diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu-debut.blend b/labyrinthe/3-arduino/3-labyrinthe-imu-debut.blend new file mode 100644 index 0000000..50ec619 Binary files /dev/null and b/labyrinthe/3-arduino/3-labyrinthe-imu-debut.blend differ diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu.blend b/labyrinthe/3-arduino/3-labyrinthe-imu.blend new file mode 100644 index 0000000..ab8ce85 Binary files /dev/null and b/labyrinthe/3-arduino/3-labyrinthe-imu.blend differ diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu.py b/labyrinthe/3-arduino/3-labyrinthe-imu.py new file mode 100644 index 0000000..320e6a8 --- /dev/null +++ b/labyrinthe/3-arduino/3-labyrinthe-imu.py @@ -0,0 +1,214 @@ +import bge # Bibliothèque Blender Game Engine (BGE) +import pyfirmata # Protocole Firmata + +############################################################################### +# 3-labyrinthe-manette.py +# @title: Module (unique) de la scène 3D du labyrinthe à bille pilotable avec la manette +# @project: Blender-EduTech - Tutoriel : Tutoriel 3 Labyrinthe à bille - Interfacer avec une carte Arduino +# @lang: fr +# @authors: Philippe Roy +# @copyright: Copyright (C) 2023 Philippe Roy +# @license: GNU GPL +# +# Commandes déclenchées par UPBGE pour le scène du labyrinthe +# +############################################################################### + +# Récupérer la scène 3D +scene = bge.logic.getCurrentScene() +# print("Objets de la scene : ", scene.objects) # Lister les objets de la scène + +# Constantes + +JUST_ACTIVATED = bge.logic.KX_INPUT_JUST_ACTIVATED +JUST_RELEASED = bge.logic.KX_INPUT_JUST_RELEASED +ACTIVATE = bge.logic.KX_INPUT_ACTIVE + +############################################################################### +# Communication avec la carte Arduino +############################################################################### + +# carte = pyfirmata.Arduino('COM4') # Windows +carte = pyfirmata.Arduino('/dev/ttyACM0') # GNU/Linux +print("Communication Carte Arduino établie") + +# Iterateur pour les entrees +it = pyfirmata.util.Iterator(carte) +it.start() + +# Definition des 4 boutons +bt_haut = carte.get_pin('d:2:i') +bt_bas = carte.get_pin('d:3:i') +bt_gauche = carte.get_pin('d:4:i') +bt_droit = carte.get_pin('d:5:i') + +# led = carte.get_pin('d:13:o') + +############################################################################### +# Gestion de la manette Arduino +############################################################################### + +def manette(cont): + obj = cont.owner # obj est l'objet associé au contrôleur donc 'Plateau' + resolution = 0.01 + + # Bouton haut - Broche 2 + if bt_haut.read() == True and bt_bas.read() == False: + obj.applyRotation((-resolution,0,0), False) + + # Bouton bas - Broche 3 + if bt_haut.read() == False and bt_bas.read() == True: + obj.applyRotation((+resolution,0,0), False) + + # Bouton gauche - Broche 4 + if bt_gauche.read() == True and bt_droit.read() == False: + obj.applyRotation((0, -resolution,0), False) + + # Bouton droit - Broche 5 + if bt_gauche.read() == False and bt_droit.read() == True : + obj.applyRotation((0, resolution,0), False) + +############################################################################### +# Gestion du clavier +############################################################################### + +# Flèches pour tourner le plateau +def clavier(cont): + obj = cont.owner # obj est l'objet associé au contrôleur donc 'Plateau' + # obj = scene.objects['Plateau'] + keyboard = bge.logic.keyboard + resolution = 0.01 + + # Touche ESC -> Quitter + if keyboard.inputs[bge.events.ESCKEY].status[0] == ACTIVATE: + carte.exit() + bge.logic.endGame() + + # Flèche haut - Up arrow + if keyboard.inputs[bge.events.UPARROWKEY].status[0] == ACTIVATE: + obj.applyRotation((-resolution,0,0), False) + + # Flèche bas - Down arrow + if keyboard.inputs[bge.events.DOWNARROWKEY].status[0] == ACTIVATE: + obj.applyRotation((resolution,0,0), False) + + # Flèche gauche - Left arrow + if keyboard.inputs[bge.events.LEFTARROWKEY].status[0] == ACTIVATE: + obj.applyRotation((0, -resolution,0), False) + + # Flèche droit - Right arrow + if keyboard.inputs[bge.events.RIGHTARROWKEY].status[0] == ACTIVATE: + obj.applyRotation((0, resolution,0), False) + +############################################################################### +# Gameplay +############################################################################### + +# Initialisation de la scène +def init(cont): + obj = cont.owner # obj est l'objet associé au contrôleur donc 'Bille' + + # Mémorisation de la position de départ de la bille + obj['init_x']=obj.worldPosition.x + obj['init_y']=obj.worldPosition.y + obj['init_z']=obj.worldPosition.z + + # Cacher le panneau de la victoire et suspendre la physique du panneau cliquable + scene.objects['Panneau victoire'].setVisible(False,True) + scene.objects['Panneau victoire - plan'].suspendPhysics (True) + scene.objects['Bouton fermer'].color = (0, 0, 0, 1) # Noir + +# Cycle (boucle de contrôle de la bille) +def cycle(cont): + obj = cont.owner # obj est l'objet associé au contrôleur donc 'Bille' + obj['z']=obj.worldPosition.z # la propriété z est mis à jour avec la position globale en z de la bille + obj_plateau = scene.objects['Plateau'] # obj_plateau est l'objet 'Plateau' + obj_plateau['rot_x']=obj_plateau.worldOrientation.to_euler().x # propriété 'rot_x' mis à jour avec l'orientation globale en x du plateau + obj_plateau['rot_y']=obj_plateau.worldOrientation.to_euler().y # propriété 'rot_y' mis à jour avec l'orientation globale en y du plateau + obj_plateau['rot_z']=obj_plateau.worldOrientation.to_euler().z # propriété 'rot_z' mis à jour avec l'orientation globale en z du plateau + + # Redémarrer la partie si la bille a chuté et si la panneau victoire n'est pas visible + if obj['z'] < -20 and scene.objects['Panneau victoire'].visible == False: + print ("Chuuuu.....te") + + # Replacement du plateau (tous les angles à 0 en plusieurs fois) + while obj_plateau.worldOrientation.to_euler().x != 0 and obj_plateau.worldOrientation.to_euler().y !=0 and obj_plateau.worldOrientation.to_euler().z !=0 : + obj_plateau.applyRotation((-obj_plateau.worldOrientation.to_euler().x, -obj_plateau.worldOrientation.to_euler().y, -obj_plateau.worldOrientation.to_euler().z), False) + + # Mettre la bille à la position de départ avec une vitesse nulle + obj.worldLinearVelocity=(0, 0, 0) + obj.worldAngularVelocity=(0, 0, 0) + obj.worldPosition.x = obj['init_x'] + obj.worldPosition.y = obj['init_y'] + obj.worldPosition.z = obj['init_z']+0.5 # On repose la bille + +# Victoire (colision de la bille avec l'arrivée) +def victoire(cont): + scene.objects['Panneau victoire'].setVisible(True,True) # Afficher le panneau de la victoire + scene.objects['Panneau victoire - plan'].restorePhysics() # Restaurer la physique du panneau cliquable + start = 1 + end = 100 + layer = 0 + priority = 1 + blendin = 1.0 + mode = bge.logic.KX_ACTION_MODE_PLAY + layerWeight = 0.0 + ipoFlags = 0 + speed = 1 + scene.objects['Panneau victoire'].playAction('Panneau victoireAction', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed) + +# Highlight du bouton Fermer +def victoire_fermer_hl(cont): + obj = cont.owner + + # Activation + if cont.sensors['MO'].status == JUST_ACTIVATED: + obj.color = (1, 1, 1, 1) # Blanc + + # Désactivation + if cont.sensors['MO'].status == JUST_RELEASED: + obj.color = (0, 0, 0, 1) # Noir + +# Fermer le panneau de la victoire (clic) +def victoire_fermer(cont): + if cont.sensors['Click'].status == JUST_ACTIVATED and cont.sensors['MO'].positive: + scene.objects['Panneau victoire'].setVisible(False,True) # Cacher le panneau de la victoire + scene.objects['Panneau victoire - plan'].suspendPhysics (True) # Suspendre la physique du panneau cliquable + scene.objects['Bille']['z']= -21 # On provoque le redémarrage si la bille est ressortie + +############################################################################### +# Gestion du Joystick USB +############################################################################### + +def joystick(cont): + obj = cont.owner + joystickIndex = 0 #int from 0 to 6 + joy = bge.logic.joysticks[joystickIndex] + events = joy.activeButtons + axis = joy.axisValues[0:4] + resolution = 0.01 + + leftStick_x = axis[0]; leftStick_y = axis[1] + rightStick_x = axis[2]; rightStick_y = axis[3] + + #if any button is pressed + # if events: + # print(events) #spit out integer index of pressed buttons + # if 0 in events: + # doSomething() + + # Up + if leftStick_y <-0.1 : + obj.applyRotation((-resolution,0,0), False) + + # Down + if leftStick_y >0.1 : + obj.applyRotation((resolution,0,0), False) + + # Left + if leftStick_x <-0.1 : + obj.applyRotation((0, -resolution,0), False) + + # Right + if leftStick_x >0.1 : + obj.applyRotation((0, resolution,0), False) diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu/3-labyrinthe-imu.ino b/labyrinthe/3-arduino/3-labyrinthe-imu/3-labyrinthe-imu.ino new file mode 100644 index 0000000..0edc433 --- /dev/null +++ b/labyrinthe/3-arduino/3-labyrinthe-imu/3-labyrinthe-imu.ino @@ -0,0 +1,107 @@ +#include "Wire.h" + +/****************************************************************************** + * 3-labyrinthe-imu.ino +# @title: Programme pour la carte Arduino de gestion de centrale inertielle (capteur IMU) + * @project: Blender-EduTech - Tutoriel : Tutoriel 3 Labyrinthe à bille - Interfacer la scène 3D avec une carte Arduino + * @lang: fr + * @authors: Philippe Roy + * @copyright: Copyright (C) 2023 Philippe Roy + * @license: GNU GPL + * + ******************************************************************************/ + +/****************************************************************************** + * I2C + ******************************************************************************/ + +// fr : I2Cdev et MPU6050 doivent être installée comme bibilothèque ou sinon les fichiers .cpp et .h +// des deux classes doivent être inclus dans le chemin du projet +// en : I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files +// for both classes must be in the include path of your project +#include "I2Cdev.h" +#include "MPU6050.h" + +// fr : L'adresse par défault de la classe I2C est 0x68 +// en : Class default I2C address is 0x68 +// specific I2C addresses may be passed as a parameter here +// AD0 low = 0x68 (default for InvenSense evaluation board) +// AD0 high = 0x69 +MPU6050 accelgyro; +I2Cdev I2C_M; + +int16_t ax, ay, az; +int16_t gx, gy, gz; +int16_t mx, my, mz; +float Axyz[3]; +float roll; +float pitch; +float roll_deg; +float pitch_deg; +String roll_txt; +String pitch_txt; + +/****************************************************************************** + * Pupitre + ******************************************************************************/ + +// Adressage de la led Arduino +const int led = 13; // Led de mouvement (onboard) +const int led_com = 10; // Led de communication modele 3d-> arduino + +/****************************************************************************** + * Initialisation + ******************************************************************************/ + +void setup() { + + pinMode(led, OUTPUT); // Led de mouvement + pinMode(led_com, OUTPUT); // Led de communication modele 3d-> arduino + digitalWrite(led, LOW); + digitalWrite(led_com, LOW); + + // Moniteur serie + Serial.begin(115200); // 7 fps + /* Serial.begin(38400); */ // 6 fps + /* Serial.begin(9600); */ // trop lent 2fps + + // I2C + Wire.begin(); + Serial.println("Initialisation des composants I2C."); + accelgyro.initialize(); + } + +/****************************************************************************** + * Boucle principale + ******************************************************************************/ + +void loop() { + + /***** + * Lecture des accelerations + *****/ + + accelgyro.getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz); + Axyz[0] = (double) ax / 16384; + Axyz[1] = (double) ay / 16384; + Axyz[2] = (double) az / 16384; + roll = asin(-Axyz[0]); + roll_deg = roll*57.3; + roll_txt = String(roll_deg); + /* pitch = asin(Axyz[1]/cos(roll)); */ + pitch = -asin(Axyz[1]/cos(roll)); // dépend du positionnement du capteur (X vers la droite, Y vers l'arriere, Z vers le haut) + pitch_deg = pitch*57.3; + pitch_txt = String(pitch_deg); + + /***** + * Communication : Arduino -> modèle 3d + *****/ + + // Serial.println("Roll (Rx): "+ roll_txt + " Pitch (Ry): " + pitch_txt); + Serial.print(roll_txt); + Serial.print(","); + Serial.print(pitch_txt); + Serial.println(); + + /* delay(300); */ +} diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu/GNU GPL-3.txt b/labyrinthe/3-arduino/3-labyrinthe-imu/GNU GPL-3.txt new file mode 100644 index 0000000..e90a2ff --- /dev/null +++ b/labyrinthe/3-arduino/3-labyrinthe-imu/GNU GPL-3.txt @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + ClimWay2 + Copyright (C) 2023 Philippe Roy + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) 2023 Philippe Roy + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu/I2Cdev.cpp b/labyrinthe/3-arduino/3-labyrinthe-imu/I2Cdev.cpp new file mode 100644 index 0000000..7f52fe0 --- /dev/null +++ b/labyrinthe/3-arduino/3-labyrinthe-imu/I2Cdev.cpp @@ -0,0 +1,1466 @@ +// I2Cdev library collection - Main I2C device class +// Abstracts bit and byte I2C R/W functions into a convenient class +// 6/9/2012 by Jeff Rowberg +// +// Changelog: +// 2012-06-09 - fix major issue with reading > 32 bytes at a time with Arduino Wire +// - add compiler warnings when using outdated or IDE or limited I2Cdev implementation +// 2011-11-01 - fix write*Bits mask calculation (thanks sasquatch @ Arduino forums) +// 2011-10-03 - added automatic Arduino version detection for ease of use +// 2011-10-02 - added Gene Knight's NBWire TwoWire class implementation with small modifications +// 2011-08-31 - added support for Arduino 1.0 Wire library (methods are different from 0.x) +// 2011-08-03 - added optional timeout parameter to read* methods to easily change from default +// 2011-08-02 - added support for 16-bit registers +// - fixed incorrect Doxygen comments on some methods +// - added timeout value for read operations (thanks mem @ Arduino forums) +// 2011-07-30 - changed read/write function structures to return success or byte counts +// - made all methods static for multi-device memory savings +// 2011-07-28 - initial release + +/* ============================================ + I2Cdev device library code is placed under the MIT license + Copyright (c) 2012 Jeff Rowberg + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in + all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + THE SOFTWARE. + =============================================== +*/ + +#include "I2Cdev.h" + +#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE + + #ifdef I2CDEV_IMPLEMENTATION_WARNINGS + #if ARDUINO < 100 + #warning Using outdated Arduino IDE with Wire library is functionally limiting. + #warning Arduino IDE v1.0.1+ with I2Cdev Fastwire implementation is recommended. + #warning This I2Cdev implementation does not support: + #warning - Repeated starts conditions + #warning - Timeout detection (some Wire requests block forever) + #elif ARDUINO == 100 + #warning Using outdated Arduino IDE with Wire library is functionally limiting. + #warning Arduino IDE v1.0.1+ with I2Cdev Fastwire implementation is recommended. + #warning This I2Cdev implementation does not support: + #warning - Repeated starts conditions + #warning - Timeout detection (some Wire requests block forever) + #elif ARDUINO > 100 + /* + #warning Using current Arduino IDE with Wire library is functionally limiting. + #warning Arduino IDE v1.0.1+ with I2CDEV_BUILTIN_FASTWIRE implementation is recommended. + #warning This I2Cdev implementation does not support: + #warning - Timeout detection (some Wire requests block forever) + */ + #endif + #endif + +#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE + + #error The I2CDEV_BUILTIN_FASTWIRE implementation is known to be broken right now. Patience, Iago! + +#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE + + #ifdef I2CDEV_IMPLEMENTATION_WARNINGS + #warning Using I2CDEV_BUILTIN_NBWIRE implementation may adversely affect interrupt detection. + #warning This I2Cdev implementation does not support: + #warning - Repeated starts conditions + #endif + + // NBWire implementation based heavily on code by Gene Knight + // Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html + // Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html + TwoWire Wire; + +#endif + +/** Default constructor. +*/ +I2Cdev::I2Cdev() { +} + +/** Read a single bit from an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to read from + @param bitNum Bit position to read (0-7) + @param data Container for single bit value + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Status of read operation (true = success) +*/ +int8_t I2Cdev::readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t* data, uint16_t timeout) { + uint8_t b; + uint8_t count = readByte(devAddr, regAddr, &b, timeout); + *data = b & (1 << bitNum); + return count; +} + +/** Read a single bit from a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to read from + @param bitNum Bit position to read (0-15) + @param data Container for single bit value + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Status of read operation (true = success) +*/ +int8_t I2Cdev::readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t* data, uint16_t timeout) { + uint16_t b; + uint8_t count = readWord(devAddr, regAddr, &b, timeout); + *data = b & (1 << bitNum); + return count; +} + +/** Read multiple bits from an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to read from + @param bitStart First bit position to read (0-7) + @param length Number of bits to read (not more than 8) + @param data Container for right-aligned value (i.e. '101' read from any bitStart position will equal 0x05) + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Status of read operation (true = success) +*/ +int8_t I2Cdev::readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t* data, + uint16_t timeout) { + // 01101001 read byte + // 76543210 bit numbers + // xxx args: bitStart=4, length=3 + // 010 masked + // -> 010 shifted + uint8_t count, b; + if ((count = readByte(devAddr, regAddr, &b, timeout)) != 0) { + uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1); + b &= mask; + b >>= (bitStart - length + 1); + *data = b; + } + return count; +} + +/** Read multiple bits from a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to read from + @param bitStart First bit position to read (0-15) + @param length Number of bits to read (not more than 16) + @param data Container for right-aligned value (i.e. '101' read from any bitStart position will equal 0x05) + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Status of read operation (1 = success, 0 = failure, -1 = timeout) +*/ +int8_t I2Cdev::readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t* data, + uint16_t timeout) { + // 1101011001101001 read byte + // fedcba9876543210 bit numbers + // xxx args: bitStart=12, length=3 + // 010 masked + // -> 010 shifted + uint8_t count; + uint16_t w; + if ((count = readWord(devAddr, regAddr, &w, timeout)) != 0) { + uint16_t mask = ((1 << length) - 1) << (bitStart - length + 1); + w &= mask; + w >>= (bitStart - length + 1); + *data = w; + } + return count; +} + +/** Read single byte from an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to read from + @param data Container for byte value read from device + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Status of read operation (true = success) +*/ +int8_t I2Cdev::readByte(uint8_t devAddr, uint8_t regAddr, uint8_t* data, uint16_t timeout) { + return readBytes(devAddr, regAddr, 1, data, timeout); +} + +/** Read single word from a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to read from + @param data Container for word value read from device + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Status of read operation (true = success) +*/ +int8_t I2Cdev::readWord(uint8_t devAddr, uint8_t regAddr, uint16_t* data, uint16_t timeout) { + return readWords(devAddr, regAddr, 1, data, timeout); +} + +/** Read multiple bytes from an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr First register regAddr to read from + @param length Number of bytes to read + @param data Buffer to store read data in + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Number of bytes read (-1 indicates failure) +*/ +int8_t I2Cdev::readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data, uint16_t timeout) { + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print("I2C (0x"); + Serial.print(devAddr, HEX); + Serial.print(") reading "); + Serial.print(length, DEC); + Serial.print(" bytes from 0x"); + Serial.print(regAddr, HEX); + Serial.print("..."); + #endif + + int8_t count = 0; + uint32_t t1 = millis(); + + #if (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE) + + #if (ARDUINO < 100) + // Arduino v00xx (before v1.0), Wire library + + // I2C/TWI subsystem uses internal buffer that breaks with large data requests + // so if user requests more than BUFFER_LENGTH bytes, we have to do it in + // smaller chunks instead of all at once + for (uint8_t k = 0; k < length; k += min(length, BUFFER_LENGTH)) { + Wire.beginTransmission(devAddr); + Wire.send(regAddr); + Wire.endTransmission(); + Wire.beginTransmission(devAddr); + Wire.requestFrom(devAddr, (uint8_t)min(length - k, BUFFER_LENGTH)); + + for (; Wire.available() && (timeout == 0 || millis() - t1 < timeout); count++) { + data[count] = Wire.receive(); + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[count], HEX); + if (count + 1 < length) { + Serial.print(" "); + } + #endif + } + + Wire.endTransmission(); + } + #elif (ARDUINO == 100) + // Arduino v1.0.0, Wire library + // Adds standardized write() and read() stream methods instead of send() and receive() + + // I2C/TWI subsystem uses internal buffer that breaks with large data requests + // so if user requests more than BUFFER_LENGTH bytes, we have to do it in + // smaller chunks instead of all at once + for (uint8_t k = 0; k < length; k += min(length, BUFFER_LENGTH)) { + Wire.beginTransmission(devAddr); + Wire.write(regAddr); + Wire.endTransmission(); + Wire.beginTransmission(devAddr); + Wire.requestFrom(devAddr, (uint8_t)min(length - k, BUFFER_LENGTH)); + + for (; Wire.available() && (timeout == 0 || millis() - t1 < timeout); count++) { + data[count] = Wire.read(); + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[count], HEX); + if (count + 1 < length) { + Serial.print(" "); + } + #endif + } + + Wire.endTransmission(); + } + #elif (ARDUINO > 100) + // Arduino v1.0.1+, Wire library + // Adds official support for repeated start condition, yay! + + // I2C/TWI subsystem uses internal buffer that breaks with large data requests + // so if user requests more than BUFFER_LENGTH bytes, we have to do it in + // smaller chunks instead of all at once + for (uint8_t k = 0; k < length; k += min(length, BUFFER_LENGTH)) { + Wire.beginTransmission(devAddr); + Wire.write(regAddr); + Wire.endTransmission(); + Wire.beginTransmission(devAddr); + Wire.requestFrom(devAddr, (uint8_t)min(length - k, BUFFER_LENGTH)); + + for (; Wire.available() && (timeout == 0 || millis() - t1 < timeout); count++) { + data[count] = Wire.read(); + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[count], HEX); + if (count + 1 < length) { + Serial.print(" "); + } + #endif + } + + Wire.endTransmission(); + } + #endif + + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE) + // Fastwire library (STILL UNDER DEVELOPMENT, NON-FUNCTIONAL!) + + // no loop required for fastwire + uint8_t status = Fastwire::readBuf(devAddr, regAddr, data, length); + if (status == 0) { + count = length; // success + } else { + count = -1; // error + } + + #endif + + // check for timeout + if (timeout > 0 && millis() - t1 >= timeout && count < length) { + count = -1; // timeout + } + + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(". Done ("); + Serial.print(count, DEC); + Serial.println(" read)."); + #endif + + return count; +} + +/** Read multiple words from a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr First register regAddr to read from + @param length Number of words to read + @param data Buffer to store read data in + @param timeout Optional read timeout in milliseconds (0 to disable, leave off to use default class value in I2Cdev::readTimeout) + @return Number of words read (0 indicates failure) +*/ +int8_t I2Cdev::readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data, uint16_t timeout) { + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print("I2C (0x"); + Serial.print(devAddr, HEX); + Serial.print(") reading "); + Serial.print(length, DEC); + Serial.print(" words from 0x"); + Serial.print(regAddr, HEX); + Serial.print("..."); + #endif + + int8_t count = 0; + uint32_t t1 = millis(); + + #if (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE) + + #if (ARDUINO < 100) + // Arduino v00xx (before v1.0), Wire library + + // I2C/TWI subsystem uses internal buffer that breaks with large data requests + // so if user requests more than BUFFER_LENGTH bytes, we have to do it in + // smaller chunks instead of all at once + for (uint8_t k = 0; k < length * 2; k += min(length * 2, BUFFER_LENGTH)) { + Wire.beginTransmission(devAddr); + Wire.send(regAddr); + Wire.endTransmission(); + Wire.beginTransmission(devAddr); + Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes + + bool msb = true; // starts with MSB, then LSB + for (; Wire.available() && count < length && (timeout == 0 || millis() - t1 < timeout);) { + if (msb) { + // first byte is bits 15-8 (MSb=15) + data[count] = Wire.receive() << 8; + } else { + // second byte is bits 7-0 (LSb=0) + data[count] |= Wire.receive(); + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[count], HEX); + if (count + 1 < length) { + Serial.print(" "); + } + #endif + count++; + } + msb = !msb; + } + + Wire.endTransmission(); + } + #elif (ARDUINO == 100) + // Arduino v1.0.0, Wire library + // Adds standardized write() and read() stream methods instead of send() and receive() + + // I2C/TWI subsystem uses internal buffer that breaks with large data requests + // so if user requests more than BUFFER_LENGTH bytes, we have to do it in + // smaller chunks instead of all at once + for (uint8_t k = 0; k < length * 2; k += min(length * 2, BUFFER_LENGTH)) { + Wire.beginTransmission(devAddr); + Wire.write(regAddr); + Wire.endTransmission(); + Wire.beginTransmission(devAddr); + Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes + + bool msb = true; // starts with MSB, then LSB + for (; Wire.available() && count < length && (timeout == 0 || millis() - t1 < timeout);) { + if (msb) { + // first byte is bits 15-8 (MSb=15) + data[count] = Wire.read() << 8; + } else { + // second byte is bits 7-0 (LSb=0) + data[count] |= Wire.read(); + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[count], HEX); + if (count + 1 < length) { + Serial.print(" "); + } + #endif + count++; + } + msb = !msb; + } + + Wire.endTransmission(); + } + #elif (ARDUINO > 100) + // Arduino v1.0.1+, Wire library + // Adds official support for repeated start condition, yay! + + // I2C/TWI subsystem uses internal buffer that breaks with large data requests + // so if user requests more than BUFFER_LENGTH bytes, we have to do it in + // smaller chunks instead of all at once + for (uint8_t k = 0; k < length * 2; k += min(length * 2, BUFFER_LENGTH)) { + Wire.beginTransmission(devAddr); + Wire.write(regAddr); + Wire.endTransmission(); + Wire.beginTransmission(devAddr); + Wire.requestFrom(devAddr, (uint8_t)(length * 2)); // length=words, this wants bytes + + bool msb = true; // starts with MSB, then LSB + for (; Wire.available() && count < length && (timeout == 0 || millis() - t1 < timeout);) { + if (msb) { + // first byte is bits 15-8 (MSb=15) + data[count] = Wire.read() << 8; + } else { + // second byte is bits 7-0 (LSb=0) + data[count] |= Wire.read(); + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[count], HEX); + if (count + 1 < length) { + Serial.print(" "); + } + #endif + count++; + } + msb = !msb; + } + + Wire.endTransmission(); + } + #endif + + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE) + // Fastwire library (STILL UNDER DEVELOPMENT, NON-FUNCTIONAL!) + + // no loop required for fastwire + uint16_t intermediate[(uint8_t)length]; + uint8_t status = Fastwire::readBuf(devAddr, regAddr, (uint8_t*)intermediate, (uint8_t)(length * 2)); + if (status == 0) { + count = length; // success + for (uint8_t i = 0; i < length; i++) { + data[i] = (intermediate[2 * i] << 8) | intermediate[2 * i + 1]; + } + } else { + count = -1; // error + } + + #endif + + if (timeout > 0 && millis() - t1 >= timeout && count < length) { + count = -1; // timeout + } + + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(". Done ("); + Serial.print(count, DEC); + Serial.println(" read)."); + #endif + + return count; +} + +/** write a single bit in an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to write to + @param bitNum Bit position to write (0-7) + @param value New bit value to write + @return Status of operation (true = success) +*/ +bool I2Cdev::writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data) { + uint8_t b; + readByte(devAddr, regAddr, &b); + b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum)); + return writeByte(devAddr, regAddr, b); +} + +/** write a single bit in a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to write to + @param bitNum Bit position to write (0-15) + @param value New bit value to write + @return Status of operation (true = success) +*/ +bool I2Cdev::writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data) { + uint16_t w; + readWord(devAddr, regAddr, &w); + w = (data != 0) ? (w | (1 << bitNum)) : (w & ~(1 << bitNum)); + return writeWord(devAddr, regAddr, w); +} + +/** Write multiple bits in an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to write to + @param bitStart First bit position to write (0-7) + @param length Number of bits to write (not more than 8) + @param data Right-aligned value to write + @return Status of operation (true = success) +*/ +bool I2Cdev::writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data) { + // 010 value to write + // 76543210 bit numbers + // xxx args: bitStart=4, length=3 + // 00011100 mask byte + // 10101111 original value (sample) + // 10100011 original & ~mask + // 10101011 masked | value + uint8_t b; + if (readByte(devAddr, regAddr, &b) != 0) { + uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1); + data <<= (bitStart - length + 1); // shift data into correct position + data &= mask; // zero all non-important bits in data + b &= ~(mask); // zero all important bits in existing byte + b |= data; // combine data with existing byte + return writeByte(devAddr, regAddr, b); + } else { + return false; + } +} + +/** Write multiple bits in a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr Register regAddr to write to + @param bitStart First bit position to write (0-15) + @param length Number of bits to write (not more than 16) + @param data Right-aligned value to write + @return Status of operation (true = success) +*/ +bool I2Cdev::writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data) { + // 010 value to write + // fedcba9876543210 bit numbers + // xxx args: bitStart=12, length=3 + // 0001110000000000 mask byte + // 1010111110010110 original value (sample) + // 1010001110010110 original & ~mask + // 1010101110010110 masked | value + uint16_t w; + if (readWord(devAddr, regAddr, &w) != 0) { + uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1); + data <<= (bitStart - length + 1); // shift data into correct position + data &= mask; // zero all non-important bits in data + w &= ~(mask); // zero all important bits in existing word + w |= data; // combine data with existing word + return writeWord(devAddr, regAddr, w); + } else { + return false; + } +} + +/** Write single byte to an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr Register address to write to + @param data New byte value to write + @return Status of operation (true = success) +*/ +bool I2Cdev::writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data) { + return writeBytes(devAddr, regAddr, 1, &data); +} + +/** Write single word to a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr Register address to write to + @param data New word value to write + @return Status of operation (true = success) +*/ +bool I2Cdev::writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data) { + return writeWords(devAddr, regAddr, 1, &data); +} + +/** Write multiple bytes to an 8-bit device register. + @param devAddr I2C slave device address + @param regAddr First register address to write to + @param length Number of bytes to write + @param data Buffer to copy new data from + @return Status of operation (true = success) +*/ +bool I2Cdev::writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data) { + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print("I2C (0x"); + Serial.print(devAddr, HEX); + Serial.print(") writing "); + Serial.print(length, DEC); + Serial.print(" bytes to 0x"); + Serial.print(regAddr, HEX); + Serial.print("..."); + #endif + uint8_t status = 0; + #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) + Wire.beginTransmission(devAddr); + Wire.send((uint8_t) regAddr); // send address + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) + Wire.beginTransmission(devAddr); + Wire.write((uint8_t) regAddr); // send address + #endif + for (uint8_t i = 0; i < length; i++) { + #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) + Wire.send((uint8_t) data[i]); + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) + Wire.write((uint8_t) data[i]); + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE) + status = Fastwire::write(devAddr, regAddr, data[i]); + Serial.println(status); + #endif + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[i], HEX); + if (i + 1 < length) { + Serial.print(" "); + } + #endif + } + #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) + Wire.endTransmission(); + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) + status = Wire.endTransmission(); + #endif + #ifdef I2CDEV_SERIAL_DEBUG + Serial.println(". Done."); + #endif + return status == 0; +} + +/** Write multiple words to a 16-bit device register. + @param devAddr I2C slave device address + @param regAddr First register address to write to + @param length Number of words to write + @param data Buffer to copy new data from + @return Status of operation (true = success) +*/ +bool I2Cdev::writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data) { + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print("I2C (0x"); + Serial.print(devAddr, HEX); + Serial.print(") writing "); + Serial.print(length, DEC); + Serial.print(" words to 0x"); + Serial.print(regAddr, HEX); + Serial.print("..."); + #endif + uint8_t status = 0; + #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) + Wire.beginTransmission(devAddr); + Wire.send(regAddr); // send address + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) + Wire.beginTransmission(devAddr); + Wire.write(regAddr); // send address + #endif + for (uint8_t i = 0; i < length * 2; i++) { + #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) + Wire.send((uint8_t)(data[i++] >> 8)); // send MSB + Wire.send((uint8_t)data[i]); // send LSB + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) + Wire.write((uint8_t)(data[i++] >> 8)); // send MSB + Wire.write((uint8_t)data[i]); // send LSB + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE) + status = Fastwire::write(devAddr, regAddr, (uint8_t)(data[i++] >> 8)); + status = Fastwire::write(devAddr, regAddr + 1, (uint8_t)data[i]); + #endif + #ifdef I2CDEV_SERIAL_DEBUG + Serial.print(data[i], HEX); + if (i + 1 < length) { + Serial.print(" "); + } + #endif + } + #if ((I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO < 100) || I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE) + Wire.endTransmission(); + #elif (I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE && ARDUINO >= 100) + status = Wire.endTransmission(); + #endif + #ifdef I2CDEV_SERIAL_DEBUG + Serial.println(". Done."); + #endif + return status == 0; +} + +/** Default timeout value for read operations. + Set this to 0 to disable timeout detection. +*/ +uint16_t I2Cdev::readTimeout = I2CDEV_DEFAULT_READ_TIMEOUT; + +#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE +/* + FastWire 0.2 + This is a library to help faster programs to read I2C devices. + Copyright(C) 2011 Francesco Ferrara + occhiobello at gmail dot com +*/ + +boolean Fastwire::waitInt() { + int l = 250; + while (!(TWCR & (1 << TWINT)) && l-- > 0); + return l > 0; +} + +void Fastwire::setup(int khz, boolean pullup) { + TWCR = 0; + #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega8__) || defined(__AVR_ATmega328P__) + // activate internal pull-ups for twi (PORTC bits 4 & 5) + // as per note from atmega8 manual pg167 + if (pullup) { + PORTC |= ((1 << 4) | (1 << 5)); + } else { + PORTC &= ~((1 << 4) | (1 << 5)); + } + #elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__) + // activate internal pull-ups for twi (PORTC bits 0 & 1) + if (pullup) { + PORTC |= ((1 << 0) | (1 << 1)); + } else { + PORTC &= ~((1 << 0) | (1 << 1)); + } + #else + // activate internal pull-ups for twi (PORTD bits 0 & 1) + // as per note from atmega128 manual pg204 + if (pullup) { + PORTD |= ((1 << 0) | (1 << 1)); + } else { + PORTD &= ~((1 << 0) | (1 << 1)); + } + #endif + + TWSR = 0; // no prescaler => prescaler = 1 + TWBR = ((16000L / khz) - 16) / 2; // change the I2C clock rate + TWCR = 1 << TWEN; // enable twi module, no interrupt +} + +byte Fastwire::write(byte device, byte address, byte value) { + byte twst, retry; + + retry = 2; + do { + TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO) | (1 << TWSTA); + if (!waitInt()) { + return 1; + } + twst = TWSR & 0xF8; + if (twst != TW_START && twst != TW_REP_START) { + return 2; + } + + TWDR = device & 0xFE; // send device address without read bit (1) + TWCR = (1 << TWINT) | (1 << TWEN); + if (!waitInt()) { + return 3; + } + twst = TWSR & 0xF8; + } while (twst == TW_MT_SLA_NACK && retry-- > 0); + if (twst != TW_MT_SLA_ACK) { + return 4; + } + + TWDR = address; // send data to the previously addressed device + TWCR = (1 << TWINT) | (1 << TWEN); + if (!waitInt()) { + return 5; + } + twst = TWSR & 0xF8; + if (twst != TW_MT_DATA_ACK) { + return 6; + } + + TWDR = value; // send data to the previously addressed device + TWCR = (1 << TWINT) | (1 << TWEN); + if (!waitInt()) { + return 7; + } + twst = TWSR & 0xF8; + if (twst != TW_MT_DATA_ACK) { + return 8; + } + + return 0; +} + +byte Fastwire::readBuf(byte device, byte address, byte* data, byte num) { + byte twst, retry; + + retry = 2; + do { + TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO) | (1 << TWSTA); + if (!waitInt()) { + return 16; + } + twst = TWSR & 0xF8; + if (twst != TW_START && twst != TW_REP_START) { + return 17; + } + + TWDR = device & 0xfe; // send device address to write + TWCR = (1 << TWINT) | (1 << TWEN); + if (!waitInt()) { + return 18; + } + twst = TWSR & 0xF8; + } while (twst == TW_MT_SLA_NACK && retry-- > 0); + if (twst != TW_MT_SLA_ACK) { + return 19; + } + + TWDR = address; // send data to the previously addressed device + TWCR = (1 << TWINT) | (1 << TWEN); + if (!waitInt()) { + return 20; + } + twst = TWSR & 0xF8; + if (twst != TW_MT_DATA_ACK) { + return 21; + } + + /***/ + + retry = 2; + do { + TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO) | (1 << TWSTA); + if (!waitInt()) { + return 22; + } + twst = TWSR & 0xF8; + if (twst != TW_START && twst != TW_REP_START) { + return 23; + } + + TWDR = device | 0x01; // send device address with the read bit (1) + TWCR = (1 << TWINT) | (1 << TWEN); + if (!waitInt()) { + return 24; + } + twst = TWSR & 0xF8; + } while (twst == TW_MR_SLA_NACK && retry-- > 0); + if (twst != TW_MR_SLA_ACK) { + return 25; + } + + for (uint8_t i = 0; i < num; i++) { + if (i == num - 1) { + TWCR = (1 << TWINT) | (1 << TWEN); + } else { + TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA); + } + if (!waitInt()) { + return 26; + } + twst = TWSR & 0xF8; + if (twst != TW_MR_DATA_ACK && twst != TW_MR_DATA_NACK) { + return twst; + } + data[i] = TWDR; + } + + return 0; +} +#endif + +#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE +// NBWire implementation based heavily on code by Gene Knight +// Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html +// Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html + +/* + call this version 1.0 + + Offhand, the only funky part that I can think of is in nbrequestFrom, where the buffer + length and index are set *before* the data is actually read. The problem is that these + are variables local to the TwoWire object, and by the time we actually have read the + data, and know what the length actually is, we have no simple access to the object's + variables. The actual bytes read *is* given to the callback function, though. + + The ISR code for a slave receiver is commented out. I don't have that setup, and can't + verify it at this time. Save it for 2.0! + + The handling of the read and write processes here is much like in the demo sketch code: + the process is broken down into sequential functions, where each registers the next as a + callback, essentially. + + For example, for the Read process, twi_read00 just returns if TWI is not yet in a + ready state. When there's another interrupt, and the interface *is* ready, then it + sets up the read, starts it, and registers twi_read01 as the function to call after + the *next* interrupt. twi_read01, then, just returns if the interface is still in a + "reading" state. When the reading is done, it copies the information to the buffer, + cleans up, and calls the user-requested callback function with the actual number of + bytes read. + + The writing is similar. + + Questions, comments and problems can go to Gene@Telobot.com. + + Thumbs Up! + Gene Knight + +*/ + +uint8_t TwoWire::rxBuffer[NBWIRE_BUFFER_LENGTH]; +uint8_t TwoWire::rxBufferIndex = 0; +uint8_t TwoWire::rxBufferLength = 0; + +uint8_t TwoWire::txAddress = 0; +uint8_t TwoWire::txBuffer[NBWIRE_BUFFER_LENGTH]; +uint8_t TwoWire::txBufferIndex = 0; +uint8_t TwoWire::txBufferLength = 0; + +//uint8_t TwoWire::transmitting = 0; +void (*TwoWire::user_onRequest)(void); +void (*TwoWire::user_onReceive)(int); + +static volatile uint8_t twi_transmitting; +static volatile uint8_t twi_state; +static uint8_t twi_slarw; +static volatile uint8_t twi_error; +static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH]; +static volatile uint8_t twi_masterBufferIndex; +static uint8_t twi_masterBufferLength; +static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH]; +static volatile uint8_t twi_rxBufferIndex; +//static volatile uint8_t twi_Interrupt_Continue_Command; +static volatile uint8_t twi_Return_Value; +static volatile uint8_t twi_Done; +void (*twi_cbendTransmissionDone)(int); +void (*twi_cbreadFromDone)(int); + +void twi_init() { + // initialize state + twi_state = TWI_READY; + + // activate internal pull-ups for twi + // as per note from atmega8 manual pg167 + sbi(PORTC, 4); + sbi(PORTC, 5); + + // initialize twi prescaler and bit rate + cbi(TWSR, TWPS0); // TWI Status Register - Prescaler bits + cbi(TWSR, TWPS1); + + /* twi bit rate formula from atmega128 manual pg 204 + SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR)) + note: TWBR should be 10 or higher for master mode + It is 72 for a 16mhz Wiring board with 100kHz TWI */ + + TWBR = ((CPU_FREQ / TWI_FREQ) - 16) / 2; // bitrate register + // enable twi module, acks, and twi interrupt + + TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA); + + /* TWEN - TWI Enable Bit + TWIE - TWI Interrupt Enable + TWEA - TWI Enable Acknowledge Bit + TWINT - TWI Interrupt Flag + TWSTA - TWI Start Condition + */ +} + +typedef struct { + uint8_t address; + uint8_t* data; + uint8_t length; + uint8_t wait; + uint8_t i; +} twi_Write_Vars; + +twi_Write_Vars* ptwv = 0; +static void (*fNextInterruptFunction)(void) = 0; + +void twi_Finish(byte bRetVal) { + if (ptwv) { + free(ptwv); + ptwv = 0; + } + twi_Done = 0xFF; + twi_Return_Value = bRetVal; + fNextInterruptFunction = 0; +} + +uint8_t twii_WaitForDone(uint16_t timeout) { + uint32_t endMillis = millis() + timeout; + while (!twi_Done && (timeout == 0 || millis() < endMillis)) { + continue; + } + return twi_Return_Value; +} + +void twii_SetState(uint8_t ucState) { + twi_state = ucState; +} + +void twii_SetError(uint8_t ucError) { + twi_error = ucError ; +} + +void twii_InitBuffer(uint8_t ucPos, uint8_t ucLength) { + twi_masterBufferIndex = 0; + twi_masterBufferLength = ucLength; +} + +void twii_CopyToBuf(uint8_t* pData, uint8_t ucLength) { + uint8_t i; + for (i = 0; i < ucLength; ++i) { + twi_masterBuffer[i] = pData[i]; + } +} + +void twii_CopyFromBuf(uint8_t* pData, uint8_t ucLength) { + uint8_t i; + for (i = 0; i < ucLength; ++i) { + pData[i] = twi_masterBuffer[i]; + } +} + +void twii_SetSlaRW(uint8_t ucSlaRW) { + twi_slarw = ucSlaRW; +} + +void twii_SetStart() { + TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA); +} + +void twi_write01() { + if (TWI_MTX == twi_state) { + return; // blocking test + } + twi_transmitting = 0 ; + if (twi_error == 0xFF) { + twi_Finish(0); // success + } else if (twi_error == TW_MT_SLA_NACK) { + twi_Finish(2); // error: address send, nack received + } else if (twi_error == TW_MT_DATA_NACK) { + twi_Finish(3); // error: data send, nack received + } else { + twi_Finish(4); // other twi error + } + if (twi_cbendTransmissionDone) { + return twi_cbendTransmissionDone(twi_Return_Value); + } + return; +} + + +void twi_write00() { + if (TWI_READY != twi_state) { + return; // blocking test + } + if (TWI_BUFFER_LENGTH < ptwv -> length) { + twi_Finish(1); // end write with error 1 + return; + } + twi_Done = 0x00; // show as working + twii_SetState(TWI_MTX); // to transmitting + twii_SetError(0xFF); // to No Error + twii_InitBuffer(0, ptwv -> length); // pointer and length + twii_CopyToBuf(ptwv -> data, ptwv -> length); // get the data + twii_SetSlaRW((ptwv -> address << 1) | TW_WRITE); // write command + twii_SetStart(); // start the cycle + fNextInterruptFunction = twi_write01; // next routine + return twi_write01(); +} + +void twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait) { + uint8_t i; + ptwv = (twi_Write_Vars*)malloc(sizeof(twi_Write_Vars)); + ptwv -> address = address; + ptwv -> data = data; + ptwv -> length = length; + ptwv -> wait = wait; + fNextInterruptFunction = twi_write00; + return twi_write00(); +} + +void twi_read01() { + if (TWI_MRX == twi_state) { + return; // blocking test + } + if (twi_masterBufferIndex < ptwv -> length) { + ptwv -> length = twi_masterBufferIndex; + } + twii_CopyFromBuf(ptwv -> data, ptwv -> length); + twi_Finish(ptwv -> length); + if (twi_cbreadFromDone) { + return twi_cbreadFromDone(twi_Return_Value); + } + return; +} + +void twi_read00() { + if (TWI_READY != twi_state) { + return; // blocking test + } + if (TWI_BUFFER_LENGTH < ptwv -> length) { + twi_Finish(0); // error return + } + twi_Done = 0x00; // show as working + twii_SetState(TWI_MRX); // reading + twii_SetError(0xFF); // reset error + twii_InitBuffer(0, ptwv -> length - 1); // init to one less than length + twii_SetSlaRW((ptwv -> address << 1) | TW_READ); // read command + twii_SetStart(); // start cycle + fNextInterruptFunction = twi_read01; + return twi_read01(); +} + +void twi_readFrom(uint8_t address, uint8_t* data, uint8_t length) { + uint8_t i; + + ptwv = (twi_Write_Vars*)malloc(sizeof(twi_Write_Vars)); + ptwv -> address = address; + ptwv -> data = data; + ptwv -> length = length; + fNextInterruptFunction = twi_read00; + return twi_read00(); +} + +void twi_reply(uint8_t ack) { + // transmit master read ready signal, with or without ack + if (ack) { + TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA); + } else { + TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT); + } +} + +void twi_stop(void) { + // send stop condition + TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO); + + // wait for stop condition to be exectued on bus + // TWINT is not set after a stop condition! + while (TWCR & _BV(TWSTO)) { + continue; + } + + // update twi state + twi_state = TWI_READY; +} + +void twi_releaseBus(void) { + // release bus + TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT); + + // update twi state + twi_state = TWI_READY; +} + +SIGNAL(TWI_vect) { + switch (TW_STATUS) { + // All Master + case TW_START: // sent start condition + case TW_REP_START: // sent repeated start condition + // copy device address and r/w bit to output register and ack + TWDR = twi_slarw; + twi_reply(1); + break; + + // Master Transmitter + case TW_MT_SLA_ACK: // slave receiver acked address + case TW_MT_DATA_ACK: // slave receiver acked data + // if there is data to send, send it, otherwise stop + if (twi_masterBufferIndex < twi_masterBufferLength) { + // copy data to output register and ack + TWDR = twi_masterBuffer[twi_masterBufferIndex++]; + twi_reply(1); + } else { + twi_stop(); + } + break; + + case TW_MT_SLA_NACK: // address sent, nack received + twi_error = TW_MT_SLA_NACK; + twi_stop(); + break; + + case TW_MT_DATA_NACK: // data sent, nack received + twi_error = TW_MT_DATA_NACK; + twi_stop(); + break; + + case TW_MT_ARB_LOST: // lost bus arbitration + twi_error = TW_MT_ARB_LOST; + twi_releaseBus(); + break; + + // Master Receiver + case TW_MR_DATA_ACK: // data received, ack sent + // put byte into buffer + twi_masterBuffer[twi_masterBufferIndex++] = TWDR; + + case TW_MR_SLA_ACK: // address sent, ack received + // ack if more bytes are expected, otherwise nack + if (twi_masterBufferIndex < twi_masterBufferLength) { + twi_reply(1); + } else { + twi_reply(0); + } + break; + + case TW_MR_DATA_NACK: // data received, nack sent + // put final byte into buffer + twi_masterBuffer[twi_masterBufferIndex++] = TWDR; + + case TW_MR_SLA_NACK: // address sent, nack received + twi_stop(); + break; + + // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case + + // Slave Receiver (NOT IMPLEMENTED YET) + /* + case TW_SR_SLA_ACK: // addressed, returned ack + case TW_SR_GCALL_ACK: // addressed generally, returned ack + case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack + case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack + // enter slave receiver mode + twi_state = TWI_SRX; + + // indicate that rx buffer can be overwritten and ack + twi_rxBufferIndex = 0; + twi_reply(1); + break; + + case TW_SR_DATA_ACK: // data received, returned ack + case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack + // if there is still room in the rx buffer + if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) { + // put byte in buffer and ack + twi_rxBuffer[twi_rxBufferIndex++] = TWDR; + twi_reply(1); + } else { + // otherwise nack + twi_reply(0); + } + break; + + case TW_SR_STOP: // stop or repeated start condition received + // put a null char after data if there's room + if (twi_rxBufferIndex < TWI_BUFFER_LENGTH) { + twi_rxBuffer[twi_rxBufferIndex] = 0; + } + + // sends ack and stops interface for clock stretching + twi_stop(); + + // callback to user defined callback + twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex); + + // since we submit rx buffer to "wire" library, we can reset it + twi_rxBufferIndex = 0; + + // ack future responses and leave slave receiver state + twi_releaseBus(); + break; + + case TW_SR_DATA_NACK: // data received, returned nack + case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack + // nack back at master + twi_reply(0); + break; + + // Slave Transmitter + case TW_ST_SLA_ACK: // addressed, returned ack + case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack + // enter slave transmitter mode + twi_state = TWI_STX; + + // ready the tx buffer index for iteration + twi_txBufferIndex = 0; + + // set tx buffer length to be zero, to verify if user changes it + twi_txBufferLength = 0; + + // request for txBuffer to be filled and length to be set + // note: user must call twi_transmit(bytes, length) to do this + twi_onSlaveTransmit(); + + // if they didn't change buffer & length, initialize it + if (0 == twi_txBufferLength) { + twi_txBufferLength = 1; + twi_txBuffer[0] = 0x00; + } + + // transmit first byte from buffer, fall through + + case TW_ST_DATA_ACK: // byte sent, ack returned + // copy data to output register + TWDR = twi_txBuffer[twi_txBufferIndex++]; + + // if there is more to send, ack, otherwise nack + if (twi_txBufferIndex < twi_txBufferLength) { + twi_reply(1); + } else { + twi_reply(0); + } + break; + + case TW_ST_DATA_NACK: // received nack, we are done + case TW_ST_LAST_DATA: // received ack, but we are done already! + // ack future responses + twi_reply(1); + // leave slave receiver state + twi_state = TWI_READY; + break; + */ + + // all + case TW_NO_INFO: // no state information + break; + + case TW_BUS_ERROR: // bus error, illegal stop/start + twi_error = TW_BUS_ERROR; + twi_stop(); + break; + } + + if (fNextInterruptFunction) { + return fNextInterruptFunction(); + } +} + +TwoWire::TwoWire() { } + +void TwoWire::begin(void) { + rxBufferIndex = 0; + rxBufferLength = 0; + + txBufferIndex = 0; + txBufferLength = 0; + + twi_init(); +} + +void TwoWire::beginTransmission(uint8_t address) { + //beginTransmission((uint8_t)address); + + // indicate that we are transmitting + twi_transmitting = 1; + + // set address of targeted slave + txAddress = address; + + // reset tx buffer iterator vars + txBufferIndex = 0; + txBufferLength = 0; +} + +uint8_t TwoWire::endTransmission(uint16_t timeout) { + // transmit buffer (blocking) + //int8_t ret = + twi_cbendTransmissionDone = NULL; + twi_writeTo(txAddress, txBuffer, txBufferLength, 1); + int8_t ret = twii_WaitForDone(timeout); + + // reset tx buffer iterator vars + txBufferIndex = 0; + txBufferLength = 0; + + // indicate that we are done transmitting + // twi_transmitting = 0; + return ret; +} + +void TwoWire::nbendTransmission(void (*function)(int)) { + twi_cbendTransmissionDone = function; + twi_writeTo(txAddress, txBuffer, txBufferLength, 1); + return; +} + +void TwoWire::send(uint8_t data) { + if (twi_transmitting) { + // in master transmitter mode + // don't bother if buffer is full + if (txBufferLength >= NBWIRE_BUFFER_LENGTH) { + return; + } + + // put byte in tx buffer + txBuffer[txBufferIndex] = data; + ++txBufferIndex; + + // update amount in buffer + txBufferLength = txBufferIndex; + } else { + // in slave send mode + // reply to master + //twi_transmit(&data, 1); + } +} + +uint8_t TwoWire::receive(void) { + // default to returning null char + // for people using with char strings + uint8_t value = 0; + + // get each successive byte on each call + if (rxBufferIndex < rxBufferLength) { + value = rxBuffer[rxBufferIndex]; + ++rxBufferIndex; + } + + return value; +} + +uint8_t TwoWire::requestFrom(uint8_t address, int quantity, uint16_t timeout) { + // clamp to buffer length + if (quantity > NBWIRE_BUFFER_LENGTH) { + quantity = NBWIRE_BUFFER_LENGTH; + } + + // perform blocking read into buffer + twi_cbreadFromDone = NULL; + twi_readFrom(address, rxBuffer, quantity); + uint8_t read = twii_WaitForDone(timeout); + + // set rx buffer iterator vars + rxBufferIndex = 0; + rxBufferLength = read; + + return read; +} + +void TwoWire::nbrequestFrom(uint8_t address, int quantity, void (*function)(int)) { + // clamp to buffer length + if (quantity > NBWIRE_BUFFER_LENGTH) { + quantity = NBWIRE_BUFFER_LENGTH; + } + + // perform blocking read into buffer + twi_cbreadFromDone = function; + twi_readFrom(address, rxBuffer, quantity); + //uint8_t read = twii_WaitForDone(); + + // set rx buffer iterator vars + //rxBufferIndex = 0; + //rxBufferLength = read; + + rxBufferIndex = 0; + rxBufferLength = quantity; // this is a hack + + return; //read; +} + +uint8_t TwoWire::available(void) { + return rxBufferLength - rxBufferIndex; +} + +#endif diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu/I2Cdev.h b/labyrinthe/3-arduino/3-labyrinthe-imu/I2Cdev.h new file mode 100644 index 0000000..e7e0cbb --- /dev/null +++ b/labyrinthe/3-arduino/3-labyrinthe-imu/I2Cdev.h @@ -0,0 +1,270 @@ +// I2Cdev library collection - Main I2C device class header file +// Abstracts bit and byte I2C R/W functions into a convenient class +// 6/9/2012 by Jeff Rowberg +// +// Changelog: +// 2012-06-09 - fix major issue with reading > 32 bytes at a time with Arduino Wire +// - add compiler warnings when using outdated or IDE or limited I2Cdev implementation +// 2011-11-01 - fix write*Bits mask calculation (thanks sasquatch @ Arduino forums) +// 2011-10-03 - added automatic Arduino version detection for ease of use +// 2011-10-02 - added Gene Knight's NBWire TwoWire class implementation with small modifications +// 2011-08-31 - added support for Arduino 1.0 Wire library (methods are different from 0.x) +// 2011-08-03 - added optional timeout parameter to read* methods to easily change from default +// 2011-08-02 - added support for 16-bit registers +// - fixed incorrect Doxygen comments on some methods +// - added timeout value for read operations (thanks mem @ Arduino forums) +// 2011-07-30 - changed read/write function structures to return success or byte counts +// - made all methods static for multi-device memory savings +// 2011-07-28 - initial release + +/* ============================================ + I2Cdev device library code is placed under the MIT license + Copyright (c) 2012 Jeff Rowberg + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in + all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + THE SOFTWARE. + =============================================== +*/ + +#ifndef _I2CDEV_H_ +#define _I2CDEV_H_ + +// ----------------------------------------------------------------------------- +// I2C interface implementation setting +// ----------------------------------------------------------------------------- +#define I2CDEV_IMPLEMENTATION I2CDEV_ARDUINO_WIRE + +// comment this out if you are using a non-optimal IDE/implementation setting +// but want the compiler to shut up about it +#define I2CDEV_IMPLEMENTATION_WARNINGS + +// ----------------------------------------------------------------------------- +// I2C interface implementation options +// ----------------------------------------------------------------------------- +#define I2CDEV_ARDUINO_WIRE 1 // Wire object from Arduino +#define I2CDEV_BUILTIN_NBWIRE 2 // Tweaked Wire object from Gene Knight's NBWire project +// ^^^ NBWire implementation is still buggy w/some interrupts! +#define I2CDEV_BUILTIN_FASTWIRE 3 // FastWire object from Francesco Ferrara's project +// ^^^ FastWire implementation in I2Cdev is INCOMPLETE! +#ifndef BUFFER_LENGTH +#define BUFFER_LENGTH 32 +#endif + +// ----------------------------------------------------------------------------- +// Arduino-style "Serial.print" debug constant (uncomment to enable) +// ----------------------------------------------------------------------------- +//#define I2CDEV_SERIAL_DEBUG + +#ifdef ARDUINO + #if ARDUINO < 100 + #include "WProgram.h" + #else + #include "Arduino.h" + #endif + #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE + #include + #endif +#else + #include "ArduinoWrapper.h" +#endif + +// 1000ms default read timeout (modify with "I2Cdev::readTimeout = [ms];") +#define I2CDEV_DEFAULT_READ_TIMEOUT 1000 + +class I2Cdev { + public: + I2Cdev(); + + static int8_t readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t* data, + uint16_t timeout = I2Cdev::readTimeout); + static int8_t readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t* data, + uint16_t timeout = I2Cdev::readTimeout); + static int8_t readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t* data, + uint16_t timeout = I2Cdev::readTimeout); + static int8_t readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t* data, + uint16_t timeout = I2Cdev::readTimeout); + static int8_t readByte(uint8_t devAddr, uint8_t regAddr, uint8_t* data, uint16_t timeout = I2Cdev::readTimeout); + static int8_t readWord(uint8_t devAddr, uint8_t regAddr, uint16_t* data, uint16_t timeout = I2Cdev::readTimeout); + static int8_t readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data, + uint16_t timeout = I2Cdev::readTimeout); + static int8_t readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data, + uint16_t timeout = I2Cdev::readTimeout); + + static bool writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data); + static bool writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data); + static bool writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data); + static bool writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data); + static bool writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data); + static bool writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data); + static bool writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t* data); + static bool writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data); + + static uint16_t readTimeout; +}; + +#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE +////////////////////// +// FastWire 0.2 +// This is a library to help faster programs to read I2C devices. +// Copyright(C) 2011 +// Francesco Ferrara +////////////////////// + +/* Master */ +#define TW_START 0x08 +#define TW_REP_START 0x10 + +/* Master Transmitter */ +#define TW_MT_SLA_ACK 0x18 +#define TW_MT_SLA_NACK 0x20 +#define TW_MT_DATA_ACK 0x28 +#define TW_MT_DATA_NACK 0x30 +#define TW_MT_ARB_LOST 0x38 + +/* Master Receiver */ +#define TW_MR_ARB_LOST 0x38 +#define TW_MR_SLA_ACK 0x40 +#define TW_MR_SLA_NACK 0x48 +#define TW_MR_DATA_ACK 0x50 +#define TW_MR_DATA_NACK 0x58 + +#define TW_OK 0 +#define TW_ERROR 1 + +class Fastwire { + private: + static boolean waitInt(); + + public: + static void setup(int khz, boolean pullup); + static byte write(byte device, byte address, byte value); + static byte readBuf(byte device, byte address, byte* data, byte num); +}; +#endif + +#if I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE +// NBWire implementation based heavily on code by Gene Knight +// Originally posted on the Arduino forum at http://arduino.cc/forum/index.php/topic,70705.0.html +// Originally offered to the i2cdevlib project at http://arduino.cc/forum/index.php/topic,68210.30.html + +#define NBWIRE_BUFFER_LENGTH 32 + +class TwoWire { + private: + static uint8_t rxBuffer[]; + static uint8_t rxBufferIndex; + static uint8_t rxBufferLength; + + static uint8_t txAddress; + static uint8_t txBuffer[]; + static uint8_t txBufferIndex; + static uint8_t txBufferLength; + + // static uint8_t transmitting; + static void (*user_onRequest)(void); + static void (*user_onReceive)(int); + static void onRequestService(void); + static void onReceiveService(uint8_t*, int); + + public: + TwoWire(); + void begin(); + void begin(uint8_t); + void begin(int); + void beginTransmission(uint8_t); + //void beginTransmission(int); + uint8_t endTransmission(uint16_t timeout = 0); + void nbendTransmission(void (*function)(int)) ; + uint8_t requestFrom(uint8_t, int, uint16_t timeout = 0); + //uint8_t requestFrom(int, int); + void nbrequestFrom(uint8_t, int, void (*function)(int)); + void send(uint8_t); + void send(uint8_t*, uint8_t); + //void send(int); + void send(char*); + uint8_t available(void); + uint8_t receive(void); + void onReceive(void (*)(int)); + void onRequest(void (*)(void)); +}; + +#define TWI_READY 0 +#define TWI_MRX 1 +#define TWI_MTX 2 +#define TWI_SRX 3 +#define TWI_STX 4 + +#define TW_WRITE 0 +#define TW_READ 1 + +#define TW_MT_SLA_NACK 0x20 +#define TW_MT_DATA_NACK 0x30 + +#define CPU_FREQ 16000000L +#define TWI_FREQ 100000L +#define TWI_BUFFER_LENGTH 32 + +/* TWI Status is in TWSR, in the top 5 bits: TWS7 - TWS3 */ + +#define TW_STATUS_MASK (_BV(TWS7)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|_BV(TWS3)) +#define TW_STATUS (TWSR & TW_STATUS_MASK) +#define TW_START 0x08 +#define TW_REP_START 0x10 +#define TW_MT_SLA_ACK 0x18 +#define TW_MT_SLA_NACK 0x20 +#define TW_MT_DATA_ACK 0x28 +#define TW_MT_DATA_NACK 0x30 +#define TW_MT_ARB_LOST 0x38 +#define TW_MR_ARB_LOST 0x38 +#define TW_MR_SLA_ACK 0x40 +#define TW_MR_SLA_NACK 0x48 +#define TW_MR_DATA_ACK 0x50 +#define TW_MR_DATA_NACK 0x58 +#define TW_ST_SLA_ACK 0xA8 +#define TW_ST_ARB_LOST_SLA_ACK 0xB0 +#define TW_ST_DATA_ACK 0xB8 +#define TW_ST_DATA_NACK 0xC0 +#define TW_ST_LAST_DATA 0xC8 +#define TW_SR_SLA_ACK 0x60 +#define TW_SR_ARB_LOST_SLA_ACK 0x68 +#define TW_SR_GCALL_ACK 0x70 +#define TW_SR_ARB_LOST_GCALL_ACK 0x78 +#define TW_SR_DATA_ACK 0x80 +#define TW_SR_DATA_NACK 0x88 +#define TW_SR_GCALL_DATA_ACK 0x90 +#define TW_SR_GCALL_DATA_NACK 0x98 +#define TW_SR_STOP 0xA0 +#define TW_NO_INFO 0xF8 +#define TW_BUS_ERROR 0x00 + +//#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr)) +//#define _SFR_BYTE(sfr) _MMIO_BYTE(_SFR_ADDR(sfr)) + +#ifndef sbi // set bit + #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) +#endif // sbi + +#ifndef cbi // clear bit + #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) +#endif // cbi + +extern TwoWire Wire; + +#endif // I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_NBWIRE + +#endif /* _I2CDEV_H_ */ diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu/MPU6050.cpp b/labyrinthe/3-arduino/3-labyrinthe-imu/MPU6050.cpp new file mode 100644 index 0000000..6a0fd44 --- /dev/null +++ b/labyrinthe/3-arduino/3-labyrinthe-imu/MPU6050.cpp @@ -0,0 +1,3237 @@ +// I2Cdev library collection - MPU6050 I2C device class +// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00) +// 8/24/2011 by Jeff Rowberg +// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib +// +// Changelog: +// ... - ongoing debug release + +// NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE +// DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF +// YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING. + +/* ============================================ + I2Cdev device library code is placed under the MIT license + Copyright (c) 2012 Jeff Rowberg + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in + all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + THE SOFTWARE. + =============================================== +*/ + +#include "MPU6050.h" + +/** Default constructor, uses default I2C address. + @see MPU6050_DEFAULT_ADDRESS +*/ +MPU6050::MPU6050() { + devAddr = MPU6050_DEFAULT_ADDRESS; +} + +/** Specific address constructor. + @param address I2C address + @see MPU6050_DEFAULT_ADDRESS + @see MPU6050_ADDRESS_AD0_LOW + @see MPU6050_ADDRESS_AD0_HIGH +*/ +MPU6050::MPU6050(uint8_t address) { + devAddr = address; +} + +/** Power on and prepare for general usage. + This will activate the device and take it out of sleep mode (which must be done + after start-up). This function also sets both the accelerometer and the gyroscope + to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets + the clock source to use the X Gyro for reference, which is slightly better than + the default internal clock source. +*/ +void MPU6050::initialize() { + setClockSource(MPU6050_CLOCK_PLL_XGYRO); + setFullScaleGyroRange(MPU6050_GYRO_FS_250); + setFullScaleAccelRange(MPU6050_ACCEL_FS_2); + setSleepEnabled(false); // thanks to Jack Elston for pointing this one out! +} + +/** Verify the I2C connection. + Make sure the device is connected and responds as expected. + @return True if connection is valid, false otherwise +*/ +bool MPU6050::testConnection() { + return getDeviceID() == 0x34; +} + +// AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC) + +/** Get the auxiliary I2C supply voltage level. + When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to + 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to + the MPU-6000, which does not have a VLOGIC pin. + @return I2C supply voltage level (0=VLOGIC, 1=VDD) +*/ +uint8_t MPU6050::getAuxVDDIOLevel() { + I2Cdev::readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer); + return buffer[0]; +} +/** Set the auxiliary I2C supply voltage level. + When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to + 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to + the MPU-6000, which does not have a VLOGIC pin. + @param level I2C supply voltage level (0=VLOGIC, 1=VDD) +*/ +void MPU6050::setAuxVDDIOLevel(uint8_t level) { + I2Cdev::writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level); +} + +// SMPLRT_DIV register + +/** Get gyroscope output rate divider. + The sensor register output, FIFO output, DMP sampling, Motion detection, Zero + Motion detection, and Free Fall detection are all based on the Sample Rate. + The Sample Rate is generated by dividing the gyroscope output rate by + SMPLRT_DIV: + + Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV) + + where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or + 7), and 1kHz when the DLPF is enabled (see Register 26). + + Note: The accelerometer output rate is 1kHz. This means that for a Sample + Rate greater than 1kHz, the same accelerometer sample may be output to the + FIFO, DMP, and sensor registers more than once. + + For a diagram of the gyroscope and accelerometer signal paths, see Section 8 + of the MPU-6000/MPU-6050 Product Specification document. + + @return Current sample rate + @see MPU6050_RA_SMPLRT_DIV +*/ +uint8_t MPU6050::getRate() { + I2Cdev::readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer); + return buffer[0]; +} +/** Set gyroscope sample rate divider. + @param rate New sample rate divider + @see getRate() + @see MPU6050_RA_SMPLRT_DIV +*/ +void MPU6050::setRate(uint8_t rate) { + I2Cdev::writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate); +} + +// CONFIG register + +/** Get external FSYNC configuration. + Configures the external Frame Synchronization (FSYNC) pin sampling. An + external signal connected to the FSYNC pin can be sampled by configuring + EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short + strobes may be captured. The latched FSYNC signal will be sampled at the + Sampling Rate, as defined in register 25. After sampling, the latch will + reset to the current FSYNC signal state. + + The sampled value will be reported in place of the least significant bit in + a sensor data register determined by the value of EXT_SYNC_SET according to + the following table. + +
+    EXT_SYNC_SET | FSYNC Bit Location
+    -------------+-------------------
+    0            | Input disabled
+    1            | TEMP_OUT_L[0]
+    2            | GYRO_XOUT_L[0]
+    3            | GYRO_YOUT_L[0]
+    4            | GYRO_ZOUT_L[0]
+    5            | ACCEL_XOUT_L[0]
+    6            | ACCEL_YOUT_L[0]
+    7            | ACCEL_ZOUT_L[0]
+    
+ + @return FSYNC configuration value +*/ +uint8_t MPU6050::getExternalFrameSync() { + I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer); + return buffer[0]; +} +/** Set external FSYNC configuration. + @see getExternalFrameSync() + @see MPU6050_RA_CONFIG + @param sync New FSYNC configuration value +*/ +void MPU6050::setExternalFrameSync(uint8_t sync) { + I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync); +} +/** Get digital low-pass filter configuration. + The DLPF_CFG parameter sets the digital low pass filter configuration. It + also determines the internal sampling rate used by the device as shown in + the table below. + + Note: The accelerometer output rate is 1kHz. This means that for a Sample + Rate greater than 1kHz, the same accelerometer sample may be output to the + FIFO, DMP, and sensor registers more than once. + +
+            |   ACCELEROMETER    |           GYROSCOPE
+    DLPF_CFG | Bandwidth | Delay  | Bandwidth | Delay  | Sample Rate
+    ---------+-----------+--------+-----------+--------+-------------
+    0        | 260Hz     | 0ms    | 256Hz     | 0.98ms | 8kHz
+    1        | 184Hz     | 2.0ms  | 188Hz     | 1.9ms  | 1kHz
+    2        | 94Hz      | 3.0ms  | 98Hz      | 2.8ms  | 1kHz
+    3        | 44Hz      | 4.9ms  | 42Hz      | 4.8ms  | 1kHz
+    4        | 21Hz      | 8.5ms  | 20Hz      | 8.3ms  | 1kHz
+    5        | 10Hz      | 13.8ms | 10Hz      | 13.4ms | 1kHz
+    6        | 5Hz       | 19.0ms | 5Hz       | 18.6ms | 1kHz
+    7        |   -- Reserved --   |   -- Reserved --   | Reserved
+    
+ + @return DLFP configuration + @see MPU6050_RA_CONFIG + @see MPU6050_CFG_DLPF_CFG_BIT + @see MPU6050_CFG_DLPF_CFG_LENGTH +*/ +uint8_t MPU6050::getDLPFMode() { + I2Cdev::readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer); + return buffer[0]; +} +/** Set digital low-pass filter configuration. + @param mode New DLFP configuration setting + @see getDLPFBandwidth() + @see MPU6050_DLPF_BW_256 + @see MPU6050_RA_CONFIG + @see MPU6050_CFG_DLPF_CFG_BIT + @see MPU6050_CFG_DLPF_CFG_LENGTH +*/ +void MPU6050::setDLPFMode(uint8_t mode) { + I2Cdev::writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode); +} + +// GYRO_CONFIG register + +/** Get full-scale gyroscope range. + The FS_SEL parameter allows setting the full-scale range of the gyro sensors, + as described in the table below. + +
+    0 = +/- 250 degrees/sec
+    1 = +/- 500 degrees/sec
+    2 = +/- 1000 degrees/sec
+    3 = +/- 2000 degrees/sec
+    
+ + @return Current full-scale gyroscope range setting + @see MPU6050_GYRO_FS_250 + @see MPU6050_RA_GYRO_CONFIG + @see MPU6050_GCONFIG_FS_SEL_BIT + @see MPU6050_GCONFIG_FS_SEL_LENGTH +*/ +uint8_t MPU6050::getFullScaleGyroRange() { + I2Cdev::readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer); + return buffer[0]; +} +/** Set full-scale gyroscope range. + @param range New full-scale gyroscope range value + @see getFullScaleRange() + @see MPU6050_GYRO_FS_250 + @see MPU6050_RA_GYRO_CONFIG + @see MPU6050_GCONFIG_FS_SEL_BIT + @see MPU6050_GCONFIG_FS_SEL_LENGTH +*/ +void MPU6050::setFullScaleGyroRange(uint8_t range) { + I2Cdev::writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range); +} + +// ACCEL_CONFIG register + +/** Get self-test enabled setting for accelerometer X axis. + @return Self-test enabled value + @see MPU6050_RA_ACCEL_CONFIG +*/ +bool MPU6050::getAccelXSelfTest() { + I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer); + return buffer[0]; +} +/** Get self-test enabled setting for accelerometer X axis. + @param enabled Self-test enabled value + @see MPU6050_RA_ACCEL_CONFIG +*/ +void MPU6050::setAccelXSelfTest(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled); +} +/** Get self-test enabled value for accelerometer Y axis. + @return Self-test enabled value + @see MPU6050_RA_ACCEL_CONFIG +*/ +bool MPU6050::getAccelYSelfTest() { + I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer); + return buffer[0]; +} +/** Get self-test enabled value for accelerometer Y axis. + @param enabled Self-test enabled value + @see MPU6050_RA_ACCEL_CONFIG +*/ +void MPU6050::setAccelYSelfTest(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled); +} +/** Get self-test enabled value for accelerometer Z axis. + @return Self-test enabled value + @see MPU6050_RA_ACCEL_CONFIG +*/ +bool MPU6050::getAccelZSelfTest() { + I2Cdev::readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer); + return buffer[0]; +} +/** Set self-test enabled value for accelerometer Z axis. + @param enabled Self-test enabled value + @see MPU6050_RA_ACCEL_CONFIG +*/ +void MPU6050::setAccelZSelfTest(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled); +} +/** Get full-scale accelerometer range. + The FS_SEL parameter allows setting the full-scale range of the accelerometer + sensors, as described in the table below. + +
+    0 = +/- 2g
+    1 = +/- 4g
+    2 = +/- 8g
+    3 = +/- 16g
+    
+ + @return Current full-scale accelerometer range setting + @see MPU6050_ACCEL_FS_2 + @see MPU6050_RA_ACCEL_CONFIG + @see MPU6050_ACONFIG_AFS_SEL_BIT + @see MPU6050_ACONFIG_AFS_SEL_LENGTH +*/ +uint8_t MPU6050::getFullScaleAccelRange() { + I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer); + return buffer[0]; +} +/** Set full-scale accelerometer range. + @param range New full-scale accelerometer range setting + @see getFullScaleAccelRange() +*/ +void MPU6050::setFullScaleAccelRange(uint8_t range) { + I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range); +} +/** Get the high-pass filter configuration. + The DHPF is a filter module in the path leading to motion detectors (Free + Fall, Motion threshold, and Zero Motion). The high pass filter output is not + available to the data registers (see Figure in Section 8 of the MPU-6000/ + MPU-6050 Product Specification document). + + The high pass filter has three modes: + +
+      Reset: The filter output settles to zero within one sample. This
+             effectively disables the high pass filter. This mode may be toggled
+             to quickly settle the filter.
+
+      On:    The high pass filter will pass signals above the cut off frequency.
+
+      Hold:  When triggered, the filter holds the present sample. The filter
+             output will be the difference between the input sample and the held
+             sample.
+    
+ +
+    ACCEL_HPF | Filter Mode | Cut-off Frequency
+    ----------+-------------+------------------
+    0         | Reset       | None
+    1         | On          | 5Hz
+    2         | On          | 2.5Hz
+    3         | On          | 1.25Hz
+    4         | On          | 0.63Hz
+    7         | Hold        | None
+    
+ + @return Current high-pass filter configuration + @see MPU6050_DHPF_RESET + @see MPU6050_RA_ACCEL_CONFIG +*/ +uint8_t MPU6050::getDHPFMode() { + I2Cdev::readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, + buffer); + return buffer[0]; +} +/** Set the high-pass filter configuration. + @param bandwidth New high-pass filter configuration + @see setDHPFMode() + @see MPU6050_DHPF_RESET + @see MPU6050_RA_ACCEL_CONFIG +*/ +void MPU6050::setDHPFMode(uint8_t bandwidth) { + I2Cdev::writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, + bandwidth); +} + +// FF_THR register + +/** Get free-fall event acceleration threshold. + This register configures the detection threshold for Free Fall event + detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the + absolute value of the accelerometer measurements for the three axes are each + less than the detection threshold. This condition increments the Free Fall + duration counter (Register 30). The Free Fall interrupt is triggered when the + Free Fall duration counter reaches the time specified in FF_DUR. + + For more details on the Free Fall detection interrupt, see Section 8.2 of the + MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and + 58 of this document. + + @return Current free-fall acceleration threshold value (LSB = 2mg) + @see MPU6050_RA_FF_THR +*/ +uint8_t MPU6050::getFreefallDetectionThreshold() { + I2Cdev::readByte(devAddr, MPU6050_RA_FF_THR, buffer); + return buffer[0]; +} +/** Get free-fall event acceleration threshold. + @param threshold New free-fall acceleration threshold value (LSB = 2mg) + @see getFreefallDetectionThreshold() + @see MPU6050_RA_FF_THR +*/ +void MPU6050::setFreefallDetectionThreshold(uint8_t threshold) { + I2Cdev::writeByte(devAddr, MPU6050_RA_FF_THR, threshold); +} + +// FF_DUR register + +/** Get free-fall event duration threshold. + This register configures the duration counter threshold for Free Fall event + detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit + of 1 LSB = 1 ms. + + The Free Fall duration counter increments while the absolute value of the + accelerometer measurements are each less than the detection threshold + (Register 29). The Free Fall interrupt is triggered when the Free Fall + duration counter reaches the time specified in this register. + + For more details on the Free Fall detection interrupt, see Section 8.2 of + the MPU-6000/MPU-6050 Product Specification document as well as Registers 56 + and 58 of this document. + + @return Current free-fall duration threshold value (LSB = 1ms) + @see MPU6050_RA_FF_DUR +*/ +uint8_t MPU6050::getFreefallDetectionDuration() { + I2Cdev::readByte(devAddr, MPU6050_RA_FF_DUR, buffer); + return buffer[0]; +} +/** Get free-fall event duration threshold. + @param duration New free-fall duration threshold value (LSB = 1ms) + @see getFreefallDetectionDuration() + @see MPU6050_RA_FF_DUR +*/ +void MPU6050::setFreefallDetectionDuration(uint8_t duration) { + I2Cdev::writeByte(devAddr, MPU6050_RA_FF_DUR, duration); +} + +// MOT_THR register + +/** Get motion detection event acceleration threshold. + This register configures the detection threshold for Motion interrupt + generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the + absolute value of any of the accelerometer measurements exceeds this Motion + detection threshold. This condition increments the Motion detection duration + counter (Register 32). The Motion detection interrupt is triggered when the + Motion Detection counter reaches the time count specified in MOT_DUR + (Register 32). + + The Motion interrupt will indicate the axis and polarity of detected motion + in MOT_DETECT_STATUS (Register 97). + + For more details on the Motion detection interrupt, see Section 8.3 of the + MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and + 58 of this document. + + @return Current motion detection acceleration threshold value (LSB = 2mg) + @see MPU6050_RA_MOT_THR +*/ +uint8_t MPU6050::getMotionDetectionThreshold() { + I2Cdev::readByte(devAddr, MPU6050_RA_MOT_THR, buffer); + return buffer[0]; +} +/** Set free-fall event acceleration threshold. + @param threshold New motion detection acceleration threshold value (LSB = 2mg) + @see getMotionDetectionThreshold() + @see MPU6050_RA_MOT_THR +*/ +void MPU6050::setMotionDetectionThreshold(uint8_t threshold) { + I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_THR, threshold); +} + +// MOT_DUR register + +/** Get motion detection event duration threshold. + This register configures the duration counter threshold for Motion interrupt + generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit + of 1LSB = 1ms. The Motion detection duration counter increments when the + absolute value of any of the accelerometer measurements exceeds the Motion + detection threshold (Register 31). The Motion detection interrupt is + triggered when the Motion detection counter reaches the time count specified + in this register. + + For more details on the Motion detection interrupt, see Section 8.3 of the + MPU-6000/MPU-6050 Product Specification document. + + @return Current motion detection duration threshold value (LSB = 1ms) + @see MPU6050_RA_MOT_DUR +*/ +uint8_t MPU6050::getMotionDetectionDuration() { + I2Cdev::readByte(devAddr, MPU6050_RA_MOT_DUR, buffer); + return buffer[0]; +} +/** Set motion detection event duration threshold. + @param duration New motion detection duration threshold value (LSB = 1ms) + @see getMotionDetectionDuration() + @see MPU6050_RA_MOT_DUR +*/ +void MPU6050::setMotionDetectionDuration(uint8_t duration) { + I2Cdev::writeByte(devAddr, MPU6050_RA_MOT_DUR, duration); +} + +// ZRMOT_THR register + +/** Get zero motion detection event acceleration threshold. + This register configures the detection threshold for Zero Motion interrupt + generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when + the absolute value of the accelerometer measurements for the 3 axes are each + less than the detection threshold. This condition increments the Zero Motion + duration counter (Register 34). The Zero Motion interrupt is triggered when + the Zero Motion duration counter reaches the time count specified in + ZRMOT_DUR (Register 34). + + Unlike Free Fall or Motion detection, Zero Motion detection triggers an + interrupt both when Zero Motion is first detected and when Zero Motion is no + longer detected. + + When a zero motion event is detected, a Zero Motion Status will be indicated + in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion + condition is detected, the status bit is set to 1. When a zero-motion-to- + motion condition is detected, the status bit is set to 0. + + For more details on the Zero Motion detection interrupt, see Section 8.4 of + the MPU-6000/MPU-6050 Product Specification document as well as Registers 56 + and 58 of this document. + + @return Current zero motion detection acceleration threshold value (LSB = 2mg) + @see MPU6050_RA_ZRMOT_THR +*/ +uint8_t MPU6050::getZeroMotionDetectionThreshold() { + I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer); + return buffer[0]; +} +/** Set zero motion detection event acceleration threshold. + @param threshold New zero motion detection acceleration threshold value (LSB = 2mg) + @see getZeroMotionDetectionThreshold() + @see MPU6050_RA_ZRMOT_THR +*/ +void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold) { + I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold); +} + +// ZRMOT_DUR register + +/** Get zero motion detection event duration threshold. + This register configures the duration counter threshold for Zero Motion + interrupt generation. The duration counter ticks at 16 Hz, therefore + ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter + increments while the absolute value of the accelerometer measurements are + each less than the detection threshold (Register 33). The Zero Motion + interrupt is triggered when the Zero Motion duration counter reaches the time + count specified in this register. + + For more details on the Zero Motion detection interrupt, see Section 8.4 of + the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56 + and 58 of this document. + + @return Current zero motion detection duration threshold value (LSB = 64ms) + @see MPU6050_RA_ZRMOT_DUR +*/ +uint8_t MPU6050::getZeroMotionDetectionDuration() { + I2Cdev::readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer); + return buffer[0]; +} +/** Set zero motion detection event duration threshold. + @param duration New zero motion detection duration threshold value (LSB = 1ms) + @see getZeroMotionDetectionDuration() + @see MPU6050_RA_ZRMOT_DUR +*/ +void MPU6050::setZeroMotionDetectionDuration(uint8_t duration) { + I2Cdev::writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration); +} + +// FIFO_EN register + +/** Get temperature FIFO enabled value. + When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and + 66) to be written into the FIFO buffer. + @return Current temperature FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getTempFIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set temperature FIFO enabled value. + @param enabled New temperature FIFO enabled value + @see getTempFIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setTempFIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled); +} +/** Get gyroscope X-axis FIFO enabled value. + When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and + 68) to be written into the FIFO buffer. + @return Current gyroscope X-axis FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getXGyroFIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set gyroscope X-axis FIFO enabled value. + @param enabled New gyroscope X-axis FIFO enabled value + @see getXGyroFIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setXGyroFIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled); +} +/** Get gyroscope Y-axis FIFO enabled value. + When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and + 70) to be written into the FIFO buffer. + @return Current gyroscope Y-axis FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getYGyroFIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set gyroscope Y-axis FIFO enabled value. + @param enabled New gyroscope Y-axis FIFO enabled value + @see getYGyroFIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setYGyroFIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled); +} +/** Get gyroscope Z-axis FIFO enabled value. + When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and + 72) to be written into the FIFO buffer. + @return Current gyroscope Z-axis FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getZGyroFIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set gyroscope Z-axis FIFO enabled value. + @param enabled New gyroscope Z-axis FIFO enabled value + @see getZGyroFIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setZGyroFIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled); +} +/** Get accelerometer FIFO enabled value. + When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, + ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be + written into the FIFO buffer. + @return Current accelerometer FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getAccelFIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set accelerometer FIFO enabled value. + @param enabled New accelerometer FIFO enabled value + @see getAccelFIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setAccelFIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled); +} +/** Get Slave 2 FIFO enabled value. + When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) + associated with Slave 2 to be written into the FIFO buffer. + @return Current Slave 2 FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getSlave2FIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set Slave 2 FIFO enabled value. + @param enabled New Slave 2 FIFO enabled value + @see getSlave2FIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setSlave2FIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled); +} +/** Get Slave 1 FIFO enabled value. + When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) + associated with Slave 1 to be written into the FIFO buffer. + @return Current Slave 1 FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getSlave1FIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set Slave 1 FIFO enabled value. + @param enabled New Slave 1 FIFO enabled value + @see getSlave1FIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setSlave1FIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled); +} +/** Get Slave 0 FIFO enabled value. + When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) + associated with Slave 0 to be written into the FIFO buffer. + @return Current Slave 0 FIFO enabled value + @see MPU6050_RA_FIFO_EN +*/ +bool MPU6050::getSlave0FIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set Slave 0 FIFO enabled value. + @param enabled New Slave 0 FIFO enabled value + @see getSlave0FIFOEnabled() + @see MPU6050_RA_FIFO_EN +*/ +void MPU6050::setSlave0FIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled); +} + +// I2C_MST_CTRL register + +/** Get multi-master enabled value. + Multi-master capability allows multiple I2C masters to operate on the same + bus. In circuits where multi-master capability is required, set MULT_MST_EN + to 1. This will increase current drawn by approximately 30uA. + + In circuits where multi-master capability is required, the state of the I2C + bus must always be monitored by each separate I2C Master. Before an I2C + Master can assume arbitration of the bus, it must first confirm that no other + I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the + MPU-60X0's bus arbitration detection logic is turned on, enabling it to + detect when the bus is available. + + @return Current multi-master enabled value + @see MPU6050_RA_I2C_MST_CTRL +*/ +bool MPU6050::getMultiMasterEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer); + return buffer[0]; +} +/** Set multi-master enabled value. + @param enabled New multi-master enabled value + @see getMultiMasterEnabled() + @see MPU6050_RA_I2C_MST_CTRL +*/ +void MPU6050::setMultiMasterEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled); +} +/** Get wait-for-external-sensor-data enabled value. + When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be + delayed until External Sensor data from the Slave Devices are loaded into the + EXT_SENS_DATA registers. This is used to ensure that both the internal sensor + data (i.e. from gyro and accel) and external sensor data have been loaded to + their respective data registers (i.e. the data is synced) when the Data Ready + interrupt is triggered. + + @return Current wait-for-external-sensor-data enabled value + @see MPU6050_RA_I2C_MST_CTRL +*/ +bool MPU6050::getWaitForExternalSensorEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer); + return buffer[0]; +} +/** Set wait-for-external-sensor-data enabled value. + @param enabled New wait-for-external-sensor-data enabled value + @see getWaitForExternalSensorEnabled() + @see MPU6050_RA_I2C_MST_CTRL +*/ +void MPU6050::setWaitForExternalSensorEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled); +} +/** Get Slave 3 FIFO enabled value. + When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96) + associated with Slave 3 to be written into the FIFO buffer. + @return Current Slave 3 FIFO enabled value + @see MPU6050_RA_MST_CTRL +*/ +bool MPU6050::getSlave3FIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set Slave 3 FIFO enabled value. + @param enabled New Slave 3 FIFO enabled value + @see getSlave3FIFOEnabled() + @see MPU6050_RA_MST_CTRL +*/ +void MPU6050::setSlave3FIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled); +} +/** Get slave read/write transition enabled value. + The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave + read to the next slave read. If the bit equals 0, there will be a restart + between reads. If the bit equals 1, there will be a stop followed by a start + of the following read. When a write transaction follows a read transaction, + the stop followed by a start of the successive write will be always used. + + @return Current slave read/write transition enabled value + @see MPU6050_RA_I2C_MST_CTRL +*/ +bool MPU6050::getSlaveReadWriteTransitionEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer); + return buffer[0]; +} +/** Set slave read/write transition enabled value. + @param enabled New slave read/write transition enabled value + @see getSlaveReadWriteTransitionEnabled() + @see MPU6050_RA_I2C_MST_CTRL +*/ +void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled); +} +/** Get I2C master clock speed. + I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the + MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to + the following table: + +
+    I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
+    ------------+------------------------+-------------------
+    0           | 348kHz                 | 23
+    1           | 333kHz                 | 24
+    2           | 320kHz                 | 25
+    3           | 308kHz                 | 26
+    4           | 296kHz                 | 27
+    5           | 286kHz                 | 28
+    6           | 276kHz                 | 29
+    7           | 267kHz                 | 30
+    8           | 258kHz                 | 31
+    9           | 500kHz                 | 16
+    10          | 471kHz                 | 17
+    11          | 444kHz                 | 18
+    12          | 421kHz                 | 19
+    13          | 400kHz                 | 20
+    14          | 381kHz                 | 21
+    15          | 364kHz                 | 22
+    
+ + @return Current I2C master clock speed + @see MPU6050_RA_I2C_MST_CTRL +*/ +uint8_t MPU6050::getMasterClockSpeed() { + I2Cdev::readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer); + return buffer[0]; +} +/** Set I2C master clock speed. + @reparam speed Current I2C master clock speed + @see MPU6050_RA_I2C_MST_CTRL +*/ +void MPU6050::setMasterClockSpeed(uint8_t speed) { + I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed); +} + +// I2C_SLV* registers (Slave 0-3) + +/** Get the I2C address of the specified slave (0-3). + Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read + operation, and if it is cleared, then it's a write operation. The remaining + bits (6-0) are the 7-bit device address of the slave device. + + In read mode, the result of the read is placed in the lowest available + EXT_SENS_DATA register. For further information regarding the allocation of + read results, please refer to the EXT_SENS_DATA register description + (Registers 73 - 96). + + The MPU-6050 supports a total of five slaves, but Slave 4 has unique + characteristics, and so it has its own functions (getSlave4* and setSlave4*). + + I2C data transactions are performed at the Sample Rate, as defined in + Register 25. The user is responsible for ensuring that I2C data transactions + to and from each enabled Slave can be completed within a single period of the + Sample Rate. + + The I2C slave access rate can be reduced relative to the Sample Rate. This + reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a + slave's access rate is reduced relative to the Sample Rate is determined by + I2C_MST_DELAY_CTRL (Register 103). + + The processing order for the slaves is fixed. The sequence followed for + processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a + particular Slave is disabled it will be skipped. + + Each slave can either be accessed at the sample rate or at a reduced sample + rate. In a case where some slaves are accessed at the Sample Rate and some + slaves are accessed at the reduced rate, the sequence of accessing the slaves + (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will + be skipped if their access rate dictates that they should not be accessed + during that particular cycle. For further information regarding the reduced + access rate, please refer to Register 52. Whether a slave is accessed at the + Sample Rate or at the reduced rate is determined by the Delay Enable bits in + Register 103. + + @param num Slave number (0-3) + @return Current address for specified slave + @see MPU6050_RA_I2C_SLV0_ADDR +*/ +uint8_t MPU6050::getSlaveAddress(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num * 3, buffer); + return buffer[0]; +} +/** Set the I2C address of the specified slave (0-3). + @param num Slave number (0-3) + @param address New address for specified slave + @see getSlaveAddress() + @see MPU6050_RA_I2C_SLV0_ADDR +*/ +void MPU6050::setSlaveAddress(uint8_t num, uint8_t address) { + if (num > 3) { + return; + } + I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num * 3, address); +} +/** Get the active internal register for the specified slave (0-3). + Read/write operations for this slave will be done to whatever internal + register address is stored in this MPU register. + + The MPU-6050 supports a total of five slaves, but Slave 4 has unique + characteristics, and so it has its own functions. + + @param num Slave number (0-3) + @return Current active register for specified slave + @see MPU6050_RA_I2C_SLV0_REG +*/ +uint8_t MPU6050::getSlaveRegister(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num * 3, buffer); + return buffer[0]; +} +/** Set the active internal register for the specified slave (0-3). + @param num Slave number (0-3) + @param reg New active register for specified slave + @see getSlaveRegister() + @see MPU6050_RA_I2C_SLV0_REG +*/ +void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg) { + if (num > 3) { + return; + } + I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num * 3, reg); +} +/** Get the enabled value for the specified slave (0-3). + When set to 1, this bit enables Slave 0 for data transfer operations. When + cleared to 0, this bit disables Slave 0 from data transfer operations. + @param num Slave number (0-3) + @return Current enabled value for specified slave + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +bool MPU6050::getSlaveEnabled(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_EN_BIT, buffer); + return buffer[0]; +} +/** Set the enabled value for the specified slave (0-3). + @param num Slave number (0-3) + @param enabled New enabled value for specified slave + @see getSlaveEnabled() + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +void MPU6050::setSlaveEnabled(uint8_t num, bool enabled) { + if (num > 3) { + return; + } + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_EN_BIT, enabled); +} +/** Get word pair byte-swapping enabled for the specified slave (0-3). + When set to 1, this bit enables byte swapping. When byte swapping is enabled, + the high and low bytes of a word pair are swapped. Please refer to + I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0, + bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA + registers in the order they were transferred. + + @param num Slave number (0-3) + @return Current word pair byte-swapping enabled value for specified slave + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +bool MPU6050::getSlaveWordByteSwap(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer); + return buffer[0]; +} +/** Set word pair byte-swapping enabled for the specified slave (0-3). + @param num Slave number (0-3) + @param enabled New word pair byte-swapping enabled value for specified slave + @see getSlaveWordByteSwap() + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled) { + if (num > 3) { + return; + } + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled); +} +/** Get write mode for the specified slave (0-3). + When set to 1, the transaction will read or write data only. When cleared to + 0, the transaction will write a register address prior to reading or writing + data. This should equal 0 when specifying the register address within the + Slave device to/from which the ensuing data transaction will take place. + + @param num Slave number (0-3) + @return Current write mode for specified slave (0 = register address + data, 1 = data only) + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +bool MPU6050::getSlaveWriteMode(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer); + return buffer[0]; +} +/** Set write mode for the specified slave (0-3). + @param num Slave number (0-3) + @param mode New write mode for specified slave (0 = register address + data, 1 = data only) + @see getSlaveWriteMode() + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +void MPU6050::setSlaveWriteMode(uint8_t num, bool mode) { + if (num > 3) { + return; + } + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_REG_DIS_BIT, mode); +} +/** Get word pair grouping order offset for the specified slave (0-3). + This sets specifies the grouping order of word pairs received from registers. + When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even, + then odd register addresses) are paired to form a word. When set to 1, bytes + from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even + register addresses) are paired to form a word. + + @param num Slave number (0-3) + @return Current word pair grouping order offset for specified slave + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +bool MPU6050::getSlaveWordGroupOffset(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_GRP_BIT, buffer); + return buffer[0]; +} +/** Set word pair grouping order offset for the specified slave (0-3). + @param num Slave number (0-3) + @param enabled New word pair grouping order offset for specified slave + @see getSlaveWordGroupOffset() + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled) { + if (num > 3) { + return; + } + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_GRP_BIT, enabled); +} +/** Get number of bytes to read for the specified slave (0-3). + Specifies the number of bytes transferred to and from Slave 0. Clearing this + bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN. + @param num Slave number (0-3) + @return Number of bytes to read for specified slave + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +uint8_t MPU6050::getSlaveDataLength(uint8_t num) { + if (num > 3) { + return 0; + } + I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, + buffer); + return buffer[0]; +} +/** Set number of bytes to read for the specified slave (0-3). + @param num Slave number (0-3) + @param length Number of bytes to read for specified slave + @see getSlaveDataLength() + @see MPU6050_RA_I2C_SLV0_CTRL +*/ +void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length) { + if (num > 3) { + return; + } + I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num * 3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, + length); +} + +// I2C_SLV* registers (Slave 4) + +/** Get the I2C address of Slave 4. + Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read + operation, and if it is cleared, then it's a write operation. The remaining + bits (6-0) are the 7-bit device address of the slave device. + + @return Current address for Slave 4 + @see getSlaveAddress() + @see MPU6050_RA_I2C_SLV4_ADDR +*/ +uint8_t MPU6050::getSlave4Address() { + I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer); + return buffer[0]; +} +/** Set the I2C address of Slave 4. + @param address New address for Slave 4 + @see getSlave4Address() + @see MPU6050_RA_I2C_SLV4_ADDR +*/ +void MPU6050::setSlave4Address(uint8_t address) { + I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address); +} +/** Get the active internal register for the Slave 4. + Read/write operations for this slave will be done to whatever internal + register address is stored in this MPU register. + + @return Current active register for Slave 4 + @see MPU6050_RA_I2C_SLV4_REG +*/ +uint8_t MPU6050::getSlave4Register() { + I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer); + return buffer[0]; +} +/** Set the active internal register for Slave 4. + @param reg New active register for Slave 4 + @see getSlave4Register() + @see MPU6050_RA_I2C_SLV4_REG +*/ +void MPU6050::setSlave4Register(uint8_t reg) { + I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg); +} +/** Set new byte to write to Slave 4. + This register stores the data to be written into the Slave 4. If I2C_SLV4_RW + is set 1 (set to read), this register has no effect. + @param data New byte to write to Slave 4 + @see MPU6050_RA_I2C_SLV4_DO +*/ +void MPU6050::setSlave4OutputByte(uint8_t data) { + I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data); +} +/** Get the enabled value for the Slave 4. + When set to 1, this bit enables Slave 4 for data transfer operations. When + cleared to 0, this bit disables Slave 4 from data transfer operations. + @return Current enabled value for Slave 4 + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +bool MPU6050::getSlave4Enabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer); + return buffer[0]; +} +/** Set the enabled value for Slave 4. + @param enabled New enabled value for Slave 4 + @see getSlave4Enabled() + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +void MPU6050::setSlave4Enabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled); +} +/** Get the enabled value for Slave 4 transaction interrupts. + When set to 1, this bit enables the generation of an interrupt signal upon + completion of a Slave 4 transaction. When cleared to 0, this bit disables the + generation of an interrupt signal upon completion of a Slave 4 transaction. + The interrupt status can be observed in Register 54. + + @return Current enabled value for Slave 4 transaction interrupts. + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +bool MPU6050::getSlave4InterruptEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer); + return buffer[0]; +} +/** Set the enabled value for Slave 4 transaction interrupts. + @param enabled New enabled value for Slave 4 transaction interrupts. + @see getSlave4InterruptEnabled() + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +void MPU6050::setSlave4InterruptEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled); +} +/** Get write mode for Slave 4. + When set to 1, the transaction will read or write data only. When cleared to + 0, the transaction will write a register address prior to reading or writing + data. This should equal 0 when specifying the register address within the + Slave device to/from which the ensuing data transaction will take place. + + @return Current write mode for Slave 4 (0 = register address + data, 1 = data only) + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +bool MPU6050::getSlave4WriteMode() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer); + return buffer[0]; +} +/** Set write mode for the Slave 4. + @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only) + @see getSlave4WriteMode() + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +void MPU6050::setSlave4WriteMode(bool mode) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode); +} +/** Get Slave 4 master delay value. + This configures the reduced access rate of I2C slaves relative to the Sample + Rate. When a slave's access rate is decreased relative to the Sample Rate, + the slave is accessed every: + + 1 / (1 + I2C_MST_DLY) samples + + This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and + DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to + the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For + further information regarding the Sample Rate, please refer to register 25. + + @return Current Slave 4 master delay value + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +uint8_t MPU6050::getSlave4MasterDelay() { + I2Cdev::readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, + buffer); + return buffer[0]; +} +/** Set Slave 4 master delay value. + @param delay New Slave 4 master delay value + @see getSlave4MasterDelay() + @see MPU6050_RA_I2C_SLV4_CTRL +*/ +void MPU6050::setSlave4MasterDelay(uint8_t delay) { + I2Cdev::writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, + delay); +} +/** Get last available byte read from Slave 4. + This register stores the data read from Slave 4. This field is populated + after a read transaction. + @return Last available byte read from to Slave 4 + @see MPU6050_RA_I2C_SLV4_DI +*/ +uint8_t MPU6050::getSlate4InputByte() { + I2Cdev::readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer); + return buffer[0]; +} + +// I2C_MST_STATUS register + +/** Get FSYNC interrupt status. + This bit reflects the status of the FSYNC interrupt from an external device + into the MPU-60X0. This is used as a way to pass an external interrupt + through the MPU-60X0 to the host application processor. When set to 1, this + bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG + (Register 55). + @return FSYNC interrupt status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getPassthroughStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer); + return buffer[0]; +} +/** Get Slave 4 transaction done status. + Automatically sets to 1 when a Slave 4 transaction has completed. This + triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register + (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the + I2C_SLV4_CTRL register (Register 52). + @return Slave 4 transaction done status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getSlave4IsDone() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer); + return buffer[0]; +} +/** Get master arbitration lost status. + This bit automatically sets to 1 when the I2C Master has lost arbitration of + the auxiliary I2C bus (an error condition). This triggers an interrupt if the + I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted. + @return Master arbitration lost status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getLostArbitration() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer); + return buffer[0]; +} +/** Get Slave 4 NACK status. + This bit automatically sets to 1 when the I2C Master receives a NACK in a + transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN + bit in the INT_ENABLE register (Register 56) is asserted. + @return Slave 4 NACK interrupt status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getSlave4Nack() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer); + return buffer[0]; +} +/** Get Slave 3 NACK status. + This bit automatically sets to 1 when the I2C Master receives a NACK in a + transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN + bit in the INT_ENABLE register (Register 56) is asserted. + @return Slave 3 NACK interrupt status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getSlave3Nack() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer); + return buffer[0]; +} +/** Get Slave 2 NACK status. + This bit automatically sets to 1 when the I2C Master receives a NACK in a + transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN + bit in the INT_ENABLE register (Register 56) is asserted. + @return Slave 2 NACK interrupt status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getSlave2Nack() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer); + return buffer[0]; +} +/** Get Slave 1 NACK status. + This bit automatically sets to 1 when the I2C Master receives a NACK in a + transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN + bit in the INT_ENABLE register (Register 56) is asserted. + @return Slave 1 NACK interrupt status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getSlave1Nack() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer); + return buffer[0]; +} +/** Get Slave 0 NACK status. + This bit automatically sets to 1 when the I2C Master receives a NACK in a + transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN + bit in the INT_ENABLE register (Register 56) is asserted. + @return Slave 0 NACK interrupt status + @see MPU6050_RA_I2C_MST_STATUS +*/ +bool MPU6050::getSlave0Nack() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer); + return buffer[0]; +} + +// INT_PIN_CFG register + +/** Get interrupt logic level mode. + Will be set 0 for active-high, 1 for active-low. + @return Current interrupt mode (0=active-high, 1=active-low) + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_INT_LEVEL_BIT +*/ +bool MPU6050::getInterruptMode() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer); + return buffer[0]; +} +/** Set interrupt logic level mode. + @param mode New interrupt mode (0=active-high, 1=active-low) + @see getInterruptMode() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_INT_LEVEL_BIT +*/ +void MPU6050::setInterruptMode(bool mode) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode); +} +/** Get interrupt drive mode. + Will be set 0 for push-pull, 1 for open-drain. + @return Current interrupt drive mode (0=push-pull, 1=open-drain) + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_INT_OPEN_BIT +*/ +bool MPU6050::getInterruptDrive() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer); + return buffer[0]; +} +/** Set interrupt drive mode. + @param drive New interrupt drive mode (0=push-pull, 1=open-drain) + @see getInterruptDrive() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_INT_OPEN_BIT +*/ +void MPU6050::setInterruptDrive(bool drive) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive); +} +/** Get interrupt latch mode. + Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared. + @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared) + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_LATCH_INT_EN_BIT +*/ +bool MPU6050::getInterruptLatch() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer); + return buffer[0]; +} +/** Set interrupt latch mode. + @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared) + @see getInterruptLatch() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_LATCH_INT_EN_BIT +*/ +void MPU6050::setInterruptLatch(bool latch) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch); +} +/** Get interrupt latch clear mode. + Will be set 0 for status-read-only, 1 for any-register-read. + @return Current latch clear mode (0=status-read-only, 1=any-register-read) + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_INT_RD_CLEAR_BIT +*/ +bool MPU6050::getInterruptLatchClear() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer); + return buffer[0]; +} +/** Set interrupt latch clear mode. + @param clear New latch clear mode (0=status-read-only, 1=any-register-read) + @see getInterruptLatchClear() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_INT_RD_CLEAR_BIT +*/ +void MPU6050::setInterruptLatchClear(bool clear) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear); +} +/** Get FSYNC interrupt logic level mode. + @return Current FSYNC interrupt mode (0=active-high, 1=active-low) + @see getFSyncInterruptMode() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT +*/ +bool MPU6050::getFSyncInterruptLevel() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer); + return buffer[0]; +} +/** Set FSYNC interrupt logic level mode. + @param mode New FSYNC interrupt mode (0=active-high, 1=active-low) + @see getFSyncInterruptMode() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT +*/ +void MPU6050::setFSyncInterruptLevel(bool level) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level); +} +/** Get FSYNC pin interrupt enabled setting. + Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled setting + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_FSYNC_INT_EN_BIT +*/ +bool MPU6050::getFSyncInterruptEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer); + return buffer[0]; +} +/** Set FSYNC pin interrupt enabled setting. + @param enabled New FSYNC pin interrupt enabled setting + @see getFSyncInterruptEnabled() + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_FSYNC_INT_EN_BIT +*/ +void MPU6050::setFSyncInterruptEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled); +} +/** Get I2C bypass enabled status. + When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to + 0, the host application processor will be able to directly access the + auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host + application processor will not be able to directly access the auxiliary I2C + bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106 + bit[5]). + @return Current I2C bypass enabled status + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT +*/ +bool MPU6050::getI2CBypassEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer); + return buffer[0]; +} +/** Set I2C bypass enabled status. + When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to + 0, the host application processor will be able to directly access the + auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host + application processor will not be able to directly access the auxiliary I2C + bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106 + bit[5]). + @param enabled New I2C bypass enabled status + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT +*/ +void MPU6050::setI2CBypassEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled); +} +/** Get reference clock output enabled status. + When this bit is equal to 1, a reference clock output is provided at the + CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For + further information regarding CLKOUT, please refer to the MPU-60X0 Product + Specification document. + @return Current reference clock output enabled status + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_CLKOUT_EN_BIT +*/ +bool MPU6050::getClockOutputEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer); + return buffer[0]; +} +/** Set reference clock output enabled status. + When this bit is equal to 1, a reference clock output is provided at the + CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For + further information regarding CLKOUT, please refer to the MPU-60X0 Product + Specification document. + @param enabled New reference clock output enabled status + @see MPU6050_RA_INT_PIN_CFG + @see MPU6050_INTCFG_CLKOUT_EN_BIT +*/ +void MPU6050::setClockOutputEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled); +} + +// INT_ENABLE register + +/** Get full interrupt enabled status. + Full register byte for all interrupts, for quick reading. Each bit will be + set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_FF_BIT + **/ +uint8_t MPU6050::getIntEnabled() { + I2Cdev::readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer); + return buffer[0]; +} +/** Set full interrupt enabled status. + Full register byte for all interrupts, for quick reading. Each bit should be + set 0 for disabled, 1 for enabled. + @param enabled New interrupt enabled status + @see getIntFreefallEnabled() + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_FF_BIT + **/ +void MPU6050::setIntEnabled(uint8_t enabled) { + I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled); +} +/** Get Free Fall interrupt enabled status. + Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_FF_BIT + **/ +bool MPU6050::getIntFreefallEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer); + return buffer[0]; +} +/** Set Free Fall interrupt enabled status. + @param enabled New interrupt enabled status + @see getIntFreefallEnabled() + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_FF_BIT + **/ +void MPU6050::setIntFreefallEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled); +} +/** Get Motion Detection interrupt enabled status. + Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_MOT_BIT + **/ +bool MPU6050::getIntMotionEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer); + return buffer[0]; +} +/** Set Motion Detection interrupt enabled status. + @param enabled New interrupt enabled status + @see getIntMotionEnabled() + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_MOT_BIT + **/ +void MPU6050::setIntMotionEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled); +} +/** Get Zero Motion Detection interrupt enabled status. + Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_ZMOT_BIT + **/ +bool MPU6050::getIntZeroMotionEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer); + return buffer[0]; +} +/** Set Zero Motion Detection interrupt enabled status. + @param enabled New interrupt enabled status + @see getIntZeroMotionEnabled() + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_ZMOT_BIT + **/ +void MPU6050::setIntZeroMotionEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled); +} +/** Get FIFO Buffer Overflow interrupt enabled status. + Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT + **/ +bool MPU6050::getIntFIFOBufferOverflowEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer); + return buffer[0]; +} +/** Set FIFO Buffer Overflow interrupt enabled status. + @param enabled New interrupt enabled status + @see getIntFIFOBufferOverflowEnabled() + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT + **/ +void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled); +} +/** Get I2C Master interrupt enabled status. + This enables any of the I2C Master interrupt sources to generate an + interrupt. Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_I2C_MST_INT_BIT + **/ +bool MPU6050::getIntI2CMasterEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer); + return buffer[0]; +} +/** Set I2C Master interrupt enabled status. + @param enabled New interrupt enabled status + @see getIntI2CMasterEnabled() + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_I2C_MST_INT_BIT + **/ +void MPU6050::setIntI2CMasterEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled); +} +/** Get Data Ready interrupt enabled setting. + This event occurs each time a write operation to all of the sensor registers + has been completed. Will be set 0 for disabled, 1 for enabled. + @return Current interrupt enabled status + @see MPU6050_RA_INT_ENABLE + @see MPU6050_INTERRUPT_DATA_RDY_BIT +*/ +bool MPU6050::getIntDataReadyEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer); + return buffer[0]; +} +/** Set Data Ready interrupt enabled status. + @param enabled New interrupt enabled status + @see getIntDataReadyEnabled() + @see MPU6050_RA_INT_CFG + @see MPU6050_INTERRUPT_DATA_RDY_BIT +*/ +void MPU6050::setIntDataReadyEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled); +} + +// INT_STATUS register + +/** Get full set of interrupt status bits. + These bits clear to 0 after the register has been read. Very useful + for getting multiple INT statuses, since each single bit read clears + all of them because it has to read the whole byte. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS +*/ +uint8_t MPU6050::getIntStatus() { + I2Cdev::readByte(devAddr, MPU6050_RA_INT_STATUS, buffer); + return buffer[0]; +} +/** Get Free Fall interrupt status. + This bit automatically sets to 1 when a Free Fall interrupt has been + generated. The bit clears to 0 after the register has been read. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS + @see MPU6050_INTERRUPT_FF_BIT +*/ +bool MPU6050::getIntFreefallStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer); + return buffer[0]; +} +/** Get Motion Detection interrupt status. + This bit automatically sets to 1 when a Motion Detection interrupt has been + generated. The bit clears to 0 after the register has been read. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS + @see MPU6050_INTERRUPT_MOT_BIT +*/ +bool MPU6050::getIntMotionStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer); + return buffer[0]; +} +/** Get Zero Motion Detection interrupt status. + This bit automatically sets to 1 when a Zero Motion Detection interrupt has + been generated. The bit clears to 0 after the register has been read. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS + @see MPU6050_INTERRUPT_ZMOT_BIT +*/ +bool MPU6050::getIntZeroMotionStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer); + return buffer[0]; +} +/** Get FIFO Buffer Overflow interrupt status. + This bit automatically sets to 1 when a Free Fall interrupt has been + generated. The bit clears to 0 after the register has been read. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS + @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT +*/ +bool MPU6050::getIntFIFOBufferOverflowStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer); + return buffer[0]; +} +/** Get I2C Master interrupt status. + This bit automatically sets to 1 when an I2C Master interrupt has been + generated. For a list of I2C Master interrupts, please refer to Register 54. + The bit clears to 0 after the register has been read. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS + @see MPU6050_INTERRUPT_I2C_MST_INT_BIT +*/ +bool MPU6050::getIntI2CMasterStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer); + return buffer[0]; +} +/** Get Data Ready interrupt status. + This bit automatically sets to 1 when a Data Ready interrupt has been + generated. The bit clears to 0 after the register has been read. + @return Current interrupt status + @see MPU6050_RA_INT_STATUS + @see MPU6050_INTERRUPT_DATA_RDY_BIT +*/ +bool MPU6050::getIntDataReadyStatus() { + I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer); + return buffer[0]; +} + +// ACCEL_*OUT_* registers + +/** Get raw 9-axis motion sensor readings (accel/gyro/compass). + FUNCTION NOT FULLY IMPLEMENTED YET. + @param ax 16-bit signed integer container for accelerometer X-axis value + @param ay 16-bit signed integer container for accelerometer Y-axis value + @param az 16-bit signed integer container for accelerometer Z-axis value + @param gx 16-bit signed integer container for gyroscope X-axis value + @param gy 16-bit signed integer container for gyroscope Y-axis value + @param gz 16-bit signed integer container for gyroscope Z-axis value + @param mx 16-bit signed integer container for magnetometer X-axis value + @param my 16-bit signed integer container for magnetometer Y-axis value + @param mz 16-bit signed integer container for magnetometer Z-axis value + @see getMotion6() + @see getAcceleration() + @see getRotation() + @see MPU6050_RA_ACCEL_XOUT_H +*/ +void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, + int16_t* my, int16_t* mz) { + + //get accel and gyro + getMotion6(ax, ay, az, gx, gy, gz); + + //read mag + I2Cdev::writeByte(devAddr, MPU6050_RA_INT_PIN_CFG, 0x02); //set i2c bypass enable pin to true to access magnetometer + delay(10); + I2Cdev::writeByte(MPU9150_RA_MAG_ADDRESS, 0x0A, 0x01); //enable the magnetometer + delay(10); + I2Cdev::readBytes(MPU9150_RA_MAG_ADDRESS, MPU9150_RA_MAG_XOUT_L, 6, buffer); + *mx = (((int16_t)buffer[1]) << 8) | buffer[0]; + *my = (((int16_t)buffer[3]) << 8) | buffer[2]; + *mz = (((int16_t)buffer[5]) << 8) | buffer[4]; +} +/** Get raw 6-axis motion sensor readings (accel/gyro). + Retrieves all currently available motion sensor values. + @param ax 16-bit signed integer container for accelerometer X-axis value + @param ay 16-bit signed integer container for accelerometer Y-axis value + @param az 16-bit signed integer container for accelerometer Z-axis value + @param gx 16-bit signed integer container for gyroscope X-axis value + @param gy 16-bit signed integer container for gyroscope Y-axis value + @param gz 16-bit signed integer container for gyroscope Z-axis value + @see getAcceleration() + @see getRotation() + @see MPU6050_RA_ACCEL_XOUT_H +*/ +void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz) { + I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer); + *ax = (((int16_t)buffer[0]) << 8) | buffer[1]; + *ay = (((int16_t)buffer[2]) << 8) | buffer[3]; + *az = (((int16_t)buffer[4]) << 8) | buffer[5]; + *gx = (((int16_t)buffer[8]) << 8) | buffer[9]; + *gy = (((int16_t)buffer[10]) << 8) | buffer[11]; + *gz = (((int16_t)buffer[12]) << 8) | buffer[13]; +} +/** Get 3-axis accelerometer readings. + These registers store the most recent accelerometer measurements. + Accelerometer measurements are written to these registers at the Sample Rate + as defined in Register 25. + + The accelerometer measurement registers, along with the temperature + measurement registers, gyroscope measurement registers, and external sensor + data registers, are composed of two sets of registers: an internal register + set and a user-facing read register set. + + The data within the accelerometer sensors' internal register set is always + updated at the Sample Rate. Meanwhile, the user-facing read register set + duplicates the internal register set's data values whenever the serial + interface is idle. This guarantees that a burst read of sensor registers will + read measurements from the same sampling instant. Note that if burst reads + are not used, the user is responsible for ensuring a set of single byte reads + correspond to a single sampling instant by checking the Data Ready interrupt. + + Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS + (Register 28). For each full scale setting, the accelerometers' sensitivity + per LSB in ACCEL_xOUT is shown in the table below: + +
+    AFS_SEL | Full Scale Range | LSB Sensitivity
+    --------+------------------+----------------
+    0       | +/- 2g           | 8192 LSB/mg
+    1       | +/- 4g           | 4096 LSB/mg
+    2       | +/- 8g           | 2048 LSB/mg
+    3       | +/- 16g          | 1024 LSB/mg
+    
+ + @param x 16-bit signed integer container for X-axis acceleration + @param y 16-bit signed integer container for Y-axis acceleration + @param z 16-bit signed integer container for Z-axis acceleration + @see MPU6050_RA_GYRO_XOUT_H +*/ +void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z) { + I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer); + *x = (((int16_t)buffer[0]) << 8) | buffer[1]; + *y = (((int16_t)buffer[2]) << 8) | buffer[3]; + *z = (((int16_t)buffer[4]) << 8) | buffer[5]; +} +/** Get X-axis accelerometer reading. + @return X-axis acceleration measurement in 16-bit 2's complement format + @see getMotion6() + @see MPU6050_RA_ACCEL_XOUT_H +*/ +int16_t MPU6050::getAccelerationX() { + I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} +/** Get Y-axis accelerometer reading. + @return Y-axis acceleration measurement in 16-bit 2's complement format + @see getMotion6() + @see MPU6050_RA_ACCEL_YOUT_H +*/ +int16_t MPU6050::getAccelerationY() { + I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} +/** Get Z-axis accelerometer reading. + @return Z-axis acceleration measurement in 16-bit 2's complement format + @see getMotion6() + @see MPU6050_RA_ACCEL_ZOUT_H +*/ +int16_t MPU6050::getAccelerationZ() { + I2Cdev::readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} + +// TEMP_OUT_* registers + +/** Get current internal temperature. + @return Temperature reading in 16-bit 2's complement format + @see MPU6050_RA_TEMP_OUT_H +*/ +int16_t MPU6050::getTemperature() { + I2Cdev::readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} + +// GYRO_*OUT_* registers + +/** Get 3-axis gyroscope readings. + These gyroscope measurement registers, along with the accelerometer + measurement registers, temperature measurement registers, and external sensor + data registers, are composed of two sets of registers: an internal register + set and a user-facing read register set. + The data within the gyroscope sensors' internal register set is always + updated at the Sample Rate. Meanwhile, the user-facing read register set + duplicates the internal register set's data values whenever the serial + interface is idle. This guarantees that a burst read of sensor registers will + read measurements from the same sampling instant. Note that if burst reads + are not used, the user is responsible for ensuring a set of single byte reads + correspond to a single sampling instant by checking the Data Ready interrupt. + + Each 16-bit gyroscope measurement has a full scale defined in FS_SEL + (Register 27). For each full scale setting, the gyroscopes' sensitivity per + LSB in GYRO_xOUT is shown in the table below: + +
+    FS_SEL | Full Scale Range   | LSB Sensitivity
+    -------+--------------------+----------------
+    0      | +/- 250 degrees/s  | 131 LSB/deg/s
+    1      | +/- 500 degrees/s  | 65.5 LSB/deg/s
+    2      | +/- 1000 degrees/s | 32.8 LSB/deg/s
+    3      | +/- 2000 degrees/s | 16.4 LSB/deg/s
+    
+ + @param x 16-bit signed integer container for X-axis rotation + @param y 16-bit signed integer container for Y-axis rotation + @param z 16-bit signed integer container for Z-axis rotation + @see getMotion6() + @see MPU6050_RA_GYRO_XOUT_H +*/ +void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z) { + I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer); + *x = (((int16_t)buffer[0]) << 8) | buffer[1]; + *y = (((int16_t)buffer[2]) << 8) | buffer[3]; + *z = (((int16_t)buffer[4]) << 8) | buffer[5]; +} +/** Get X-axis gyroscope reading. + @return X-axis rotation measurement in 16-bit 2's complement format + @see getMotion6() + @see MPU6050_RA_GYRO_XOUT_H +*/ +int16_t MPU6050::getRotationX() { + I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} +/** Get Y-axis gyroscope reading. + @return Y-axis rotation measurement in 16-bit 2's complement format + @see getMotion6() + @see MPU6050_RA_GYRO_YOUT_H +*/ +int16_t MPU6050::getRotationY() { + I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} +/** Get Z-axis gyroscope reading. + @return Z-axis rotation measurement in 16-bit 2's complement format + @see getMotion6() + @see MPU6050_RA_GYRO_ZOUT_H +*/ +int16_t MPU6050::getRotationZ() { + I2Cdev::readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer); + return (((int16_t)buffer[0]) << 8) | buffer[1]; +} + +// EXT_SENS_DATA_* registers + +/** Read single byte from external sensor data register. + These registers store data read from external sensors by the Slave 0, 1, 2, + and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in + I2C_SLV4_DI (Register 53). + + External sensor data is written to these registers at the Sample Rate as + defined in Register 25. This access rate can be reduced by using the Slave + Delay Enable registers (Register 103). + + External sensor data registers, along with the gyroscope measurement + registers, accelerometer measurement registers, and temperature measurement + registers, are composed of two sets of registers: an internal register set + and a user-facing read register set. + + The data within the external sensors' internal register set is always updated + at the Sample Rate (or the reduced access rate) whenever the serial interface + is idle. This guarantees that a burst read of sensor registers will read + measurements from the same sampling instant. Note that if burst reads are not + used, the user is responsible for ensuring a set of single byte reads + correspond to a single sampling instant by checking the Data Ready interrupt. + + Data is placed in these external sensor data registers according to + I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39, + 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from + an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as + defined in Register 25) or delayed rate (if specified in Register 52 and + 103). During each Sample cycle, slave reads are performed in order of Slave + number. If all slaves are enabled with more than zero bytes to be read, the + order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3. + + Each enabled slave will have EXT_SENS_DATA registers associated with it by + number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from + EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may + change the higher numbered slaves' associated registers. Furthermore, if + fewer total bytes are being read from the external sensors as a result of + such a change, then the data remaining in the registers which no longer have + an associated slave device (i.e. high numbered registers) will remain in + these previously allocated registers unless reset. + + If the sum of the read lengths of all SLVx transactions exceed the number of + available EXT_SENS_DATA registers, the excess bytes will be dropped. There + are 24 EXT_SENS_DATA registers and hence the total read lengths between all + the slaves cannot be greater than 24 or some bytes will be lost. + + Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further + information regarding the characteristics of Slave 4, please refer to + Registers 49 to 53. + + EXAMPLE: + Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and + I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that + I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00 + through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05 + will be associated with Slave 1. If Slave 2 is enabled as well, registers + starting from EXT_SENS_DATA_06 will be allocated to Slave 2. + + If Slave 2 is disabled while Slave 3 is enabled in this same situation, then + registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3 + instead. + + REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE: + If a slave is disabled at any time, the space initially allocated to the + slave in the EXT_SENS_DATA register, will remain associated with that slave. + This is to avoid dynamic adjustment of the register allocation. + + The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all + slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106). + + This above is also true if one of the slaves gets NACKed and stops + functioning. + + @param position Starting position (0-23) + @return Byte read from register +*/ +uint8_t MPU6050::getExternalSensorByte(int position) { + I2Cdev::readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer); + return buffer[0]; +} +/** Read word (2 bytes) from external sensor data registers. + @param position Starting position (0-21) + @return Word read from register + @see getExternalSensorByte() +*/ +uint16_t MPU6050::getExternalSensorWord(int position) { + I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer); + return (((uint16_t)buffer[0]) << 8) | buffer[1]; +} +/** Read double word (4 bytes) from external sensor data registers. + @param position Starting position (0-20) + @return Double word read from registers + @see getExternalSensorByte() +*/ +uint32_t MPU6050::getExternalSensorDWord(int position) { + I2Cdev::readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer); + return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3]; +} + +// MOT_DETECT_STATUS register + +/** Get X-axis negative motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_XNEG_BIT +*/ +bool MPU6050::getXNegMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer); + return buffer[0]; +} +/** Get X-axis positive motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_XPOS_BIT +*/ +bool MPU6050::getXPosMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer); + return buffer[0]; +} +/** Get Y-axis negative motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_YNEG_BIT +*/ +bool MPU6050::getYNegMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer); + return buffer[0]; +} +/** Get Y-axis positive motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_YPOS_BIT +*/ +bool MPU6050::getYPosMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer); + return buffer[0]; +} +/** Get Z-axis negative motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_ZNEG_BIT +*/ +bool MPU6050::getZNegMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer); + return buffer[0]; +} +/** Get Z-axis positive motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_ZPOS_BIT +*/ +bool MPU6050::getZPosMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer); + return buffer[0]; +} +/** Get zero motion detection interrupt status. + @return Motion detection status + @see MPU6050_RA_MOT_DETECT_STATUS + @see MPU6050_MOTION_MOT_ZRMOT_BIT +*/ +bool MPU6050::getZeroMotionDetected() { + I2Cdev::readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer); + return buffer[0]; +} + +// I2C_SLV*_DO register + +/** Write byte to Data Output container for specified slave. + This register holds the output data written into Slave when Slave is set to + write mode. For further information regarding Slave control, please + refer to Registers 37 to 39 and immediately following. + @param num Slave number (0-3) + @param data Byte to write + @see MPU6050_RA_I2C_SLV0_DO +*/ +void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data) { + if (num > 3) { + return; + } + I2Cdev::writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data); +} + +// I2C_MST_DELAY_CTRL register + +/** Get external data shadow delay enabled status. + This register is used to specify the timing of external sensor data + shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external + sensor data is delayed until all data has been received. + @return Current external data shadow delay enabled status. + @see MPU6050_RA_I2C_MST_DELAY_CTRL + @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT +*/ +bool MPU6050::getExternalShadowDelayEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer); + return buffer[0]; +} +/** Set external data shadow delay enabled status. + @param enabled New external data shadow delay enabled status. + @see getExternalShadowDelayEnabled() + @see MPU6050_RA_I2C_MST_DELAY_CTRL + @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT +*/ +void MPU6050::setExternalShadowDelayEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled); +} +/** Get slave delay enabled status. + When a particular slave delay is enabled, the rate of access for the that + slave device is reduced. When a slave's access rate is decreased relative to + the Sample Rate, the slave is accessed every: + + 1 / (1 + I2C_MST_DLY) Samples + + This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25) + and DLPF_CFG (register 26). + + For further information regarding I2C_MST_DLY, please refer to register 52. + For further information regarding the Sample Rate, please refer to register 25. + + @param num Slave number (0-4) + @return Current slave delay enabled status. + @see MPU6050_RA_I2C_MST_DELAY_CTRL + @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT +*/ +bool MPU6050::getSlaveDelayEnabled(uint8_t num) { + // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc. + if (num > 4) { + return 0; + } + I2Cdev::readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer); + return buffer[0]; +} +/** Set slave delay enabled status. + @param num Slave number (0-4) + @param enabled New slave delay enabled status. + @see MPU6050_RA_I2C_MST_DELAY_CTRL + @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT +*/ +void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled); +} + +// SIGNAL_PATH_RESET register + +/** Reset gyroscope signal path. + The reset will revert the signal path analog to digital converters and + filters to their power up configurations. + @see MPU6050_RA_SIGNAL_PATH_RESET + @see MPU6050_PATHRESET_GYRO_RESET_BIT +*/ +void MPU6050::resetGyroscopePath() { + I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true); +} +/** Reset accelerometer signal path. + The reset will revert the signal path analog to digital converters and + filters to their power up configurations. + @see MPU6050_RA_SIGNAL_PATH_RESET + @see MPU6050_PATHRESET_ACCEL_RESET_BIT +*/ +void MPU6050::resetAccelerometerPath() { + I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true); +} +/** Reset temperature sensor signal path. + The reset will revert the signal path analog to digital converters and + filters to their power up configurations. + @see MPU6050_RA_SIGNAL_PATH_RESET + @see MPU6050_PATHRESET_TEMP_RESET_BIT +*/ +void MPU6050::resetTemperaturePath() { + I2Cdev::writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true); +} + +// MOT_DETECT_CTRL register + +/** Get accelerometer power-on delay. + The accelerometer data path provides samples to the sensor registers, Motion + detection, Zero Motion detection, and Free Fall detection modules. The + signal path contains filters which must be flushed on wake-up with new + samples before the detection modules begin operations. The default wake-up + delay, of 4ms can be lengthened by up to 3ms. This additional delay is + specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select + any value above zero unless instructed otherwise by InvenSense. Please refer + to Section 8 of the MPU-6000/MPU-6050 Product Specification document for + further information regarding the detection modules. + @return Current accelerometer power-on delay + @see MPU6050_RA_MOT_DETECT_CTRL + @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT +*/ +uint8_t MPU6050::getAccelerometerPowerOnDelay() { + I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, + MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer); + return buffer[0]; +} +/** Set accelerometer power-on delay. + @param delay New accelerometer power-on delay (0-3) + @see getAccelerometerPowerOnDelay() + @see MPU6050_RA_MOT_DETECT_CTRL + @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT +*/ +void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay) { + I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, + MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay); +} +/** Get Free Fall detection counter decrement configuration. + Detection is registered by the Free Fall detection module after accelerometer + measurements meet their respective threshold conditions over a specified + number of samples. When the threshold conditions are met, the corresponding + detection counter increments by 1. The user may control the rate at which the + detection counter decrements when the threshold condition is not met by + configuring FF_COUNT. The decrement rate can be set according to the + following table: + +
+    FF_COUNT | Counter Decrement
+    ---------+------------------
+    0        | Reset
+    1        | 1
+    2        | 2
+    3        | 4
+    
+ + When FF_COUNT is configured to 0 (reset), any non-qualifying sample will + reset the counter to 0. For further information on Free Fall detection, + please refer to Registers 29 to 32. + + @return Current decrement configuration + @see MPU6050_RA_MOT_DETECT_CTRL + @see MPU6050_DETECT_FF_COUNT_BIT +*/ +uint8_t MPU6050::getFreefallDetectionCounterDecrement() { + I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, + buffer); + return buffer[0]; +} +/** Set Free Fall detection counter decrement configuration. + @param decrement New decrement configuration value + @see getFreefallDetectionCounterDecrement() + @see MPU6050_RA_MOT_DETECT_CTRL + @see MPU6050_DETECT_FF_COUNT_BIT +*/ +void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement) { + I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, + decrement); +} +/** Get Motion detection counter decrement configuration. + Detection is registered by the Motion detection module after accelerometer + measurements meet their respective threshold conditions over a specified + number of samples. When the threshold conditions are met, the corresponding + detection counter increments by 1. The user may control the rate at which the + detection counter decrements when the threshold condition is not met by + configuring MOT_COUNT. The decrement rate can be set according to the + following table: + +
+    MOT_COUNT | Counter Decrement
+    ----------+------------------
+    0         | Reset
+    1         | 1
+    2         | 2
+    3         | 4
+    
+ + When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will + reset the counter to 0. For further information on Motion detection, + please refer to Registers 29 to 32. + +*/ +uint8_t MPU6050::getMotionDetectionCounterDecrement() { + I2Cdev::readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, + buffer); + return buffer[0]; +} +/** Set Motion detection counter decrement configuration. + @param decrement New decrement configuration value + @see getMotionDetectionCounterDecrement() + @see MPU6050_RA_MOT_DETECT_CTRL + @see MPU6050_DETECT_MOT_COUNT_BIT +*/ +void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement) { + I2Cdev::writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, + decrement); +} + +// USER_CTRL register + +/** Get FIFO enabled status. + When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer + cannot be written to or read from while disabled. The FIFO buffer's state + does not change unless the MPU-60X0 is power cycled. + @return Current FIFO enabled status + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_FIFO_EN_BIT +*/ +bool MPU6050::getFIFOEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer); + return buffer[0]; +} +/** Set FIFO enabled status. + @param enabled New FIFO enabled status + @see getFIFOEnabled() + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_FIFO_EN_BIT +*/ +void MPU6050::setFIFOEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled); +} +/** Get I2C Master Mode enabled status. + When this mode is enabled, the MPU-60X0 acts as the I2C Master to the + external sensor slave devices on the auxiliary I2C bus. When this bit is + cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically + driven by the primary I2C bus (SDA and SCL). This is a precondition to + enabling Bypass Mode. For further information regarding Bypass Mode, please + refer to Register 55. + @return Current I2C Master Mode enabled status + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_I2C_MST_EN_BIT +*/ +bool MPU6050::getI2CMasterModeEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer); + return buffer[0]; +} +/** Set I2C Master Mode enabled status. + @param enabled New I2C Master Mode enabled status + @see getI2CMasterModeEnabled() + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_I2C_MST_EN_BIT +*/ +void MPU6050::setI2CMasterModeEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled); +} +/** Switch from I2C to SPI mode (MPU-6000 only) + If this is set, the primary SPI interface will be enabled in place of the + disabled primary I2C interface. +*/ +void MPU6050::switchSPIEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled); +} +/** Reset the FIFO. + This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This + bit automatically clears to 0 after the reset has been triggered. + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_FIFO_RESET_BIT +*/ +void MPU6050::resetFIFO() { + I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true); +} +/** Reset the I2C Master. + This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0. + This bit automatically clears to 0 after the reset has been triggered. + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_I2C_MST_RESET_BIT +*/ +void MPU6050::resetI2CMaster() { + I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true); +} +/** Reset all sensor registers and signal paths. + When set to 1, this bit resets the signal paths for all sensors (gyroscopes, + accelerometers, and temperature sensor). This operation will also clear the + sensor registers. This bit automatically clears to 0 after the reset has been + triggered. + + When resetting only the signal path (and not the sensor registers), please + use Register 104, SIGNAL_PATH_RESET. + + @see MPU6050_RA_USER_CTRL + @see MPU6050_USERCTRL_SIG_COND_RESET_BIT +*/ +void MPU6050::resetSensors() { + I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true); +} + +// PWR_MGMT_1 register + +/** Trigger a full device reset. + A small delay of ~50ms may be desirable after triggering a reset. + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_DEVICE_RESET_BIT +*/ +void MPU6050::reset() { + I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true); +} +/** Get sleep mode status. + Setting the SLEEP bit in the register puts the device into very low power + sleep mode. In this mode, only the serial interface and internal registers + remain active, allowing for a very low standby current. Clearing this bit + puts the device back into normal mode. To save power, the individual standby + selections for each of the gyros should be used if any gyro axis is not used + by the application. + @return Current sleep mode enabled status + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_SLEEP_BIT +*/ +bool MPU6050::getSleepEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer); + return buffer[0]; +} +/** Set sleep mode status. + @param enabled New sleep mode enabled status + @see getSleepEnabled() + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_SLEEP_BIT +*/ +void MPU6050::setSleepEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled); +} +/** Get wake cycle enabled status. + When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle + between sleep mode and waking up to take a single sample of data from active + sensors at a rate determined by LP_WAKE_CTRL (register 108). + @return Current sleep mode enabled status + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_CYCLE_BIT +*/ +bool MPU6050::getWakeCycleEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer); + return buffer[0]; +} +/** Set wake cycle enabled status. + @param enabled New sleep mode enabled status + @see getWakeCycleEnabled() + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_CYCLE_BIT +*/ +void MPU6050::setWakeCycleEnabled(bool enabled) { + I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled); +} +/** Get temperature sensor enabled status. + Control the usage of the internal temperature sensor. + + Note: this register stores the *disabled* value, but for consistency with the + rest of the code, the function is named and used with standard true/false + values to indicate whether the sensor is enabled or disabled, respectively. + + @return Current temperature sensor enabled status + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_TEMP_DIS_BIT +*/ +bool MPU6050::getTempSensorEnabled() { + I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer); + return buffer[0] == 0; // 1 is actually disabled here +} +/** Set temperature sensor enabled status. + Note: this register stores the *disabled* value, but for consistency with the + rest of the code, the function is named and used with standard true/false + values to indicate whether the sensor is enabled or disabled, respectively. + + @param enabled New temperature sensor enabled status + @see getTempSensorEnabled() + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_TEMP_DIS_BIT +*/ +void MPU6050::setTempSensorEnabled(bool enabled) { + // 1 is actually disabled here + I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled); +} +/** Get clock source setting. + @return Current clock source setting + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_CLKSEL_BIT + @see MPU6050_PWR1_CLKSEL_LENGTH +*/ +uint8_t MPU6050::getClockSource() { + I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer); + return buffer[0]; +} +/** Set clock source setting. + An internal 8MHz oscillator, gyroscope based clock, or external sources can + be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator + or an external source is chosen as the clock source, the MPU-60X0 can operate + in low power modes with the gyroscopes disabled. + + Upon power up, the MPU-60X0 clock source defaults to the internal oscillator. + However, it is highly recommended that the device be configured to use one of + the gyroscopes (or an external clock source) as the clock reference for + improved stability. The clock source can be selected according to the following table: + +
+    CLK_SEL | Clock Source
+    --------+--------------------------------------
+    0       | Internal oscillator
+    1       | PLL with X Gyro reference
+    2       | PLL with Y Gyro reference
+    3       | PLL with Z Gyro reference
+    4       | PLL with external 32.768kHz reference
+    5       | PLL with external 19.2MHz reference
+    6       | Reserved
+    7       | Stops the clock and keeps the timing generator in reset
+    
+ + @param source New clock source setting + @see getClockSource() + @see MPU6050_RA_PWR_MGMT_1 + @see MPU6050_PWR1_CLKSEL_BIT + @see MPU6050_PWR1_CLKSEL_LENGTH +*/ +void MPU6050::setClockSource(uint8_t source) { + I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source); +} + +// PWR_MGMT_2 register + +/** Get wake frequency in Accel-Only Low Power Mode. + The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting + PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode, + the device will power off all devices except for the primary I2C interface, + waking only the accelerometer at fixed intervals to take a single + measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL + as shown below: + +
+    LP_WAKE_CTRL | Wake-up Frequency
+    -------------+------------------
+    0            | 1.25 Hz
+    1            | 2.5 Hz
+    2            | 5 Hz
+    3            | 10 Hz
+    
+
+    For further information regarding the MPU-60X0's power modes, please refer to
+    Register 107.
+
+    @return Current wake frequency
+    @see MPU6050_RA_PWR_MGMT_2
+*/
+uint8_t MPU6050::getWakeFrequency() {
+    I2Cdev::readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH,
+                     buffer);
+    return buffer[0];
+}
+/** Set wake frequency in Accel-Only Low Power Mode.
+    @param frequency New wake frequency
+    @see MPU6050_RA_PWR_MGMT_2
+*/
+void MPU6050::setWakeFrequency(uint8_t frequency) {
+    I2Cdev::writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH,
+                      frequency);
+}
+
+/** Get X-axis accelerometer standby enabled status.
+    If enabled, the X-axis will not gather or report data (or use power).
+    @return Current X-axis standby enabled status
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_XA_BIT
+*/
+bool MPU6050::getStandbyXAccelEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
+    return buffer[0];
+}
+/** Set X-axis accelerometer standby enabled status.
+    @param New X-axis standby enabled status
+    @see getStandbyXAccelEnabled()
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_XA_BIT
+*/
+void MPU6050::setStandbyXAccelEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
+}
+/** Get Y-axis accelerometer standby enabled status.
+    If enabled, the Y-axis will not gather or report data (or use power).
+    @return Current Y-axis standby enabled status
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_YA_BIT
+*/
+bool MPU6050::getStandbyYAccelEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
+    return buffer[0];
+}
+/** Set Y-axis accelerometer standby enabled status.
+    @param New Y-axis standby enabled status
+    @see getStandbyYAccelEnabled()
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_YA_BIT
+*/
+void MPU6050::setStandbyYAccelEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
+}
+/** Get Z-axis accelerometer standby enabled status.
+    If enabled, the Z-axis will not gather or report data (or use power).
+    @return Current Z-axis standby enabled status
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_ZA_BIT
+*/
+bool MPU6050::getStandbyZAccelEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
+    return buffer[0];
+}
+/** Set Z-axis accelerometer standby enabled status.
+    @param New Z-axis standby enabled status
+    @see getStandbyZAccelEnabled()
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_ZA_BIT
+*/
+void MPU6050::setStandbyZAccelEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
+}
+/** Get X-axis gyroscope standby enabled status.
+    If enabled, the X-axis will not gather or report data (or use power).
+    @return Current X-axis standby enabled status
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_XG_BIT
+*/
+bool MPU6050::getStandbyXGyroEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
+    return buffer[0];
+}
+/** Set X-axis gyroscope standby enabled status.
+    @param New X-axis standby enabled status
+    @see getStandbyXGyroEnabled()
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_XG_BIT
+*/
+void MPU6050::setStandbyXGyroEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
+}
+/** Get Y-axis gyroscope standby enabled status.
+    If enabled, the Y-axis will not gather or report data (or use power).
+    @return Current Y-axis standby enabled status
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_YG_BIT
+*/
+bool MPU6050::getStandbyYGyroEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
+    return buffer[0];
+}
+/** Set Y-axis gyroscope standby enabled status.
+    @param New Y-axis standby enabled status
+    @see getStandbyYGyroEnabled()
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_YG_BIT
+*/
+void MPU6050::setStandbyYGyroEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
+}
+/** Get Z-axis gyroscope standby enabled status.
+    If enabled, the Z-axis will not gather or report data (or use power).
+    @return Current Z-axis standby enabled status
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_ZG_BIT
+*/
+bool MPU6050::getStandbyZGyroEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
+    return buffer[0];
+}
+/** Set Z-axis gyroscope standby enabled status.
+    @param New Z-axis standby enabled status
+    @see getStandbyZGyroEnabled()
+    @see MPU6050_RA_PWR_MGMT_2
+    @see MPU6050_PWR2_STBY_ZG_BIT
+*/
+void MPU6050::setStandbyZGyroEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
+}
+
+// FIFO_COUNT* registers
+
+/** Get current FIFO buffer size.
+    This value indicates the number of bytes stored in the FIFO buffer. This
+    number is in turn the number of bytes that can be read from the FIFO buffer
+    and it is directly proportional to the number of samples available given the
+    set of sensor data bound to be stored in the FIFO (register 35 and 36).
+    @return Current FIFO buffer size
+*/
+uint16_t MPU6050::getFIFOCount() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
+    return (((uint16_t)buffer[0]) << 8) | buffer[1];
+}
+
+// FIFO_R_W register
+
+/** Get byte from FIFO buffer.
+    This register is used to read and write data from the FIFO buffer. Data is
+    written to the FIFO in order of register number (from lowest to highest). If
+    all the FIFO enable flags (see below) are enabled and all External Sensor
+    Data registers (Registers 73 to 96) are associated with a Slave device, the
+    contents of registers 59 through 96 will be written in order at the Sample
+    Rate.
+
+    The contents of the sensor data registers (Registers 59 to 96) are written
+    into the FIFO buffer when their corresponding FIFO enable flags are set to 1
+    in FIFO_EN (Register 35). An additional flag for the sensor data registers
+    associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
+
+    If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
+    automatically set to 1. This bit is located in INT_STATUS (Register 58).
+    When the FIFO buffer has overflowed, the oldest data will be lost and new
+    data will be written to the FIFO.
+
+    If the FIFO buffer is empty, reading this register will return the last byte
+    that was previously read from the FIFO until new data is available. The user
+    should check FIFO_COUNT to ensure that the FIFO buffer is not read when
+    empty.
+
+    @return Byte from FIFO buffer
+*/
+uint8_t MPU6050::getFIFOByte() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
+    return buffer[0];
+}
+void MPU6050::getFIFOBytes(uint8_t* data, uint8_t length) {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
+}
+/** Write byte to FIFO buffer.
+    @see getFIFOByte()
+    @see MPU6050_RA_FIFO_R_W
+*/
+void MPU6050::setFIFOByte(uint8_t data) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
+}
+
+// WHO_AM_I register
+
+/** Get Device ID.
+    This register is used to verify the identity of the device (0b110100, 0x34).
+    @return Device ID (6 bits only! should be 0x34)
+    @see MPU6050_RA_WHO_AM_I
+    @see MPU6050_WHO_AM_I_BIT
+    @see MPU6050_WHO_AM_I_LENGTH
+*/
+uint8_t MPU6050::getDeviceID() {
+    I2Cdev::readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
+    return buffer[0];
+}
+/** Set Device ID.
+    Write a new ID into the WHO_AM_I register (no idea why this should ever be
+    necessary though).
+    @param id New device ID to set.
+    @see getDeviceID()
+    @see MPU6050_RA_WHO_AM_I
+    @see MPU6050_WHO_AM_I_BIT
+    @see MPU6050_WHO_AM_I_LENGTH
+*/
+void MPU6050::setDeviceID(uint8_t id) {
+    I2Cdev::writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
+}
+
+// ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
+
+// XG_OFFS_TC register
+
+uint8_t MPU6050::getOTPBankValid() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
+    return buffer[0];
+}
+void MPU6050::setOTPBankValid(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
+}
+int8_t MPU6050::getXGyroOffset() {
+    I2Cdev::readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
+    return buffer[0];
+}
+void MPU6050::setXGyroOffset(int8_t offset) {
+    I2Cdev::writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
+}
+
+// YG_OFFS_TC register
+
+int8_t MPU6050::getYGyroOffset() {
+    I2Cdev::readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
+    return buffer[0];
+}
+void MPU6050::setYGyroOffset(int8_t offset) {
+    I2Cdev::writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
+}
+
+// ZG_OFFS_TC register
+
+int8_t MPU6050::getZGyroOffset() {
+    I2Cdev::readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
+    return buffer[0];
+}
+void MPU6050::setZGyroOffset(int8_t offset) {
+    I2Cdev::writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
+}
+
+// X_FINE_GAIN register
+
+int8_t MPU6050::getXFineGain() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
+    return buffer[0];
+}
+void MPU6050::setXFineGain(int8_t gain) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
+}
+
+// Y_FINE_GAIN register
+
+int8_t MPU6050::getYFineGain() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
+    return buffer[0];
+}
+void MPU6050::setYFineGain(int8_t gain) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
+}
+
+// Z_FINE_GAIN register
+
+int8_t MPU6050::getZFineGain() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
+    return buffer[0];
+}
+void MPU6050::setZFineGain(int8_t gain) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
+}
+
+// XA_OFFS_* registers
+
+int16_t MPU6050::getXAccelOffset() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
+    return (((int16_t)buffer[0]) << 8) | buffer[1];
+}
+void MPU6050::setXAccelOffset(int16_t offset) {
+    I2Cdev::writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
+}
+
+// YA_OFFS_* register
+
+int16_t MPU6050::getYAccelOffset() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
+    return (((int16_t)buffer[0]) << 8) | buffer[1];
+}
+void MPU6050::setYAccelOffset(int16_t offset) {
+    I2Cdev::writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
+}
+
+// ZA_OFFS_* register
+
+int16_t MPU6050::getZAccelOffset() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
+    return (((int16_t)buffer[0]) << 8) | buffer[1];
+}
+void MPU6050::setZAccelOffset(int16_t offset) {
+    I2Cdev::writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
+}
+
+// XG_OFFS_USR* registers
+
+int16_t MPU6050::getXGyroOffsetUser() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
+    return (((int16_t)buffer[0]) << 8) | buffer[1];
+}
+void MPU6050::setXGyroOffsetUser(int16_t offset) {
+    I2Cdev::writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
+}
+
+// YG_OFFS_USR* register
+
+int16_t MPU6050::getYGyroOffsetUser() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
+    return (((int16_t)buffer[0]) << 8) | buffer[1];
+}
+void MPU6050::setYGyroOffsetUser(int16_t offset) {
+    I2Cdev::writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
+}
+
+// ZG_OFFS_USR* register
+
+int16_t MPU6050::getZGyroOffsetUser() {
+    I2Cdev::readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
+    return (((int16_t)buffer[0]) << 8) | buffer[1];
+}
+void MPU6050::setZGyroOffsetUser(int16_t offset) {
+    I2Cdev::writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
+}
+
+// INT_ENABLE register (DMP functions)
+
+bool MPU6050::getIntPLLReadyEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
+    return buffer[0];
+}
+void MPU6050::setIntPLLReadyEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
+}
+bool MPU6050::getIntDMPEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
+    return buffer[0];
+}
+void MPU6050::setIntDMPEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
+}
+
+// DMP_INT_STATUS
+
+bool MPU6050::getDMPInt5Status() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
+    return buffer[0];
+}
+bool MPU6050::getDMPInt4Status() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
+    return buffer[0];
+}
+bool MPU6050::getDMPInt3Status() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
+    return buffer[0];
+}
+bool MPU6050::getDMPInt2Status() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
+    return buffer[0];
+}
+bool MPU6050::getDMPInt1Status() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
+    return buffer[0];
+}
+bool MPU6050::getDMPInt0Status() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
+    return buffer[0];
+}
+
+// INT_STATUS register (DMP functions)
+
+bool MPU6050::getIntPLLReadyStatus() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
+    return buffer[0];
+}
+bool MPU6050::getIntDMPStatus() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
+    return buffer[0];
+}
+
+// USER_CTRL register (DMP functions)
+
+bool MPU6050::getDMPEnabled() {
+    I2Cdev::readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
+    return buffer[0];
+}
+void MPU6050::setDMPEnabled(bool enabled) {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
+}
+void MPU6050::resetDMP() {
+    I2Cdev::writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
+}
+
+// BANK_SEL register
+
+void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank) {
+    bank &= 0x1F;
+    if (userBank) {
+        bank |= 0x20;
+    }
+    if (prefetchEnabled) {
+        bank |= 0x40;
+    }
+    I2Cdev::writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
+}
+
+// MEM_START_ADDR register
+
+void MPU6050::setMemoryStartAddress(uint8_t address) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
+}
+
+// MEM_R_W register
+
+uint8_t MPU6050::readMemoryByte() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
+    return buffer[0];
+}
+void MPU6050::writeMemoryByte(uint8_t data) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
+}
+void MPU6050::readMemoryBlock(uint8_t* data, uint16_t dataSize, uint8_t bank, uint8_t address) {
+    setMemoryBank(bank);
+    setMemoryStartAddress(address);
+    uint8_t chunkSize;
+    for (uint16_t i = 0; i < dataSize;) {
+        // determine correct chunk size according to bank position and data size
+        chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
+
+        // make sure we don't go past the data size
+        if (i + chunkSize > dataSize) {
+            chunkSize = dataSize - i;
+        }
+
+        // make sure this chunk doesn't go past the bank boundary (256 bytes)
+        if (chunkSize > 256 - address) {
+            chunkSize = 256 - address;
+        }
+
+        // read the chunk of data as specified
+        I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
+
+        // increase byte index by [chunkSize]
+        i += chunkSize;
+
+        // uint8_t automatically wraps to 0 at 256
+        address += chunkSize;
+
+        // if we aren't done, update bank (if necessary) and address
+        if (i < dataSize) {
+            if (address == 0) {
+                bank++;
+            }
+            setMemoryBank(bank);
+            setMemoryStartAddress(address);
+        }
+    }
+}
+bool MPU6050::writeMemoryBlock(const uint8_t* data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify,
+                               bool useProgMem) {
+    setMemoryBank(bank);
+    setMemoryStartAddress(address);
+    uint8_t chunkSize;
+    uint8_t* verifyBuffer;
+    uint8_t* progBuffer;
+    uint16_t i;
+    uint8_t j;
+    if (verify) {
+        verifyBuffer = (uint8_t*)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
+    }
+    if (useProgMem) {
+        progBuffer = (uint8_t*)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
+    }
+    for (i = 0; i < dataSize;) {
+        // determine correct chunk size according to bank position and data size
+        chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
+
+        // make sure we don't go past the data size
+        if (i + chunkSize > dataSize) {
+            chunkSize = dataSize - i;
+        }
+
+        // make sure this chunk doesn't go past the bank boundary (256 bytes)
+        if (chunkSize > 256 - address) {
+            chunkSize = 256 - address;
+        }
+
+        if (useProgMem) {
+            // write the chunk of data as specified
+            for (j = 0; j < chunkSize; j++) {
+                progBuffer[j] = pgm_read_byte(data + i + j);
+            }
+        } else {
+            // write the chunk of data as specified
+            progBuffer = (uint8_t*)data + i;
+        }
+
+        I2Cdev::writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
+
+        // verify data if needed
+        if (verify && verifyBuffer) {
+            setMemoryBank(bank);
+            setMemoryStartAddress(address);
+            I2Cdev::readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
+            if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
+                /*  Serial.print("Block write verification error, bank ");
+                    Serial.print(bank, DEC);
+                    Serial.print(", address ");
+                    Serial.print(address, DEC);
+                    Serial.print("!\nExpected:");
+                    for (j = 0; j < chunkSize; j++) {
+                    Serial.print(" 0x");
+                    if (progBuffer[j] < 16) Serial.print("0");
+                    Serial.print(progBuffer[j], HEX);
+                    }
+                    Serial.print("\nReceived:");
+                    for (uint8_t j = 0; j < chunkSize; j++) {
+                    Serial.print(" 0x");
+                    if (verifyBuffer[i + j] < 16) Serial.print("0");
+                    Serial.print(verifyBuffer[i + j], HEX);
+                    }
+                    Serial.print("\n");*/
+                free(verifyBuffer);
+                if (useProgMem) {
+                    free(progBuffer);
+                }
+                return false; // uh oh.
+            }
+        }
+
+        // increase byte index by [chunkSize]
+        i += chunkSize;
+
+        // uint8_t automatically wraps to 0 at 256
+        address += chunkSize;
+
+        // if we aren't done, update bank (if necessary) and address
+        if (i < dataSize) {
+            if (address == 0) {
+                bank++;
+            }
+            setMemoryBank(bank);
+            setMemoryStartAddress(address);
+        }
+    }
+    if (verify) {
+        free(verifyBuffer);
+    }
+    if (useProgMem) {
+        free(progBuffer);
+    }
+    return true;
+}
+bool MPU6050::writeProgMemoryBlock(const uint8_t* data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify) {
+    return writeMemoryBlock(data, dataSize, bank, address, verify, true);
+}
+bool MPU6050::writeDMPConfigurationSet(const uint8_t* data, uint16_t dataSize, bool useProgMem) {
+    uint8_t* progBuffer, success, special;
+    uint16_t i, j;
+    if (useProgMem) {
+        progBuffer = (uint8_t*)malloc(8);  // assume 8-byte blocks, realloc later if necessary
+    }
+
+    // config set data is a long string of blocks with the following structure:
+    // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
+    uint8_t bank, offset, length;
+    for (i = 0; i < dataSize;) {
+        if (useProgMem) {
+            bank = pgm_read_byte(data + i++);
+            offset = pgm_read_byte(data + i++);
+            length = pgm_read_byte(data + i++);
+        } else {
+            bank = data[i++];
+            offset = data[i++];
+            length = data[i++];
+        }
+
+        // write data or perform special action
+        if (length > 0) {
+            // regular block of data to write
+            /*  Serial.print("Writing config block to bank ");
+                Serial.print(bank);
+                Serial.print(", offset ");
+                Serial.print(offset);
+                Serial.print(", length=");
+                Serial.println(length);*/
+            if (useProgMem) {
+                if (sizeof(progBuffer) < length) {
+                    progBuffer = (uint8_t*)realloc(progBuffer, length);
+                }
+                for (j = 0; j < length; j++) {
+                    progBuffer[j] = pgm_read_byte(data + i + j);
+                }
+            } else {
+                progBuffer = (uint8_t*)data + i;
+            }
+            success = writeMemoryBlock(progBuffer, length, bank, offset, true);
+            i += length;
+        } else {
+            // special instruction
+            // NOTE: this kind of behavior (what and when to do certain things)
+            // is totally undocumented. This code is in here based on observed
+            // behavior only, and exactly why (or even whether) it has to be here
+            // is anybody's guess for now.
+            if (useProgMem) {
+                special = pgm_read_byte(data + i++);
+            } else {
+                special = data[i++];
+            }
+            /*  Serial.print("Special command code ");
+                Serial.print(special, HEX);
+                Serial.println(" found...");*/
+            if (special == 0x01) {
+                // enable DMP-related interrupts
+
+                //setIntZeroMotionEnabled(true);
+                //setIntFIFOBufferOverflowEnabled(true);
+                //setIntDMPEnabled(true);
+                I2Cdev::writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32);  // single operation
+
+                success = true;
+            } else {
+                // unknown special command
+                success = false;
+            }
+        }
+
+        if (!success) {
+            if (useProgMem) {
+                free(progBuffer);
+            }
+            return false; // uh oh
+        }
+    }
+    if (useProgMem) {
+        free(progBuffer);
+    }
+    return true;
+}
+bool MPU6050::writeProgDMPConfigurationSet(const uint8_t* data, uint16_t dataSize) {
+    return writeDMPConfigurationSet(data, dataSize, true);
+}
+
+// DMP_CFG_1 register
+
+uint8_t MPU6050::getDMPConfig1() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
+    return buffer[0];
+}
+void MPU6050::setDMPConfig1(uint8_t config) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
+}
+
+// DMP_CFG_2 register
+
+uint8_t MPU6050::getDMPConfig2() {
+    I2Cdev::readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
+    return buffer[0];
+}
+void MPU6050::setDMPConfig2(uint8_t config) {
+    I2Cdev::writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
+}
\ No newline at end of file
diff --git a/labyrinthe/3-arduino/3-labyrinthe-imu/MPU6050.h b/labyrinthe/3-arduino/3-labyrinthe-imu/MPU6050.h
new file mode 100644
index 0000000..d6f7848
--- /dev/null
+++ b/labyrinthe/3-arduino/3-labyrinthe-imu/MPU6050.h
@@ -0,0 +1,997 @@
+// I2Cdev library collection - MPU6050 I2C device class
+// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
+// 10/3/2011 by Jeff Rowberg 
+// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
+//
+// Changelog:
+//     ... - ongoing debug release
+
+// NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
+// DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
+// YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
+
+/*  ============================================
+    I2Cdev device library code is placed under the MIT license
+    Copyright (c) 2012 Jeff Rowberg
+
+    Permission is hereby granted, free of charge, to any person obtaining a copy
+    of this software and associated documentation files (the "Software"), to deal
+    in the Software without restriction, including without limitation the rights
+    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+    copies of the Software, and to permit persons to whom the Software is
+    furnished to do so, subject to the following conditions:
+
+    The above copyright notice and this permission notice shall be included in
+    all copies or substantial portions of the Software.
+
+    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+    THE SOFTWARE.
+    ===============================================
+*/
+
+#ifndef _MPU6050_H_
+#define _MPU6050_H_
+
+#include "I2Cdev.h"
+#include 
+
+//Magnetometer Registers
+#define MPU9150_RA_MAG_ADDRESS		0x0C
+#define MPU9150_RA_MAG_XOUT_L		0x03
+#define MPU9150_RA_MAG_XOUT_H		0x04
+#define MPU9150_RA_MAG_YOUT_L		0x05
+#define MPU9150_RA_MAG_YOUT_H		0x06
+#define MPU9150_RA_MAG_ZOUT_L		0x07
+#define MPU9150_RA_MAG_ZOUT_H		0x08
+
+#define MPU6050_ADDRESS_AD0_LOW     0x68 // address pin low (GND), default for InvenSense evaluation board
+#define MPU6050_ADDRESS_AD0_HIGH    0x69 // address pin high (VCC)
+#define MPU6050_DEFAULT_ADDRESS     MPU6050_ADDRESS_AD0_LOW
+
+#define MPU6050_RA_XG_OFFS_TC       0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
+#define MPU6050_RA_YG_OFFS_TC       0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
+#define MPU6050_RA_ZG_OFFS_TC       0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
+#define MPU6050_RA_X_FINE_GAIN      0x03 //[7:0] X_FINE_GAIN
+#define MPU6050_RA_Y_FINE_GAIN      0x04 //[7:0] Y_FINE_GAIN
+#define MPU6050_RA_Z_FINE_GAIN      0x05 //[7:0] Z_FINE_GAIN
+#define MPU6050_RA_XA_OFFS_H        0x06 //[15:0] XA_OFFS
+#define MPU6050_RA_XA_OFFS_L_TC     0x07
+#define MPU6050_RA_YA_OFFS_H        0x08 //[15:0] YA_OFFS
+#define MPU6050_RA_YA_OFFS_L_TC     0x09
+#define MPU6050_RA_ZA_OFFS_H        0x0A //[15:0] ZA_OFFS
+#define MPU6050_RA_ZA_OFFS_L_TC     0x0B
+#define MPU6050_RA_XG_OFFS_USRH     0x13 //[15:0] XG_OFFS_USR
+#define MPU6050_RA_XG_OFFS_USRL     0x14
+#define MPU6050_RA_YG_OFFS_USRH     0x15 //[15:0] YG_OFFS_USR
+#define MPU6050_RA_YG_OFFS_USRL     0x16
+#define MPU6050_RA_ZG_OFFS_USRH     0x17 //[15:0] ZG_OFFS_USR
+#define MPU6050_RA_ZG_OFFS_USRL     0x18
+#define MPU6050_RA_SMPLRT_DIV       0x19
+#define MPU6050_RA_CONFIG           0x1A
+#define MPU6050_RA_GYRO_CONFIG      0x1B
+#define MPU6050_RA_ACCEL_CONFIG     0x1C
+#define MPU6050_RA_FF_THR           0x1D
+#define MPU6050_RA_FF_DUR           0x1E
+#define MPU6050_RA_MOT_THR          0x1F
+#define MPU6050_RA_MOT_DUR          0x20
+#define MPU6050_RA_ZRMOT_THR        0x21
+#define MPU6050_RA_ZRMOT_DUR        0x22
+#define MPU6050_RA_FIFO_EN          0x23
+#define MPU6050_RA_I2C_MST_CTRL     0x24
+#define MPU6050_RA_I2C_SLV0_ADDR    0x25
+#define MPU6050_RA_I2C_SLV0_REG     0x26
+#define MPU6050_RA_I2C_SLV0_CTRL    0x27
+#define MPU6050_RA_I2C_SLV1_ADDR    0x28
+#define MPU6050_RA_I2C_SLV1_REG     0x29
+#define MPU6050_RA_I2C_SLV1_CTRL    0x2A
+#define MPU6050_RA_I2C_SLV2_ADDR    0x2B
+#define MPU6050_RA_I2C_SLV2_REG     0x2C
+#define MPU6050_RA_I2C_SLV2_CTRL    0x2D
+#define MPU6050_RA_I2C_SLV3_ADDR    0x2E
+#define MPU6050_RA_I2C_SLV3_REG     0x2F
+#define MPU6050_RA_I2C_SLV3_CTRL    0x30
+#define MPU6050_RA_I2C_SLV4_ADDR    0x31
+#define MPU6050_RA_I2C_SLV4_REG     0x32
+#define MPU6050_RA_I2C_SLV4_DO      0x33
+#define MPU6050_RA_I2C_SLV4_CTRL    0x34
+#define MPU6050_RA_I2C_SLV4_DI      0x35
+#define MPU6050_RA_I2C_MST_STATUS   0x36
+#define MPU6050_RA_INT_PIN_CFG      0x37
+#define MPU6050_RA_INT_ENABLE       0x38
+#define MPU6050_RA_DMP_INT_STATUS   0x39
+#define MPU6050_RA_INT_STATUS       0x3A
+#define MPU6050_RA_ACCEL_XOUT_H     0x3B
+#define MPU6050_RA_ACCEL_XOUT_L     0x3C
+#define MPU6050_RA_ACCEL_YOUT_H     0x3D
+#define MPU6050_RA_ACCEL_YOUT_L     0x3E
+#define MPU6050_RA_ACCEL_ZOUT_H     0x3F
+#define MPU6050_RA_ACCEL_ZOUT_L     0x40
+#define MPU6050_RA_TEMP_OUT_H       0x41
+#define MPU6050_RA_TEMP_OUT_L       0x42
+#define MPU6050_RA_GYRO_XOUT_H      0x43
+#define MPU6050_RA_GYRO_XOUT_L      0x44
+#define MPU6050_RA_GYRO_YOUT_H      0x45
+#define MPU6050_RA_GYRO_YOUT_L      0x46
+#define MPU6050_RA_GYRO_ZOUT_H      0x47
+#define MPU6050_RA_GYRO_ZOUT_L      0x48
+#define MPU6050_RA_EXT_SENS_DATA_00 0x49
+#define MPU6050_RA_EXT_SENS_DATA_01 0x4A
+#define MPU6050_RA_EXT_SENS_DATA_02 0x4B
+#define MPU6050_RA_EXT_SENS_DATA_03 0x4C
+#define MPU6050_RA_EXT_SENS_DATA_04 0x4D
+#define MPU6050_RA_EXT_SENS_DATA_05 0x4E
+#define MPU6050_RA_EXT_SENS_DATA_06 0x4F
+#define MPU6050_RA_EXT_SENS_DATA_07 0x50
+#define MPU6050_RA_EXT_SENS_DATA_08 0x51
+#define MPU6050_RA_EXT_SENS_DATA_09 0x52
+#define MPU6050_RA_EXT_SENS_DATA_10 0x53
+#define MPU6050_RA_EXT_SENS_DATA_11 0x54
+#define MPU6050_RA_EXT_SENS_DATA_12 0x55
+#define MPU6050_RA_EXT_SENS_DATA_13 0x56
+#define MPU6050_RA_EXT_SENS_DATA_14 0x57
+#define MPU6050_RA_EXT_SENS_DATA_15 0x58
+#define MPU6050_RA_EXT_SENS_DATA_16 0x59
+#define MPU6050_RA_EXT_SENS_DATA_17 0x5A
+#define MPU6050_RA_EXT_SENS_DATA_18 0x5B
+#define MPU6050_RA_EXT_SENS_DATA_19 0x5C
+#define MPU6050_RA_EXT_SENS_DATA_20 0x5D
+#define MPU6050_RA_EXT_SENS_DATA_21 0x5E
+#define MPU6050_RA_EXT_SENS_DATA_22 0x5F
+#define MPU6050_RA_EXT_SENS_DATA_23 0x60
+#define MPU6050_RA_MOT_DETECT_STATUS    0x61
+#define MPU6050_RA_I2C_SLV0_DO      0x63
+#define MPU6050_RA_I2C_SLV1_DO      0x64
+#define MPU6050_RA_I2C_SLV2_DO      0x65
+#define MPU6050_RA_I2C_SLV3_DO      0x66
+#define MPU6050_RA_I2C_MST_DELAY_CTRL   0x67
+#define MPU6050_RA_SIGNAL_PATH_RESET    0x68
+#define MPU6050_RA_MOT_DETECT_CTRL      0x69
+#define MPU6050_RA_USER_CTRL        0x6A
+#define MPU6050_RA_PWR_MGMT_1       0x6B
+#define MPU6050_RA_PWR_MGMT_2       0x6C
+#define MPU6050_RA_BANK_SEL         0x6D
+#define MPU6050_RA_MEM_START_ADDR   0x6E
+#define MPU6050_RA_MEM_R_W          0x6F
+#define MPU6050_RA_DMP_CFG_1        0x70
+#define MPU6050_RA_DMP_CFG_2        0x71
+#define MPU6050_RA_FIFO_COUNTH      0x72
+#define MPU6050_RA_FIFO_COUNTL      0x73
+#define MPU6050_RA_FIFO_R_W         0x74
+#define MPU6050_RA_WHO_AM_I         0x75
+
+#define MPU6050_TC_PWR_MODE_BIT     7
+#define MPU6050_TC_OFFSET_BIT       6
+#define MPU6050_TC_OFFSET_LENGTH    6
+#define MPU6050_TC_OTP_BNK_VLD_BIT  0
+
+#define MPU6050_VDDIO_LEVEL_VLOGIC  0
+#define MPU6050_VDDIO_LEVEL_VDD     1
+
+#define MPU6050_CFG_EXT_SYNC_SET_BIT    5
+#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3
+#define MPU6050_CFG_DLPF_CFG_BIT    2
+#define MPU6050_CFG_DLPF_CFG_LENGTH 3
+
+#define MPU6050_EXT_SYNC_DISABLED       0x0
+#define MPU6050_EXT_SYNC_TEMP_OUT_L     0x1
+#define MPU6050_EXT_SYNC_GYRO_XOUT_L    0x2
+#define MPU6050_EXT_SYNC_GYRO_YOUT_L    0x3
+#define MPU6050_EXT_SYNC_GYRO_ZOUT_L    0x4
+#define MPU6050_EXT_SYNC_ACCEL_XOUT_L   0x5
+#define MPU6050_EXT_SYNC_ACCEL_YOUT_L   0x6
+#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L   0x7
+
+#define MPU6050_DLPF_BW_256         0x00
+#define MPU6050_DLPF_BW_188         0x01
+#define MPU6050_DLPF_BW_98          0x02
+#define MPU6050_DLPF_BW_42          0x03
+#define MPU6050_DLPF_BW_20          0x04
+#define MPU6050_DLPF_BW_10          0x05
+#define MPU6050_DLPF_BW_5           0x06
+
+#define MPU6050_GCONFIG_FS_SEL_BIT      4
+#define MPU6050_GCONFIG_FS_SEL_LENGTH   2
+
+#define MPU6050_GYRO_FS_250         0x00
+#define MPU6050_GYRO_FS_500         0x01
+#define MPU6050_GYRO_FS_1000        0x02
+#define MPU6050_GYRO_FS_2000        0x03
+
+#define MPU6050_ACONFIG_XA_ST_BIT           7
+#define MPU6050_ACONFIG_YA_ST_BIT           6
+#define MPU6050_ACONFIG_ZA_ST_BIT           5
+#define MPU6050_ACONFIG_AFS_SEL_BIT         4
+#define MPU6050_ACONFIG_AFS_SEL_LENGTH      2
+#define MPU6050_ACONFIG_ACCEL_HPF_BIT       2
+#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH    3
+
+#define MPU6050_ACCEL_FS_2          0x00
+#define MPU6050_ACCEL_FS_4          0x01
+#define MPU6050_ACCEL_FS_8          0x02
+#define MPU6050_ACCEL_FS_16         0x03
+
+#define MPU6050_DHPF_RESET          0x00
+#define MPU6050_DHPF_5              0x01
+#define MPU6050_DHPF_2P5            0x02
+#define MPU6050_DHPF_1P25           0x03
+#define MPU6050_DHPF_0P63           0x04
+#define MPU6050_DHPF_HOLD           0x07
+
+#define MPU6050_TEMP_FIFO_EN_BIT    7
+#define MPU6050_XG_FIFO_EN_BIT      6
+#define MPU6050_YG_FIFO_EN_BIT      5
+#define MPU6050_ZG_FIFO_EN_BIT      4
+#define MPU6050_ACCEL_FIFO_EN_BIT   3
+#define MPU6050_SLV2_FIFO_EN_BIT    2
+#define MPU6050_SLV1_FIFO_EN_BIT    1
+#define MPU6050_SLV0_FIFO_EN_BIT    0
+
+#define MPU6050_MULT_MST_EN_BIT     7
+#define MPU6050_WAIT_FOR_ES_BIT     6
+#define MPU6050_SLV_3_FIFO_EN_BIT   5
+#define MPU6050_I2C_MST_P_NSR_BIT   4
+#define MPU6050_I2C_MST_CLK_BIT     3
+#define MPU6050_I2C_MST_CLK_LENGTH  4
+
+#define MPU6050_CLOCK_DIV_348       0x0
+#define MPU6050_CLOCK_DIV_333       0x1
+#define MPU6050_CLOCK_DIV_320       0x2
+#define MPU6050_CLOCK_DIV_308       0x3
+#define MPU6050_CLOCK_DIV_296       0x4
+#define MPU6050_CLOCK_DIV_286       0x5
+#define MPU6050_CLOCK_DIV_276       0x6
+#define MPU6050_CLOCK_DIV_267       0x7
+#define MPU6050_CLOCK_DIV_258       0x8
+#define MPU6050_CLOCK_DIV_500       0x9
+#define MPU6050_CLOCK_DIV_471       0xA
+#define MPU6050_CLOCK_DIV_444       0xB
+#define MPU6050_CLOCK_DIV_421       0xC
+#define MPU6050_CLOCK_DIV_400       0xD
+#define MPU6050_CLOCK_DIV_381       0xE
+#define MPU6050_CLOCK_DIV_364       0xF
+
+#define MPU6050_I2C_SLV_RW_BIT      7
+#define MPU6050_I2C_SLV_ADDR_BIT    6
+#define MPU6050_I2C_SLV_ADDR_LENGTH 7
+#define MPU6050_I2C_SLV_EN_BIT      7
+#define MPU6050_I2C_SLV_BYTE_SW_BIT 6
+#define MPU6050_I2C_SLV_REG_DIS_BIT 5
+#define MPU6050_I2C_SLV_GRP_BIT     4
+#define MPU6050_I2C_SLV_LEN_BIT     3
+#define MPU6050_I2C_SLV_LEN_LENGTH  4
+
+#define MPU6050_I2C_SLV4_RW_BIT         7
+#define MPU6050_I2C_SLV4_ADDR_BIT       6
+#define MPU6050_I2C_SLV4_ADDR_LENGTH    7
+#define MPU6050_I2C_SLV4_EN_BIT         7
+#define MPU6050_I2C_SLV4_INT_EN_BIT     6
+#define MPU6050_I2C_SLV4_REG_DIS_BIT    5
+#define MPU6050_I2C_SLV4_MST_DLY_BIT    4
+#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5
+
+#define MPU6050_MST_PASS_THROUGH_BIT    7
+#define MPU6050_MST_I2C_SLV4_DONE_BIT   6
+#define MPU6050_MST_I2C_LOST_ARB_BIT    5
+#define MPU6050_MST_I2C_SLV4_NACK_BIT   4
+#define MPU6050_MST_I2C_SLV3_NACK_BIT   3
+#define MPU6050_MST_I2C_SLV2_NACK_BIT   2
+#define MPU6050_MST_I2C_SLV1_NACK_BIT   1
+#define MPU6050_MST_I2C_SLV0_NACK_BIT   0
+
+#define MPU6050_INTCFG_INT_LEVEL_BIT        7
+#define MPU6050_INTCFG_INT_OPEN_BIT         6
+#define MPU6050_INTCFG_LATCH_INT_EN_BIT     5
+#define MPU6050_INTCFG_INT_RD_CLEAR_BIT     4
+#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT  3
+#define MPU6050_INTCFG_FSYNC_INT_EN_BIT     2
+#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT    1
+#define MPU6050_INTCFG_CLKOUT_EN_BIT        0
+
+#define MPU6050_INTMODE_ACTIVEHIGH  0x00
+#define MPU6050_INTMODE_ACTIVELOW   0x01
+
+#define MPU6050_INTDRV_PUSHPULL     0x00
+#define MPU6050_INTDRV_OPENDRAIN    0x01
+
+#define MPU6050_INTLATCH_50USPULSE  0x00
+#define MPU6050_INTLATCH_WAITCLEAR  0x01
+
+#define MPU6050_INTCLEAR_STATUSREAD 0x00
+#define MPU6050_INTCLEAR_ANYREAD    0x01
+
+#define MPU6050_INTERRUPT_FF_BIT            7
+#define MPU6050_INTERRUPT_MOT_BIT           6
+#define MPU6050_INTERRUPT_ZMOT_BIT          5
+#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT    4
+#define MPU6050_INTERRUPT_I2C_MST_INT_BIT   3
+#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT   2
+#define MPU6050_INTERRUPT_DMP_INT_BIT       1
+#define MPU6050_INTERRUPT_DATA_RDY_BIT      0
+
+// TODO: figure out what these actually do
+// UMPL source code is not very obivous
+#define MPU6050_DMPINT_5_BIT            5
+#define MPU6050_DMPINT_4_BIT            4
+#define MPU6050_DMPINT_3_BIT            3
+#define MPU6050_DMPINT_2_BIT            2
+#define MPU6050_DMPINT_1_BIT            1
+#define MPU6050_DMPINT_0_BIT            0
+
+#define MPU6050_MOTION_MOT_XNEG_BIT     7
+#define MPU6050_MOTION_MOT_XPOS_BIT     6
+#define MPU6050_MOTION_MOT_YNEG_BIT     5
+#define MPU6050_MOTION_MOT_YPOS_BIT     4
+#define MPU6050_MOTION_MOT_ZNEG_BIT     3
+#define MPU6050_MOTION_MOT_ZPOS_BIT     2
+#define MPU6050_MOTION_MOT_ZRMOT_BIT    0
+
+#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT   7
+#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT   4
+#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT   3
+#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT   2
+#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT   1
+#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT   0
+
+#define MPU6050_PATHRESET_GYRO_RESET_BIT    2
+#define MPU6050_PATHRESET_ACCEL_RESET_BIT   1
+#define MPU6050_PATHRESET_TEMP_RESET_BIT    0
+
+#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT       5
+#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH    2
+#define MPU6050_DETECT_FF_COUNT_BIT             3
+#define MPU6050_DETECT_FF_COUNT_LENGTH          2
+#define MPU6050_DETECT_MOT_COUNT_BIT            1
+#define MPU6050_DETECT_MOT_COUNT_LENGTH         2
+
+#define MPU6050_DETECT_DECREMENT_RESET  0x0
+#define MPU6050_DETECT_DECREMENT_1      0x1
+#define MPU6050_DETECT_DECREMENT_2      0x2
+#define MPU6050_DETECT_DECREMENT_4      0x3
+
+#define MPU6050_USERCTRL_DMP_EN_BIT             7
+#define MPU6050_USERCTRL_FIFO_EN_BIT            6
+#define MPU6050_USERCTRL_I2C_MST_EN_BIT         5
+#define MPU6050_USERCTRL_I2C_IF_DIS_BIT         4
+#define MPU6050_USERCTRL_DMP_RESET_BIT          3
+#define MPU6050_USERCTRL_FIFO_RESET_BIT         2
+#define MPU6050_USERCTRL_I2C_MST_RESET_BIT      1
+#define MPU6050_USERCTRL_SIG_COND_RESET_BIT     0
+
+#define MPU6050_PWR1_DEVICE_RESET_BIT   7
+#define MPU6050_PWR1_SLEEP_BIT          6
+#define MPU6050_PWR1_CYCLE_BIT          5
+#define MPU6050_PWR1_TEMP_DIS_BIT       3
+#define MPU6050_PWR1_CLKSEL_BIT         2
+#define MPU6050_PWR1_CLKSEL_LENGTH      3
+
+#define MPU6050_CLOCK_INTERNAL          0x00
+#define MPU6050_CLOCK_PLL_XGYRO         0x01
+#define MPU6050_CLOCK_PLL_YGYRO         0x02
+#define MPU6050_CLOCK_PLL_ZGYRO         0x03
+#define MPU6050_CLOCK_PLL_EXT32K        0x04
+#define MPU6050_CLOCK_PLL_EXT19M        0x05
+#define MPU6050_CLOCK_KEEP_RESET        0x07
+
+#define MPU6050_PWR2_LP_WAKE_CTRL_BIT       7
+#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH    2
+#define MPU6050_PWR2_STBY_XA_BIT            5
+#define MPU6050_PWR2_STBY_YA_BIT            4
+#define MPU6050_PWR2_STBY_ZA_BIT            3
+#define MPU6050_PWR2_STBY_XG_BIT            2
+#define MPU6050_PWR2_STBY_YG_BIT            1
+#define MPU6050_PWR2_STBY_ZG_BIT            0
+
+#define MPU6050_WAKE_FREQ_1P25      0x0
+#define MPU6050_WAKE_FREQ_2P5       0x1
+#define MPU6050_WAKE_FREQ_5         0x2
+#define MPU6050_WAKE_FREQ_10        0x3
+
+#define MPU6050_BANKSEL_PRFTCH_EN_BIT       6
+#define MPU6050_BANKSEL_CFG_USER_BANK_BIT   5
+#define MPU6050_BANKSEL_MEM_SEL_BIT         4
+#define MPU6050_BANKSEL_MEM_SEL_LENGTH      5
+
+#define MPU6050_WHO_AM_I_BIT        6
+#define MPU6050_WHO_AM_I_LENGTH     6
+
+#define MPU6050_DMP_MEMORY_BANKS        8
+#define MPU6050_DMP_MEMORY_BANK_SIZE    256
+#define MPU6050_DMP_MEMORY_CHUNK_SIZE   16
+
+// note: DMP code memory blocks defined at end of header file
+
+class MPU6050 {
+  public:
+    MPU6050();
+    MPU6050(uint8_t address);
+
+    void initialize();
+    bool testConnection();
+
+    // AUX_VDDIO register
+    uint8_t getAuxVDDIOLevel();
+    void setAuxVDDIOLevel(uint8_t level);
+
+    // SMPLRT_DIV register
+    uint8_t getRate();
+    void setRate(uint8_t rate);
+
+    // CONFIG register
+    uint8_t getExternalFrameSync();
+    void setExternalFrameSync(uint8_t sync);
+    uint8_t getDLPFMode();
+    void setDLPFMode(uint8_t bandwidth);
+
+    // GYRO_CONFIG register
+    uint8_t getFullScaleGyroRange();
+    void setFullScaleGyroRange(uint8_t range);
+
+    // ACCEL_CONFIG register
+    bool getAccelXSelfTest();
+    void setAccelXSelfTest(bool enabled);
+    bool getAccelYSelfTest();
+    void setAccelYSelfTest(bool enabled);
+    bool getAccelZSelfTest();
+    void setAccelZSelfTest(bool enabled);
+    uint8_t getFullScaleAccelRange();
+    void setFullScaleAccelRange(uint8_t range);
+    uint8_t getDHPFMode();
+    void setDHPFMode(uint8_t mode);
+
+    // FF_THR register
+    uint8_t getFreefallDetectionThreshold();
+    void setFreefallDetectionThreshold(uint8_t threshold);
+
+    // FF_DUR register
+    uint8_t getFreefallDetectionDuration();
+    void setFreefallDetectionDuration(uint8_t duration);
+
+    // MOT_THR register
+    uint8_t getMotionDetectionThreshold();
+    void setMotionDetectionThreshold(uint8_t threshold);
+
+    // MOT_DUR register
+    uint8_t getMotionDetectionDuration();
+    void setMotionDetectionDuration(uint8_t duration);
+
+    // ZRMOT_THR register
+    uint8_t getZeroMotionDetectionThreshold();
+    void setZeroMotionDetectionThreshold(uint8_t threshold);
+
+    // ZRMOT_DUR register
+    uint8_t getZeroMotionDetectionDuration();
+    void setZeroMotionDetectionDuration(uint8_t duration);
+
+    // FIFO_EN register
+    bool getTempFIFOEnabled();
+    void setTempFIFOEnabled(bool enabled);
+    bool getXGyroFIFOEnabled();
+    void setXGyroFIFOEnabled(bool enabled);
+    bool getYGyroFIFOEnabled();
+    void setYGyroFIFOEnabled(bool enabled);
+    bool getZGyroFIFOEnabled();
+    void setZGyroFIFOEnabled(bool enabled);
+    bool getAccelFIFOEnabled();
+    void setAccelFIFOEnabled(bool enabled);
+    bool getSlave2FIFOEnabled();
+    void setSlave2FIFOEnabled(bool enabled);
+    bool getSlave1FIFOEnabled();
+    void setSlave1FIFOEnabled(bool enabled);
+    bool getSlave0FIFOEnabled();
+    void setSlave0FIFOEnabled(bool enabled);
+
+    // I2C_MST_CTRL register
+    bool getMultiMasterEnabled();
+    void setMultiMasterEnabled(bool enabled);
+    bool getWaitForExternalSensorEnabled();
+    void setWaitForExternalSensorEnabled(bool enabled);
+    bool getSlave3FIFOEnabled();
+    void setSlave3FIFOEnabled(bool enabled);
+    bool getSlaveReadWriteTransitionEnabled();
+    void setSlaveReadWriteTransitionEnabled(bool enabled);
+    uint8_t getMasterClockSpeed();
+    void setMasterClockSpeed(uint8_t speed);
+
+    // I2C_SLV* registers (Slave 0-3)
+    uint8_t getSlaveAddress(uint8_t num);
+    void setSlaveAddress(uint8_t num, uint8_t address);
+    uint8_t getSlaveRegister(uint8_t num);
+    void setSlaveRegister(uint8_t num, uint8_t reg);
+    bool getSlaveEnabled(uint8_t num);
+    void setSlaveEnabled(uint8_t num, bool enabled);
+    bool getSlaveWordByteSwap(uint8_t num);
+    void setSlaveWordByteSwap(uint8_t num, bool enabled);
+    bool getSlaveWriteMode(uint8_t num);
+    void setSlaveWriteMode(uint8_t num, bool mode);
+    bool getSlaveWordGroupOffset(uint8_t num);
+    void setSlaveWordGroupOffset(uint8_t num, bool enabled);
+    uint8_t getSlaveDataLength(uint8_t num);
+    void setSlaveDataLength(uint8_t num, uint8_t length);
+
+    // I2C_SLV* registers (Slave 4)
+    uint8_t getSlave4Address();
+    void setSlave4Address(uint8_t address);
+    uint8_t getSlave4Register();
+    void setSlave4Register(uint8_t reg);
+    void setSlave4OutputByte(uint8_t data);
+    bool getSlave4Enabled();
+    void setSlave4Enabled(bool enabled);
+    bool getSlave4InterruptEnabled();
+    void setSlave4InterruptEnabled(bool enabled);
+    bool getSlave4WriteMode();
+    void setSlave4WriteMode(bool mode);
+    uint8_t getSlave4MasterDelay();
+    void setSlave4MasterDelay(uint8_t delay);
+    uint8_t getSlate4InputByte();
+
+    // I2C_MST_STATUS register
+    bool getPassthroughStatus();
+    bool getSlave4IsDone();
+    bool getLostArbitration();
+    bool getSlave4Nack();
+    bool getSlave3Nack();
+    bool getSlave2Nack();
+    bool getSlave1Nack();
+    bool getSlave0Nack();
+
+    // INT_PIN_CFG register
+    bool getInterruptMode();
+    void setInterruptMode(bool mode);
+    bool getInterruptDrive();
+    void setInterruptDrive(bool drive);
+    bool getInterruptLatch();
+    void setInterruptLatch(bool latch);
+    bool getInterruptLatchClear();
+    void setInterruptLatchClear(bool clear);
+    bool getFSyncInterruptLevel();
+    void setFSyncInterruptLevel(bool level);
+    bool getFSyncInterruptEnabled();
+    void setFSyncInterruptEnabled(bool enabled);
+    bool getI2CBypassEnabled();
+    void setI2CBypassEnabled(bool enabled);
+    bool getClockOutputEnabled();
+    void setClockOutputEnabled(bool enabled);
+
+    // INT_ENABLE register
+    uint8_t getIntEnabled();
+    void setIntEnabled(uint8_t enabled);
+    bool getIntFreefallEnabled();
+    void setIntFreefallEnabled(bool enabled);
+    bool getIntMotionEnabled();
+    void setIntMotionEnabled(bool enabled);
+    bool getIntZeroMotionEnabled();
+    void setIntZeroMotionEnabled(bool enabled);
+    bool getIntFIFOBufferOverflowEnabled();
+    void setIntFIFOBufferOverflowEnabled(bool enabled);
+    bool getIntI2CMasterEnabled();
+    void setIntI2CMasterEnabled(bool enabled);
+    bool getIntDataReadyEnabled();
+    void setIntDataReadyEnabled(bool enabled);
+
+    // INT_STATUS register
+    uint8_t getIntStatus();
+    bool getIntFreefallStatus();
+    bool getIntMotionStatus();
+    bool getIntZeroMotionStatus();
+    bool getIntFIFOBufferOverflowStatus();
+    bool getIntI2CMasterStatus();
+    bool getIntDataReadyStatus();
+
+    // ACCEL_*OUT_* registers
+    void getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my,
+                    int16_t* mz);
+    void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz);
+    void getAcceleration(int16_t* x, int16_t* y, int16_t* z);
+    int16_t getAccelerationX();
+    int16_t getAccelerationY();
+    int16_t getAccelerationZ();
+
+    // TEMP_OUT_* registers
+    int16_t getTemperature();
+
+    // GYRO_*OUT_* registers
+    void getRotation(int16_t* x, int16_t* y, int16_t* z);
+    int16_t getRotationX();
+    int16_t getRotationY();
+    int16_t getRotationZ();
+
+    // EXT_SENS_DATA_* registers
+    uint8_t getExternalSensorByte(int position);
+    uint16_t getExternalSensorWord(int position);
+    uint32_t getExternalSensorDWord(int position);
+
+    // MOT_DETECT_STATUS register
+    bool getXNegMotionDetected();
+    bool getXPosMotionDetected();
+    bool getYNegMotionDetected();
+    bool getYPosMotionDetected();
+    bool getZNegMotionDetected();
+    bool getZPosMotionDetected();
+    bool getZeroMotionDetected();
+
+    // I2C_SLV*_DO register
+    void setSlaveOutputByte(uint8_t num, uint8_t data);
+
+    // I2C_MST_DELAY_CTRL register
+    bool getExternalShadowDelayEnabled();
+    void setExternalShadowDelayEnabled(bool enabled);
+    bool getSlaveDelayEnabled(uint8_t num);
+    void setSlaveDelayEnabled(uint8_t num, bool enabled);
+
+    // SIGNAL_PATH_RESET register
+    void resetGyroscopePath();
+    void resetAccelerometerPath();
+    void resetTemperaturePath();
+
+    // MOT_DETECT_CTRL register
+    uint8_t getAccelerometerPowerOnDelay();
+    void setAccelerometerPowerOnDelay(uint8_t delay);
+    uint8_t getFreefallDetectionCounterDecrement();
+    void setFreefallDetectionCounterDecrement(uint8_t decrement);
+    uint8_t getMotionDetectionCounterDecrement();
+    void setMotionDetectionCounterDecrement(uint8_t decrement);
+
+    // USER_CTRL register
+    bool getFIFOEnabled();
+    void setFIFOEnabled(bool enabled);
+    bool getI2CMasterModeEnabled();
+    void setI2CMasterModeEnabled(bool enabled);
+    void switchSPIEnabled(bool enabled);
+    void resetFIFO();
+    void resetI2CMaster();
+    void resetSensors();
+
+    // PWR_MGMT_1 register
+    void reset();
+    bool getSleepEnabled();
+    void setSleepEnabled(bool enabled);
+    bool getWakeCycleEnabled();
+    void setWakeCycleEnabled(bool enabled);
+    bool getTempSensorEnabled();
+    void setTempSensorEnabled(bool enabled);
+    uint8_t getClockSource();
+    void setClockSource(uint8_t source);
+
+    // PWR_MGMT_2 register
+    uint8_t getWakeFrequency();
+    void setWakeFrequency(uint8_t frequency);
+    bool getStandbyXAccelEnabled();
+    void setStandbyXAccelEnabled(bool enabled);
+    bool getStandbyYAccelEnabled();
+    void setStandbyYAccelEnabled(bool enabled);
+    bool getStandbyZAccelEnabled();
+    void setStandbyZAccelEnabled(bool enabled);
+    bool getStandbyXGyroEnabled();
+    void setStandbyXGyroEnabled(bool enabled);
+    bool getStandbyYGyroEnabled();
+    void setStandbyYGyroEnabled(bool enabled);
+    bool getStandbyZGyroEnabled();
+    void setStandbyZGyroEnabled(bool enabled);
+
+    // FIFO_COUNT_* registers
+    uint16_t getFIFOCount();
+
+    // FIFO_R_W register
+    uint8_t getFIFOByte();
+    void setFIFOByte(uint8_t data);
+    void getFIFOBytes(uint8_t* data, uint8_t length);
+
+    // WHO_AM_I register
+    uint8_t getDeviceID();
+    void setDeviceID(uint8_t id);
+
+    // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
+
+    // XG_OFFS_TC register
+    uint8_t getOTPBankValid();
+    void setOTPBankValid(bool enabled);
+    int8_t getXGyroOffset();
+    void setXGyroOffset(int8_t offset);
+
+    // YG_OFFS_TC register
+    int8_t getYGyroOffset();
+    void setYGyroOffset(int8_t offset);
+
+    // ZG_OFFS_TC register
+    int8_t getZGyroOffset();
+    void setZGyroOffset(int8_t offset);
+
+    // X_FINE_GAIN register
+    int8_t getXFineGain();
+    void setXFineGain(int8_t gain);
+
+    // Y_FINE_GAIN register
+    int8_t getYFineGain();
+    void setYFineGain(int8_t gain);
+
+    // Z_FINE_GAIN register
+    int8_t getZFineGain();
+    void setZFineGain(int8_t gain);
+
+    // XA_OFFS_* registers
+    int16_t getXAccelOffset();
+    void setXAccelOffset(int16_t offset);
+
+    // YA_OFFS_* register
+    int16_t getYAccelOffset();
+    void setYAccelOffset(int16_t offset);
+
+    // ZA_OFFS_* register
+    int16_t getZAccelOffset();
+    void setZAccelOffset(int16_t offset);
+
+    // XG_OFFS_USR* registers
+    int16_t getXGyroOffsetUser();
+    void setXGyroOffsetUser(int16_t offset);
+
+    // YG_OFFS_USR* register
+    int16_t getYGyroOffsetUser();
+    void setYGyroOffsetUser(int16_t offset);
+
+    // ZG_OFFS_USR* register
+    int16_t getZGyroOffsetUser();
+    void setZGyroOffsetUser(int16_t offset);
+
+    // INT_ENABLE register (DMP functions)
+    bool getIntPLLReadyEnabled();
+    void setIntPLLReadyEnabled(bool enabled);
+    bool getIntDMPEnabled();
+    void setIntDMPEnabled(bool enabled);
+
+    // DMP_INT_STATUS
+    bool getDMPInt5Status();
+    bool getDMPInt4Status();
+    bool getDMPInt3Status();
+    bool getDMPInt2Status();
+    bool getDMPInt1Status();
+    bool getDMPInt0Status();
+
+    // INT_STATUS register (DMP functions)
+    bool getIntPLLReadyStatus();
+    bool getIntDMPStatus();
+
+    // USER_CTRL register (DMP functions)
+    bool getDMPEnabled();
+    void setDMPEnabled(bool enabled);
+    void resetDMP();
+
+    // BANK_SEL register
+    void setMemoryBank(uint8_t bank, bool prefetchEnabled = false, bool userBank = false);
+
+    // MEM_START_ADDR register
+    void setMemoryStartAddress(uint8_t address);
+
+    // MEM_R_W register
+    uint8_t readMemoryByte();
+    void writeMemoryByte(uint8_t data);
+    void readMemoryBlock(uint8_t* data, uint16_t dataSize, uint8_t bank = 0, uint8_t address = 0);
+    bool writeMemoryBlock(const uint8_t* data, uint16_t dataSize, uint8_t bank = 0, uint8_t address = 0, bool verify = true,
+                          bool useProgMem = false);
+    bool writeProgMemoryBlock(const uint8_t* data, uint16_t dataSize, uint8_t bank = 0, uint8_t address = 0,
+                              bool verify = true);
+
+    bool writeDMPConfigurationSet(const uint8_t* data, uint16_t dataSize, bool useProgMem = false);
+    bool writeProgDMPConfigurationSet(const uint8_t* data, uint16_t dataSize);
+
+    // DMP_CFG_1 register
+    uint8_t getDMPConfig1();
+    void setDMPConfig1(uint8_t config);
+
+    // DMP_CFG_2 register
+    uint8_t getDMPConfig2();
+    void setDMPConfig2(uint8_t config);
+
+    // special methods for MotionApps 2.0 implementation
+    #ifdef MPU6050_INCLUDE_DMP_MOTIONAPPS20
+    uint8_t* dmpPacketBuffer;
+    uint16_t dmpPacketSize;
+
+    uint8_t dmpInitialize();
+    bool dmpPacketAvailable();
+
+    uint8_t dmpSetFIFORate(uint8_t fifoRate);
+    uint8_t dmpGetFIFORate();
+    uint8_t dmpGetSampleStepSizeMS();
+    uint8_t dmpGetSampleFrequency();
+    int32_t dmpDecodeTemperature(int8_t tempReg);
+
+    // Register callbacks after a packet of FIFO data is processed
+    //uint8_t dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
+    //uint8_t dmpUnregisterFIFORateProcess(inv_obj_func func);
+    uint8_t dmpRunFIFORateProcesses();
+
+    // Setup FIFO for various output
+    uint8_t dmpSendQuaternion(uint_fast16_t accuracy);
+    uint8_t dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendPacketNumber(uint_fast16_t accuracy);
+    uint8_t dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);
+
+    // Get Fixed Point data from FIFO
+    uint8_t dmpGetAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternion(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternion(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternion(Quaternion* q, const uint8_t* packet = 0);
+    uint8_t dmpGet6AxisQuaternion(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGet6AxisQuaternion(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGet6AxisQuaternion(Quaternion* q, const uint8_t* packet = 0);
+    uint8_t dmpGetRelativeQuaternion(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetRelativeQuaternion(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetRelativeQuaternion(Quaternion* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyro(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyro(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyro(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpSetLinearAccelFilterCoefficient(float coef);
+    uint8_t dmpGetLinearAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccel(VectorInt16* v, VectorInt16* vRaw, VectorFloat* gravity);
+    uint8_t dmpGetLinearAccelInWorld(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccelInWorld(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, VectorInt16* vReal, Quaternion* q);
+    uint8_t dmpGetGyroAndAccelSensor(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroAndAccelSensor(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroAndAccelSensor(VectorInt16* g, VectorInt16* a, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroSensor(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroSensor(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroSensor(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetControlData(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetTemperature(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(VectorFloat* v, Quaternion* q);
+    uint8_t dmpGetUnquantizedAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetUnquantizedAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetUnquantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetQuantizedAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuantizedAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetExternalSensorData(int32_t* data, uint16_t size, const uint8_t* packet = 0);
+    uint8_t dmpGetEIS(int32_t* data, const uint8_t* packet = 0);
+
+    uint8_t dmpGetEuler(float* data, Quaternion* q);
+    uint8_t dmpGetYawPitchRoll(float* data, Quaternion* q, VectorFloat* gravity);
+
+    // Get Floating Point data from FIFO
+    uint8_t dmpGetAccelFloat(float* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternionFloat(float* data, const uint8_t* packet = 0);
+
+    uint8_t dmpProcessFIFOPacket(const unsigned char* dmpData);
+    uint8_t dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t* processed = NULL);
+
+    uint8_t dmpSetFIFOProcessedCallback(void (*func)(void));
+
+    uint8_t dmpInitFIFOParam();
+    uint8_t dmpCloseFIFO();
+    uint8_t dmpSetGyroDataSource(uint8_t source);
+    uint8_t dmpDecodeQuantizedAccel();
+    uint32_t dmpGetGyroSumOfSquare();
+    uint32_t dmpGetAccelSumOfSquare();
+    void dmpOverrideQuaternion(long* q);
+    uint16_t dmpGetFIFOPacketSize();
+    #endif
+
+    // special methods for MotionApps 4.1 implementation
+    #ifdef MPU6050_INCLUDE_DMP_MOTIONAPPS41
+    uint8_t* dmpPacketBuffer;
+    uint16_t dmpPacketSize;
+
+    uint8_t dmpInitialize();
+    bool dmpPacketAvailable();
+
+    uint8_t dmpSetFIFORate(uint8_t fifoRate);
+    uint8_t dmpGetFIFORate();
+    uint8_t dmpGetSampleStepSizeMS();
+    uint8_t dmpGetSampleFrequency();
+    int32_t dmpDecodeTemperature(int8_t tempReg);
+
+    // Register callbacks after a packet of FIFO data is processed
+    //uint8_t dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
+    //uint8_t dmpUnregisterFIFORateProcess(inv_obj_func func);
+    uint8_t dmpRunFIFORateProcesses();
+
+    // Setup FIFO for various output
+    uint8_t dmpSendQuaternion(uint_fast16_t accuracy);
+    uint8_t dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendPacketNumber(uint_fast16_t accuracy);
+    uint8_t dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
+    uint8_t dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);
+
+    // Get Fixed Point data from FIFO
+    uint8_t dmpGetAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternion(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternion(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternion(Quaternion* q, const uint8_t* packet = 0);
+    uint8_t dmpGet6AxisQuaternion(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGet6AxisQuaternion(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGet6AxisQuaternion(Quaternion* q, const uint8_t* packet = 0);
+    uint8_t dmpGetRelativeQuaternion(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetRelativeQuaternion(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetRelativeQuaternion(Quaternion* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyro(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyro(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyro(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetMag(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpSetLinearAccelFilterCoefficient(float coef);
+    uint8_t dmpGetLinearAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccel(VectorInt16* v, VectorInt16* vRaw, VectorFloat* gravity);
+    uint8_t dmpGetLinearAccelInWorld(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccelInWorld(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetLinearAccelInWorld(VectorInt16* v, VectorInt16* vReal, Quaternion* q);
+    uint8_t dmpGetGyroAndAccelSensor(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroAndAccelSensor(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroAndAccelSensor(VectorInt16* g, VectorInt16* a, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroSensor(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroSensor(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGyroSensor(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetControlData(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetTemperature(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetGravity(VectorFloat* v, Quaternion* q);
+    uint8_t dmpGetUnquantizedAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetUnquantizedAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetUnquantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetQuantizedAccel(int32_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuantizedAccel(int16_t* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuantizedAccel(VectorInt16* v, const uint8_t* packet = 0);
+    uint8_t dmpGetExternalSensorData(int32_t* data, uint16_t size, const uint8_t* packet = 0);
+    uint8_t dmpGetEIS(int32_t* data, const uint8_t* packet = 0);
+
+    uint8_t dmpGetEuler(float* data, Quaternion* q);
+    uint8_t dmpGetYawPitchRoll(float* data, Quaternion* q, VectorFloat* gravity);
+
+    // Get Floating Point data from FIFO
+    uint8_t dmpGetAccelFloat(float* data, const uint8_t* packet = 0);
+    uint8_t dmpGetQuaternionFloat(float* data, const uint8_t* packet = 0);
+
+    uint8_t dmpProcessFIFOPacket(const unsigned char* dmpData);
+    uint8_t dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t* processed = NULL);
+
+    uint8_t dmpSetFIFOProcessedCallback(void (*func)(void));
+
+    uint8_t dmpInitFIFOParam();
+    uint8_t dmpCloseFIFO();
+    uint8_t dmpSetGyroDataSource(uint8_t source);
+    uint8_t dmpDecodeQuantizedAccel();
+    uint32_t dmpGetGyroSumOfSquare();
+    uint32_t dmpGetAccelSumOfSquare();
+    void dmpOverrideQuaternion(long* q);
+    uint16_t dmpGetFIFOPacketSize();
+    #endif
+
+  private:
+    uint8_t devAddr;
+    uint8_t buffer[14];
+};
+
+#endif /* _MPU6050_H_ */
diff --git a/labyrinthe/3-arduino/test/imu-test/imu-test.ino b/labyrinthe/3-arduino/test/imu-test/imu-test.ino
index db1dbf0..0c45741 100644
--- a/labyrinthe/3-arduino/test/imu-test/imu-test.ino
+++ b/labyrinthe/3-arduino/test/imu-test/imu-test.ino
@@ -15,26 +15,24 @@
  * I2C
  ******************************************************************************/
 
-// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
+// fr : I2Cdev et MPU6050 doivent être installée comme bibilothèque ou sinon les fichiers .cpp et .h
+// des deux classes doivent être inclus dans le chemin du projet
+// en : I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
 // for both classes must be in the include path of your project
 #include "I2Cdev.h"
 #include "MPU6050.h"
 
-// class default I2C address is 0x68
+// fr : L'adresse par défault de la classe I2C est 0x68
+// en : Class default I2C address is 0x68
 // specific I2C addresses may be passed as a parameter here
 // AD0 low = 0x68 (default for InvenSense evaluation board)
 // AD0 high = 0x69
 MPU6050 accelgyro;
 I2Cdev   I2C_M;
 
-uint8_t buffer_m[6];
 int16_t ax, ay, az;
 int16_t gx, gy, gz;
 int16_t mx, my, mz;
-
-float heading;
-float tiltheading;
-
 float Axyz[3];
 float roll;
 float pitch;
@@ -47,63 +45,16 @@ String pitch_txt;
  * Pupitre
  ******************************************************************************/
 
-// Adressage Led Arduino
+// Adressage de la led Arduino
 const int led =  13; // Led de mouvement (onboard)
 const int led_com =  10; // Led de communication modele 3d-> arduino
 
-// Adressage Entrees Arduino
-// const int bt_a_m =  A1; // Bouton A+ (verin droit)
-// const int bt_a_d =  A0; // Bouton A- (verin droit)
-// const int bt_b_m =  A3; // Bouton B+ (verin gauche arrière)
-// const int bt_b_d =  A2; // Bouton B- (verin gauche arrière)
-// const int bt_c_m =  3; // Bouton C+ (verin gauche avant)
-// const int bt_c_d =  2; // Bouton C- (verin gauche avant)
-
-// Entrees numeriques (modele 3D) 
-// bool bt_a_m_num=false ; // Bouton A+ (verin droit)
-// bool bt_a_d_num=false; // Bouton A- (verin droit)
-// bool bt_b_m_num=false; // Bouton B+ (verin gauche arrière)
-// bool bt_b_d_num=false; // Bouton B- (verin gauche arrière)
-// bool bt_c_m_num=false; // Bouton C+ (verin gauche avant)
-// bool bt_c_d_num=false; // Bouton C- (verin gauche avant) 
- 
-// // Adressage Sorties Arduino
-// const int v_a_v = 5; // Mouvement A (verin droit) : Vitesse (grove fil blanc)
-// const int v_a_s = 4; // Mouvement A (verin droit) : Sens (grove  fil jaune)
-// const int v_b_v = 7; // Mouvement B (verin gauche arriere) : Vitesse (grove fil blanc)
-// const int v_b_s = 6; // Mouvement B (verin gauche arriere) : Sens (grove fil jaune)
-// const int v_c_v = 9; // Mouvement C (verin gauche avant) : Vitesse (grove fil blanc)
-// const int v_c_s = 8; // Mouvement C (verin gauche avant) : Sens (grove fil jaune)
-
-/******************************************************************************
- * Communication serie
- ******************************************************************************/
-
-String serial_msg = ""; // Message 
-bool serial_msg_complet = false;  // Flag de message complet
-
 /******************************************************************************
  * Initialisation
  ******************************************************************************/
    
 void setup() {
 
-  // Configure les broches des entrees
-  // pinMode(bt_a_m, INPUT);
-  // pinMode(bt_a_d, INPUT);
-  // pinMode(bt_b_m, INPUT);
-  // pinMode(bt_b_d, INPUT);
-  // pinMode(bt_c_m, INPUT);
-  // pinMode(bt_c_d, INPUT);
-  
-  // // Configure les broches des sorties 
-  // pinMode(v_a_v, OUTPUT);
-  // pinMode(v_a_s, OUTPUT);
-  // pinMode(v_b_v, OUTPUT);
-  // pinMode(v_b_s, OUTPUT);
-  // pinMode(v_c_v, OUTPUT);
-  // pinMode(v_c_s, OUTPUT);
-
   pinMode(led, OUTPUT); // Led de mouvement
   pinMode(led_com, OUTPUT); // Led de communication modele 3d-> arduino
   digitalWrite(led, LOW);
@@ -111,12 +62,12 @@ void setup() {
 
   // Moniteur serie
   Serial.begin(115200); // 7 fps
-  /* Serial.begin(38400); */ // 6 fps
+    /* Serial.begin(38400); */ // 6 fps
   /* Serial.begin(9600); */ // trop lent 2fps
 
   // I2C
   Wire.begin();
-  Serial.println("Initializing I2C devices...");
+  Serial.println("Initialisation des composants I2C.");
   accelgyro.initialize();
  }
 
@@ -126,147 +77,10 @@ void setup() {
 
 void loop() {
 
-  //   /*****
-  //    * Communication : modele 3d -> arduino
-  //    *****/
-
-  //   if (serial_msg_complet) {
-	// if (serial_msg =="Bp Am R\n") bt_a_m_num=false;
-	// if (serial_msg =="Bp Am\n") bt_a_m_num=true;
-	// if (serial_msg =="Bp Ad R\n") bt_a_d_num=false;
-	// if (serial_msg =="Bp Ad\n") bt_a_d_num=true;
-	// if (serial_msg =="Bp Bm R\n") bt_b_m_num=false;
-	// if (serial_msg =="Bp Bm\n") bt_b_m_num=true;
-	// if (serial_msg =="Bp Bd R\n") bt_b_d_num=false;
-	// if (serial_msg =="Bp Bd\n") bt_b_d_num=true;
-	// if (serial_msg =="Bp Cm R\n") bt_c_m_num=false;
-	// if (serial_msg =="Bp Cm\n") bt_c_m_num=true;
-	// if (serial_msg =="Bp Cd R\n") bt_c_d_num=false;
-	// if (serial_msg =="Bp Cd\n") bt_c_d_num=true;
-
-	// /* Serial.println("Echo : "+serial_msg); */
-  //   	serial_msg = "";
-  //   	serial_msg_complet = false;
-  //   }
-     
-  //   /*****
-  //    * Verin A (verin droit)
-  //    *****/
-
-  //    // Bouton physique : LOW = actif et HIGH = pas actif
-  //   // Bouton numérique (modele 3d) : true = actif et false = pas actif
-
-  //   // A+ (sortie de tige)
-  //   if ((digitalRead(bt_a_m) == LOW || bt_a_m_num) && digitalRead(bt_a_d) == HIGH && !bt_a_d_num) {
-	// /* Serial.println("A+");  */
-	// digitalWrite(v_a_v, HIGH); // Mouvement A : Vitesse (fil blanc)
-	// digitalWrite(v_a_s, LOW); // Mouvement A : Sens trigo (fil jaune)
-	// digitalWrite(led, HIGH);
-  //   }
-
-  //   // A- (rentrée de tige)
-  //   if ((digitalRead(bt_a_d) == LOW || bt_a_d_num) && digitalRead(bt_a_m) == HIGH && !bt_a_m_num) {
-	// /* Serial.println("A-"); */
-	// digitalWrite(v_a_v, HIGH); // Mouvement A : Vitesse (fil blanc)
-	// digitalWrite(v_a_s, HIGH); // Mouvement A : Sens horaire (fil jaune)
-	// digitalWrite(led, HIGH);
-  //   }
-
-  //   // Stop A
-  //   if (digitalRead(bt_a_m) == LOW && (digitalRead(bt_a_d) == LOW || bt_a_d_num)){ // Ordres contradictoires
-	// /* Serial.println("Stop A"); */
-	// digitalWrite(v_a_v, LOW); // Mouvement A : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-  //   if (digitalRead(bt_a_d) == LOW && (digitalRead(bt_a_m) == LOW || bt_a_m_num)){ // Ordres contradictoires
-	// /* Serial.println("Stop A"); */
-	// digitalWrite(v_a_v, LOW); // Mouvement A : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-  //   if (digitalRead(bt_a_m) == HIGH && digitalRead(bt_a_d) == HIGH && !bt_a_m_num && !bt_a_d_num){ // Aucun ordre
-	// /* Serial.println("Stop A"); */
-	// digitalWrite(v_a_v, LOW); // Mouvement A : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-
-  //    /*****
-  //    * Verin B (verin gauche arriere)
-  //    *****/
-
-  //   // B+ (sortie de tige)
-  //   if ((digitalRead(bt_b_m) == LOW || bt_b_m_num) && digitalRead(bt_b_d) == HIGH && !bt_b_d_num) {
-	// /* Serial.println("B+");  */
-	// digitalWrite(v_b_v, HIGH); // Mouvement B : Vitesse (fil blanc)
-	// digitalWrite(v_b_s, LOW); // Mouvement B : Sens trigo (fil jaune)
-	// digitalWrite(led, HIGH);
-  //   }
-
-  //   // B- (rentrée de tige)
-  //   if ((digitalRead(bt_b_d) == LOW || bt_b_d_num) && digitalRead(bt_b_m) == HIGH && !bt_b_m_num) {
-	// /* Serial.println("B-"); */
-	// digitalWrite(v_b_v, HIGH); // Mouvement B : Vitesse (fil blanc)
-	// digitalWrite(v_b_s, HIGH); // Mouvement B : Sens horaire (fil jaune)
-	// digitalWrite(led, HIGH);
-  //   }
-
-  //   // Stop B
-  //   if (digitalRead(bt_b_m) == LOW && (digitalRead(bt_b_d) == LOW || bt_b_d_num)){ // Ordres contradictoires
-	// /* Serial.println("Stop B"); */
-	// digitalWrite(v_b_v, LOW); // Mouvement B : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-  //   if (digitalRead(bt_b_d) == LOW && (digitalRead(bt_b_m) == LOW || bt_b_m_num)){ // Ordres contradictoires
-	// /* Serial.println("Stop B"); */
-	// digitalWrite(v_b_v, LOW); // Mouvement B : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-  //   if (digitalRead(bt_b_m) == HIGH && digitalRead(bt_b_d) == HIGH && !bt_b_m_num && !bt_b_d_num){ // Aucun ordre
-	// /* Serial.println("Stop B"); */
-	// digitalWrite(v_b_v, LOW); // Mouvement B : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-
-  //   /*****
-  //    * Verin C (verin gauche avant)
-  //    *****/
-
-  //   // C+ (sortie de tige)
-  //   if ((digitalRead(bt_c_m) == LOW || bt_c_m_num) && digitalRead(bt_c_d) == HIGH && !bt_c_d_num) {
-	// /* Serial.println("C+");  */
-	// digitalWrite(v_c_v, HIGH); // Mouvement C : Vitesse (fil blanc)
-	// digitalWrite(v_c_s, LOW); // Mouvement C : Sens trigo (fil jaune)
-	// digitalWrite(led, HIGH);
-  //   }
-
-  //   // C- (rentrée de tige)
-  //   if ((digitalRead(bt_c_d) == LOW || bt_c_d_num) && digitalRead(bt_c_m) == HIGH && !bt_c_m_num) {
-	// /* Serial.println("C-"); */
-	// digitalWrite(v_c_v, HIGH); // Mouvement C : Vitesse (fil blanc)
-	// digitalWrite(v_c_s, HIGH); // Mouvement C : Sens horaire (fil jaune)
-	// digitalWrite(led, HIGH);
-  //   }
-
-  //   // Stop C
-  //   if (digitalRead(bt_c_m) == LOW && (digitalRead(bt_c_d) == LOW || bt_c_d_num)){ // Ordres contradictoires
-	// /* Serial.println("Stop C"); */
-	// digitalWrite(v_c_v, LOW); // Mouvement C : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-  //   if (digitalRead(bt_c_d) == LOW && (digitalRead(bt_c_m) == LOW || bt_c_m_num)){ // Ordres contradictoires
-	// /* Serial.println("Stop C"); */
-	// digitalWrite(v_c_v, LOW); // Mouvement C : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-  //   if (digitalRead(bt_c_m) == HIGH && digitalRead(bt_c_d) == HIGH && !bt_c_m_num && !bt_c_d_num){ // Aucun ordre
-	// /* Serial.println("Stop C"); */
-	// digitalWrite(v_c_v, LOW); // Mouvement C : Vitesse nulle (fil blanc)
-	// digitalWrite(led, LOW);
-  //   }
-
     /*****
      * Lecture des accelerations
      *****/
-
+    
     accelgyro.getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz);
     Axyz[0] = (double) ax / 16384;
     Axyz[1] = (double) ay / 16384;
@@ -280,34 +94,14 @@ void loop() {
     pitch_txt = String(pitch_deg);
     
     /*****
-     * Communication : arduino -> modele 3d
+     * Communication : Arduino -> modèle 3d
      *****/
 
-    /* Serial.println("Roll (Rx): "+String(roll*57.3) + " Pitch (Ry): " + String(pitch*57.3) + */
-    /* 		   " bt_a_m: " + String(digitalRead(bt_a_m)) + " bt_a_d: " + String(digitalRead(bt_a_d)) + */
-    /* 		   " bt_b_m: " + String(digitalRead(bt_b_m)) + " bt_b_d: " + String(digitalRead(bt_b_d)) + */
-    /* 		   " bt_c_m: " + String(digitalRead(bt_c_m)) + " bt_c_d: " + String(digitalRead(bt_c_d))); */
-
-    // Serial.println("Roll (Rx): "+ roll_txt + " Pitch (Ry): " + pitch_txt +
-    // 		   " bt_a_m: " + digitalRead(bt_a_m) + " bt_a_d: " + digitalRead(bt_a_d) +
-    // 		   " bt_b_m: " + digitalRead(bt_b_m) + " bt_b_d: " + digitalRead(bt_b_d) +
-    // 		   " bt_c_m: " + digitalRead(bt_c_m) + " bt_c_d: " + digitalRead(bt_c_d));
-
-    Serial.println("Roll (Rx): "+ roll_txt + " Pitch (Ry): " + pitch_txt);
+    // Serial.println("Roll (Rx): "+ roll_txt + " Pitch (Ry): " + pitch_txt);
+    Serial.print(roll_txt);
+    Serial.print(",");
+    Serial.print(pitch_txt);
+    Serial.println();
 
     /* delay(300); */
 }
-
-/******************************************************************************
- * Evenements provoques par la communication serie
- ******************************************************************************/
-
-// void serialEvent() {
-//   while (Serial.available()) {
-//     char inChar = (char)Serial.read();
-//     serial_msg += inChar;
-//     if (inChar == '\n') {
-// 	serial_msg_complet = true;
-//     }
-//   }
-// }