_horizontal) */
/* { */
/* Serial.print(roll_txt); */
/* Serial.print(","); */
/* Serial.print(pitch_txt); */
/* Serial.println(); */
/* } */
/***** /*****
* Mouvement manuel : Axe x * Mouvement manuel : Axe x
*****/ *****/
@ -263,7 +251,7 @@ void loop() {
digitalWrite(led_pin, HIGH); // Led digitalWrite(led_pin, HIGH); // Led
auto_horizontal_mvt = false; auto_horizontal_mvt = false;
// Mouvemeent // Mouvement
if ((roll_deg < -1) or (roll_deg > 1) or (pitch_deg < -1) or (pitch_deg > 1)) if ((roll_deg < -1) or (roll_deg > 1) or (pitch_deg < -1) or (pitch_deg > 1))
auto_horizontal_mvt = true; auto_horizontal_mvt = true;
if (roll_deg < -1) if (roll_deg < -1)