Création du jumeau numérique du monte-charge

This commit is contained in:
Philippe Roy 2022-12-18 17:33:23 +01:00
parent a3a2c06354
commit 1e75557f29
9 changed files with 869 additions and 0 deletions

306
monte_charge/montchg.py Normal file
View File

@ -0,0 +1,306 @@
import bge # Bibliothèque Blender Game Engine (UPBGE)
import twin # Bibliothèque de l'environnement 3D des jumeaux numériques
import math
import time
###############################################################################
# montchg.py
# @title: Commandes pour le monte-charge
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2022 Philippe Roy
# @license: GNU GPL
#
# Commandes déclenchées par/sur le simulateur (sml_*)
#
###############################################################################
# Récupérer la scène UPBGE
scene = bge.logic.getCurrentScene()
# Couleurs
couleur_magenta = (0.800, 0.005, 0.315,1) # bouton non activable : magenta
couleur_orange = (0.799, 0.130, 0.063,1) # bouton activable : orange
couleur_blanc = (0.8, 0.8, 0.8, 1) # bouton focus : blanc
couleur_jaune = (0.8, 0.619, 0.021, 1) # bouton activé : jaune
# Constantes UPBGE
JUST_ACTIVATED = bge.logic.KX_INPUT_JUST_ACTIVATED
JUST_RELEASED = bge.logic.KX_INPUT_JUST_RELEASED
ACTIVATE = bge.logic.KX_INPUT_ACTIVE
# JUST_DEACTIVATED = bge.logic.KX_SENSOR_JUST_DEACTIVATED
###############################################################################
# Initialisation de la scène
###############################################################################
def init(cont):
if cont.sensors['Init'].positive == False: # 1 seule fois
return False
twin.manip_init() # Manipulation du modèle 3D
twin.cmd_init() # Commandes
# Mémorisation de la position et orientation des composants du système
scene.objects['Portail']['init_lx']=scene.objects['Portail'].worldPosition.x
scene.objects['Portail']['init_ly']=scene.objects['Portail'].worldPosition.y
scene.objects['Portail']['init_lz']=scene.objects['Portail'].worldPosition.z
scene.objects['Engrenage']['init_rx']=scene.objects['Engrenage'].worldOrientation.to_euler().x
scene.objects['Engrenage']['init_ry']=scene.objects['Engrenage'].worldOrientation.to_euler().y
scene.objects['Engrenage']['init_rz']=scene.objects['Engrenage'].worldOrientation.to_euler().z
system_init() # Initialisation du système
###############################################################################
# Actionneurs
###############################################################################
##
# Action du simulateur pour le clignotant
##
def sml_clignotant (cont):
if scene.objects['System']['run']:
obj = cont.owner
if obj['actif'] and scene.objects['Led allumee'].visible == False:
scene.objects['Led allumee'].setVisible(True,False)
scene.objects['Led'].setVisible(False,False)
# print ("Clignotant allumée")
if obj['actif']==False and scene.objects['Led allumee'].visible == True:
scene.objects['Led'].setVisible(True,False)
scene.objects['Led allumee'].setVisible(False,False)
# print ("Clignotant éteint")
##
# Action du simulateur pour le moteur
##
def sml_moteur (cont):
if scene.objects['System']['run']:
obj = cont.owner
pas_rot = math.pi/7 # z = 14
pas = 2.35619/0.3 # pas echelle 1:1 = 2.35619 -> pas à l'échelle de la maquette (0,3) : 2.35619/0.3 = 7,85396
vitesse = 0.05
engrenage_obj = scene.objects['Engrenage']
portail_obj = scene.objects['Portail']
if obj['actif_ouvrir']:
# print (scene.objects['Portail'].worldPosition.x)
engrenage_obj.applyRotation((0, 0, -pas_rot*vitesse), True)
portail_obj.applyMovement((-pas*vitesse, 0, 0), True)
# else:
if obj['actif_fermer']:
# print (scene.objects['Portail'].worldPosition.x)
engrenage_obj.applyRotation((0, 0, pas_rot*vitesse), True)
portail_obj.applyMovement((pas*vitesse, 0, 0), True)
###############################################################################
# Capteurs fin de course
###############################################################################
##
# Etat capteur fin de course portail ouvert
##
def sml_fdc_ouvert (cont):
if scene.objects['System']['run'] :
obj = cont.owner
obj_etat=obj['actif']
obj_microrupteur=scene.objects['Microrupteur fdc ouvert']
# Etat capteur en fonction de la grille : worldPosition.x : 0 -> 65.5 et localPosition.x : 0 -> 218
if scene.objects['Portail'].localPosition.x <= 0 and obj['actif'] == False :
obj['actif'] = True
if scene.objects['Portail'].localPosition.x > 0 and obj_microrupteur['actif'] == False and obj['actif'] == True :
obj['actif'] = False
#Forçage
if obj_microrupteur['actif'] == True:
obj['actif'] = True
#Couleurs
if obj['actif'] == True and obj_microrupteur.color !=couleur_jaune:
obj_microrupteur.color =couleur_jaune
if obj['actif'] == False :
if obj_microrupteur['MO'] == True and obj_microrupteur.color !=couleur_blanc:
obj_microrupteur.color =couleur_blanc
if obj_microrupteur['MO'] == False and obj_microrupteur.color !=couleur_orange:
obj_microrupteur.color =couleur_orange
##
# Etat capteur fin de course portail fermé
##
def sml_fdc_ferme (cont):
if scene.objects['System']['run'] :
obj = cont.owner
obj_etat=obj['actif']
obj_microrupteur=scene.objects['Microrupteur fdc ferme']
# Etat capteur en fonction de la grille : worldPosition.x : 0 -> 65.5 et localPosition.x : 0 -> 218
if scene.objects['Portail'].localPosition.x >= 218 and obj['actif'] == False :
obj['actif'] = True
if scene.objects['Portail'].localPosition.x < 218 and obj_microrupteur['actif'] == False and obj['actif'] == True :
obj['actif'] = False
#Forçage
if obj_microrupteur['actif'] == True:
obj['actif'] = True
#Couleurs
if obj['actif'] == True and obj_microrupteur.color !=couleur_jaune:
obj_microrupteur.color =couleur_jaune
if obj['actif'] == False :
if obj_microrupteur['MO'] == True and obj_microrupteur.color !=couleur_blanc:
obj_microrupteur.color =couleur_blanc
if obj_microrupteur['MO'] == False and obj_microrupteur.color !=couleur_orange:
obj_microrupteur.color =couleur_orange
##
# Forçage capteur fin de course avec la souris
##
def sml_microrupteur (cont):
if scene.objects['System']['run'] :
system_click(cont, cont.owner)
###############################################################################
# Capteur barrage
###############################################################################
##
# Emetteur IR
##
def sml_emet_ir (cont):
if scene.objects['System']['run'] :
obj = cont.owner
obj_emetteur_ir=scene.objects['Emetteur IR']
obj_recepteur_ir=scene.objects['Recepteur IR']
if obj['actif'] and scene.objects['Emetteur IR Led allumee'].visible == False:
scene.objects['Emetteur IR Led allumee'].setVisible(True,False)
scene.objects['Emetteur IR Led'].setVisible(False,False)
obj_emetteur_ir.color = couleur_orange
obj_recepteur_ir.color = couleur_orange
if obj['actif']==False and scene.objects['Emetteur IR Led allumee'].visible == True:
scene.objects['Emetteur IR Led'].setVisible(True,False)
scene.objects['Emetteur IR Led allumee'].setVisible(False,False)
obj_emetteur_ir.color = couleur_magenta
obj_recepteur_ir.color = couleur_magenta
##
# Récepteur IR
##
def sml_recep_ir (cont):
if scene.objects['System']['run'] and scene.objects['Module emetteur IR']['actif'] :
obj = cont.owner
system_click(cont, scene.objects['Module recepteur IR'])
if scene.objects['Module recepteur IR']['actif']==True :
scene.objects['Emetteur IR'].color = couleur_jaune
scene.objects['Recepteur IR'].color = couleur_jaune
###############################################################################
# Boutons poussoirs
###############################################################################
##
# Bouton pousssoir coté rue
##
def sml_bp_rue (cont):
if scene.objects['System']['run'] :
system_click(cont, scene.objects['Module bouton cote rue'])
##
# Bouton pousssoir coté cour
##
def sml_bp_cour (cont):
if scene.objects['System']['run'] :
system_click(cont, scene.objects['Module bouton cote cour'])
###############################################################################
# Système
###############################################################################
##
# Initialisation du système
# Le moteur est géré en continue.
##
def system_init ():
# Clignotant
scene.objects['Module led']['actif']=False
scene.objects['Led allumee'].setVisible(False,False)
scene.objects['Led'].setVisible(True,False)
# Emetteur IR
scene.objects['Module emetteur IR']['actif']=False
scene.objects['Emetteur IR Led allumee'].setVisible(False,False)
scene.objects['Emetteur IR Led'].setVisible(True,False)
scene.objects['Emetteur IR'].color = couleur_magenta
scene.objects['Recepteur IR'].color = couleur_magenta
##
# Réinitialisation du système
##
def system_reset ():
# Grille à l'état initial
# applyRotationTo(scene.objects['System'], 0, 0, 0)
scene.objects['Portail'].worldPosition.x = scene.objects['Portail']['init_lx']
scene.objects['Portail'].worldPosition.y = scene.objects['Portail']['init_ly']
scene.objects['Portail'].worldPosition.z = scene.objects['Portail']['init_lz']
# Moteur à l'état initial
rres=0.001 # resolution rotation
obj1=scene.objects['Engrenage']
while (obj1.localOrientation.to_euler().y) > 1.1*rres :
obj1.applyRotation((0, 0, -rres), True)
while (obj1.localOrientation.to_euler().y) < -1.1*rres :
obj1.applyRotation((0, 0, rres), True)
# Led à l'état initial
scene.objects['Led'].setVisible(True,False)
scene.objects['Led allumee'].setVisible(False,False)
# Capteur barrage IR
scene.objects['Emetteur IR Led'].setVisible(True,False)
scene.objects['Emetteur IR Led allumee'].setVisible(False,False)
scene.objects['Emetteur IR'].color = couleur_magenta
scene.objects['Recepteur IR'].color = couleur_magenta
# I/O à l'état initial
scene.objects['Module led']['actif']=False
scene.objects['Ensemble moteur']['actif_ouvrir']=False
scene.objects['Ensemble moteur']['actif_fermer']=False
scene.objects['Capteur fdc ouvert']['actif'] =True
scene.objects['Capteur fdc ferme']['actif'] =False
scene.objects['Module emetteur IR']['actif'] =False
scene.objects['Module recepteur IR']['actif'] =False
scene.objects['Module bouton cote rue']['actif'] =False
scene.objects['Module bouton cote cour']['actif'] =False
##
# Click sur les éléments cliquables du systèmes
##
def system_click(cont, obj_activation):
obj = cont.owner
if cont.sensors['MO'].status == JUST_ACTIVATED :
obj.color = couleur_blanc
obj['MO']=True
if cont.sensors['Click'].status == JUST_ACTIVATED and scene.objects['System']['manip_mode']==0:
if obj['MO']:
obj_activation['actif'] = True
obj.color = couleur_jaune
if cont.sensors['MO'].status == JUST_RELEASED :
obj['MO']=False
if cont.sensors['Click'].status == ACTIVATE :
obj.color = couleur_jaune
else:
obj.color = couleur_orange
if cont.sensors['Click'].status == JUST_RELEASED:
obj_activation['actif'] = False
obj.color = couleur_blanc
if cont.sensors['MO'].status != ACTIVATE :
obj.color = couleur_orange

View File

@ -0,0 +1,59 @@
from porcou_lib import * # Bibliothèque portail coulissant
###############################################################################
# monte-charge_cmd.py
# @title: Commandes du monte-charge
###############################################################################
###############################################################################
# Instructions élémentaires pour le monte-charge
#
# Actions (ordre = True ou False) :
# - Allumer voyant niveau 0 : voy_0 (True|False)
# - Allumer voyant niveau 1 : voy_1 (True|False)
# - Monter le monte-charge (moteur sens trigo) : mot_m (True|False)
# - Descendre le monte-charge (moteur sens horaire) : mot_d (True|False)
#
# Capteurs (valeur retournée = True ou False) :
# - Capteur présence cabine niveau 0 : pc_0()
# - Capteur présence cabine niveau 1 : pc_1()
#
# Pupitre (valeur retournée = True ou False) :
# - Bouton poussoir appel niveau 0 : ba_0()
# - Bouton poussoir appel niveau 1 : ba_1()
#
# Gestion du temps :
# - Temporisation en seconde : tempo(duree)
#
###############################################################################
# Brochage du monte-charge
brochage={}
###############################################################################
# Fonctions
###############################################################################
###############################################################################
# Commandes
###############################################################################
def commandes():
# Ecrire votre code ici ...
voy_0(True) # Activer le voyant du niveau 0
while True:
pass
fin() # A garder
###############################################################################
# En: External call << DONT CHANGE THIS SECTION >>
# Fr: Appel externe << NE PAS MODIFIER CETTE SECTION >>
###############################################################################
if __name__=='start':
thread_cmd_start(commandes)
if __name__=='stop':
thread_cmd_stop()

View File

@ -0,0 +1,94 @@
###############################################################################
# montchg_doc.py
# @title: Documentation du monte-charge
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2022 Philippe Roy
# @license: GNU GPL
###############################################################################
################################################################################
# Documentation du système
################################################################################
system_card=["twins-card", "serial-card", "movement-card", "sensor-card", "gyro-card", "board-card", "model-card", "arduino-card"]
card_description ={}
# Jumeau numérique
# Message envoyé (asynchrone) : \n avancer : a, reculer : r, droite : d, \n gauche g, marquer : m et forer : f \n\n\n """
card_twins_title="Jumeau numérique"
card_twins_text=""" jumeau() \n -> Active le jumeau réel.\n
jumeau_config(port, vitesse) \n -> Définit la configuration de la liaison \n série.\n
Si le port n\"est pas spécifié, il sera \n recherché automatiquement (carte \n Arduino Uno ou Mega). \n
La vitesse par défaut est 115200 baud."""
card_twins_url=[]
card_description.update({"twins-card" : [card_twins_title, card_twins_text, card_twins_url]})
# Liaison série
card_serial_title="Liaison série"
card_serial_text=""" serie_msg(texte) \n -> Envoi un message \n
texte=serie_rcpt() \n -> Reçoit un message"""
card_serial_url=[["Liaison série : pySerial","https://pythonhosted.org/pyserial/"],
["Protocole Firmata : pyFirmata","https://github.com/tino/pyFirmata"]]
card_description.update({"serial-card" : [card_serial_title, card_serial_text, card_serial_url]})
# Ouvrir et fermer
card_movement_title="Ouvrir et fermer"
card_movement_text=""" mot_o (True | False) \n -> Ouvre le portail (moteur sens trigo) \n
mot_f (True | False) \n -> Ferme le portail (moteur sens horaire) \n
fdc_o() \n -> Capteur fin de course portail ouvert\n Retourne True si le portail est ouvert. \n
fdc_f() \n -> Capteur fin de course portail fermé\n Retourne True si le portail est fermé."""
card_movement_url=[]
card_description.update({"movement-card" : [card_movement_title, card_movement_text, card_movement_url]})
# Capteurs
card_sensor_title="Capteur Infrarouge"
card_sensor_text=""" ir_emet(True | False) \n -> Active l\"émetteur infrarouge (IR) \n
ir_recep() \n -> Récepteur barrage infrarouge (IR)\n Retourne True s\"il n\"y a pas d\"obstacle."""
card_sensor_url=[]
card_description.update({"sensor-card" : [card_sensor_title, card_sensor_text, card_sensor_url]})
# Gyrophare
card_gyro_title="Gyrophare"
card_gyro_text=""" gyr (True | False) \n -> Active le gyrophare"""
card_gyro_url=[]
card_description.update({"gyro-card" : [card_gyro_title, card_gyro_text, card_gyro_url]})
# Pupitre
card_board_title="Pupitre"
card_board_text= """ bp_ext() \n -> Bouton poussoir coté rue\n Retourne True si le bouton est pressé.\n
bp_int() \n -> Bouton poussoir coté cour\n Retourne True si le bouton est pressé."""
card_board_url=[]
card_description.update({"board-card" : [card_board_title, card_board_text, card_board_url]})
# Maquette
card_model_title="Maquette"
card_model_text=""" Le modèle 3D est basé sur la maquette \n développée par l\"entreprise A4 Technologie. \n
Les documents techniques et \n pédagogiques signés A4 Technologie \n sont diffusés librement sous licence \n Creative Commons BY-NC-SA. \n
Le pilotage de la maquette se fait par une \n carte Arduino (Uno ou Mega) reliée à \n l"ordinateur via la liaison série (USB) et le \n protocole Firmata."""
card_model_url=[["A4 Technologie","https://www.a4.fr"],
["Maquette A4 Technologie","https://www.a4.fr/wiki/index.php?title=Portail_coulissant_(BE-APORT-COUL)"]]
card_description.update({"model-card" : [card_model_title, card_model_text, card_model_url]})
# Arduino
card_arduino_title="Arduino"
card_arduino_text=""" Arduino une plateforme open-source de \n développement électronique basée sur \n le microcontrôleur de la famille ATmega.
Elle est utilisée pour la création d"objets \n électroniques interactifs et connectés : \n IoT, domotique, robotique, ...
Le langage de programmation est le C. Par \n la bibliothèque Arduino il est particulièrement \n aisé d"accéder aux entrées/sorties de la
carte. Les platines permettent l"ajout \n d"extensions : relais, Grove, RFID, GPS, ... """
card_arduino_url=[["Plateforme Arduino","https://www.arduino.cc/"]]
card_description.update({"arduino-card" : [card_arduino_title, card_arduino_text, card_arduino_url]})
##
# Envoi des données
##
def get_system_card():
return system_card
def get_card_description():
return card_description

406
monte_charge/montchg_lib.py Normal file
View File

@ -0,0 +1,406 @@
import bge # Bibliothèque Blender Game Engine (UPBGE)
import threading # Multithreading
import trace
import sys
import time
import serial # Liaison série
import pyfirmata # Protocole Firmata
from serial.tools.list_ports import comports # Détection du port automatique
###############################################################################
# montchg_lib.py
# @title: Bibliothèque utilisateur du monte-charge
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2022 Philippe Roy
# @license: GNU GPL
###############################################################################
scene = bge.logic.getCurrentScene()
# Threads
threads_cmd=[]
debug_thread = scene.objects['System']['debug_thread']
# Jumeau numérique
board = None
board_it = None # Iterator (input)
bp_int_pin = None
bp_ext_pin = None
fdc_o_pin = None
fdc_f_pin = None
ir_emett_pin = None
ir_recept_pin = None
mot_o_pin = None
mot_f_pin = None
gyr_pin = None
# UPBGE constants
JUST_ACTIVATED = bge.logic.KX_INPUT_JUST_ACTIVATED
JUST_RELEASED = bge.logic.KX_INPUT_JUST_RELEASED
ACTIVATE = bge.logic.KX_INPUT_ACTIVE
# JUST_DEACTIVATED = bge.logic.KX_SENSOR_JUST_DEACTIVATED
###############################################################################
# Méthode kill pour les tâches (threads)
###############################################################################
class thread_with_trace(threading.Thread):
def __init__(self, *args, **keywords):
threading.Thread.__init__(self, *args, **keywords)
self.killed = False
def start(self):
self.__run_backup = self.run
self.run = self.__run
threading.Thread.start(self)
def __run(self):
sys.settrace(self.globaltrace)
self.__run_backup()
self.run = self.__run_backup
def globaltrace(self, frame, event, arg):
if event == 'call':
return self.localtrace
else:
return None
def localtrace(self, frame, event, arg):
if self.killed:
if event == 'line':
raise SystemExit()
return self.localtrace
def kill(self):
self.killed = True
###############################################################################
# Start et stop des tâches (threads)
###############################################################################
def thread_start(threads, type_txt, fct):
threads.append(thread_with_trace(target = fct))
threads[len(threads)-1].start()
if (debug_thread):
print ("Thread",type_txt, "#", len(threads)-1, "open.")
def thread_stop(threads, type_txt):
i=0
zombie_flag=False
for t in threads:
if not t.is_alive():
if (debug_thread):
print ("Thread",type_txt, "#",i,"closed.")
else:
if (debug_thread):
print ("Thread",type_txt, "#",i,"still open ...")
t.kill()
t.join()
if not t.is_alive():
if (debug_thread):
print ("Thread",type_txt, "#",i,"killed.")
else:
if (debug_thread):
print ("Thread",type_txt, "#",i,"zombie...")
zombie_flag=True
i +=1
if zombie_flag==False:
if (debug_thread):
print ("All threads",type_txt, "are closed.")
scene.objects['System']['thread_cmd']=False
return True
else:
if (debug_thread):
print ("There are zombies threads",type_txt, ".")
return False
def thread_cmd_start(fct):
thread_start(threads_cmd, "commands", fct)
def thread_cmd_stop():
thread_stop(threads_cmd, "commands")
def end():
# Jumeau numérique
if scene.objects['System']['twins']:
# serial_msg = "FI\n"
# twins_serial.write(serial_msg.encode()) # Communication série : modele 3d -> carte communication ( arduino | micro:bit )
jumeau_close()
# Thread
if (debug_thread):
print ("Thread commands is arrived.")
time.sleep(0.125)
scene.objects['System']['thread_cmd']=False
time.sleep(0.125)
def fin():
end()
def quit():
end()
###############################################################################
# Actionneurs
###############################################################################
# Ordres utilisateur du clignotant
def gyr (ordre):
global gyr_pin
scene.objects['Module led']['actif']=ordre
if scene.objects['System']['twins'] :
if ordre :
gyr_pin.write(1)
else:
gyr_pin.write(0)
# Ordres utilisateur du moteur
def mot_o (ordre):
scene.objects['Ensemble moteur']['actif_ouvrir']=ordre
def mot_f (ordre):
scene.objects['Ensemble moteur']['actif_fermer']=ordre
# Ordre utilisateur du capteur barrage IR
def ir_emet(ordre):
scene.objects['Module emetteur IR']['actif']=ordre
###############################################################################
# Capteurs
###############################################################################
# Compte-rendu utilisateur du capteur fin de course portail ouvert
def fdc_o ():
return scene.objects['Capteur fdc ouvert']['actif']
# Compte-rendu utilisateur du capteur fin de course portail ouvert
def fdc_f ():
return scene.objects['Capteur fdc ferme']['actif']
# Compte-rendu utilisateur du capteur barrage IR
def ir_recep ():
if scene.objects['Module recepteur IR']['actif'] :
return False
else:
return True
###############################################################################
# Boutons poussoirs
###############################################################################
# Compte-rendu utilisateur du bouton pousssoir coté rue
def bp_ext ():
return scene.objects['Module bouton cote rue']['actif']
# Compte-rendu utilisateur du bouton pousssoir coté cour
def bp_int ():
return scene.objects['Module bouton cote cour']['actif']
###############################################################################
# Temporisation
###############################################################################
def tempo (duree):
time.sleep(duree)
###############################################################################
# Jumeau numérique
###############################################################################
##
# Recherche automatique du port
##
def serial_autoget_port():
# USB Vendor ID, USB Product ID
board_dict={'microbit' :[3368, 516],
'uno' :[9025, 67],
'mega' :[9025, 66]}
for com in comports(): # Arduino Uno
if com.vid == board_dict["uno"][0] and com.pid == board_dict["uno"][1]:
return [com.device,"Arduino Uno"]
for com in comports(): # Arduino Mega
if com.vid == board_dict["mega"][0] and com.pid == board_dict["mega"][1]:
return [com.device,"Arduino Mega"]
return [None,""]
##
# Création de l'objet carte (protocole Firmata)
##
def board_init(port):
try:
return pyfirmata.Arduino(port)
except:
return None
##
# Création de l'objet serial (communication série)
##
def serial_init(port,speed):
try:
return serial.Serial(port,speed)
except:
return None
##
# Affiche la liste des cartes (communication série)
##
def serial_devices():
for com in comports():
print ("Name : "+str(com.name)+"\n"
+" Device : "+str(com.device)+"\n"
+" Hardware ID : "+str(com.hwid)+"\n"
+" USB Vendor ID : "+str(com.vid)+"\n"
+" USB Product ID : "+str(com.pid)+"\n"
+" USB device location : "+str(com.location)+"\n"
+" USB manufacturer : "+str(com.manufacturer)+"\n"
+" USB product : "+str(com.product)+"\n"
+" Interface-specific : "+str(com.interface))
##
# Activation de la communication avec la carte de communication (Arduino, Micro:bit)
# Vitesse : 115200 -> 7 fps, 38400 -> 6 fps, 9600 -> 2 fps
# pyserial : baudrate=115200
# pyfirmata : baudrate=57600
##
def jumeau(pins):
global board
# global gyr_pin
# UI : étape 1
scene.objects['Twins-icon'].setVisible(True,True)
scene.objects['Twins-text']['Text'] = "Connection en cours ..."
scene.objects['Twins-text'].setVisible(True,False)
# Mise en place de la carte
speed = 57600
[device,board_name] =serial_autoget_port() # Recherche automatique du port
if device is None:
scene.objects['System']['twins'] = False
scene.objects['Twins-text']['Text'] = "Aucune connection disponible : jumeau réel débranché."
return False
board = board_init(device)
if board is None:
scene.objects['System']['twins'] = False
scene.objects['Twins-text']['Text'] = "Aucune connection disponible : port "+device+" pas prêt"
return False
scene.objects['System']['twins'] = True
# scene.objects['System']['twins_close'] = False
scene.objects['System']['twins_port'] = device
scene.objects['System']['twins_speed'] = speed
# scene.objects['System']['twins_readline'] = ""
board_it = pyfirmata.util.Iterator(board) # Itérateur pour les entrées
board_it.start()
# UI : étape 2
if board =="":
scene.objects['Twins-text']['Text'] = "Connection ouverte : "+device+" - "+str(speed)+" baud"
else:
scene.objects['Twins-text']['Text'] = "Connection ouverte : "+board_name+" sur "+device+" à "+str(speed)+" baud"
tempo (0.1)
# Déclaration des entrées - sorties
for pin in pins:
print (pin)
# if
# bp_ext_pin = board_io('d:'+str(es_dict['bp_ext'])+':i') # Bouton poussoir coté rue
# bp_int_pin = board_io('d:'+str(es_dict['bp_int'])+':i') # Bouton poussoir coté cour
# fdc_o_pin = board_io('d:'+str(es_dict['fdc_o'])+':i') # Capteur fin de course portail ouvert
# fdc_f_pin = board_io('d:'+str(es_dict['fdc_f'])+':i') # Capteur fin de course portail fermé
# ir_recept_pin = board_io('d:'+str(es_dict['ir_recept'])+':i') # Recepteur pour le capteur barrage IR
# gyr_pin = board_io('d:'+str(es_dict['gyr'])+':o') # Gyrophare
# mot_o_pin = board_io('d:'+str(es_dict['mot_o'])+':o') # Ouvrir le portail (moteur sens trigo)
# mot_f_pin = board_io('d:'+str(es_dict['mot_f'])+':o') # Fermer le portail (moteur sens horaire
# ir_emett_pin = board_io('d:'+str(es_dict['ir_emett'])+':o') # Emetteur pour le capteur barrage IR
return True
# def board_io(da,pin,io):
# if pin_def is not None:
# return board.get_pin(da+':'+pin_def)
# else:
# print ("Définition entrée-sortie non trouvée : "+pin_def)
##
# Fermeture de la communication série
##
def jumeau_close():
global board
# twins_serial.close() # Fermer proprement le port série
board.exit() # Fermer proprement la communication avec la carte
scene.objects['System']['twins'] = False
scene.objects['Twins-text']['Text'] = "Connection fermée"
# Configuration du port
# FIXME
def jumeau_config(port, speed):
# global board
pass
# global twins_serial
# if scene.objects['System']['twins']:
# serial_msg1 = "CF\n"
# twins_serial.write(serial_msg1.encode())
# tempo (1)
# serial_msg2 = str(speed)+"\n"
# twins_serial.write(serial_msg2.encode())
# tempo (1)
# serial_msg3 = str(temps_avancer)+"\n"
# twins_serial.write(serial_msg3.encode())
# tempo (1)
# serial_msg4 = str(temps_tourner)+"\n"
# twins_serial.write(serial_msg4.encode())
# tempo (1)
# serial_msg5 = "FC\n"
# twins_serial.write(serial_msg5.encode())
##
# Envoi d'un message vers la communication série
##
# def serie_msg(text):
# global twins_serial
# text2= text+"\n"
# scene.objects['Twins-text']['Text'] = "Communication : envoi message : "+text
# twins_serial.write(text2.encode())
##
# Mise en écoute de jumeau numérique (figeage de la scène)
##
# def twins_listen(cont):
# global twins_serial
# if scene.objects['System']['twins']:
# if scene.objects['System']['twins_readline'] != "":
# scene.objects['Twins-text']['Text'] = "Écoute de la connection figeage de la scène.... Message reçu : "+scene.objects['System']['twins_readline']
# else:
# scene.objects['Twins-text']['Text'] = "Écoute de la connection figeage de la scène..."
# if cont.sensors['Property'].positive:
# if scene.objects['System']['twins_listen'] :
# serial_msg = twins_serial.readline()
# if serial_msg is not None:
# scene.objects['System']['twins_readline'] = str(serial_msg)
# # scene.objects['Twins-text']['Text'] = "Message reçu : "+str(serial_msg)
# scene.objects['System']['twins_listen'] = False
##
# Réception d'un message de la communication série
##
# def serie_rcpt():
# # scene.objects['Twins-text']['Text'] = "Écoute de la \nconnection\n figeage de \n la scène"
# scene.objects['System']['twins_readline'] = ""
# scene.objects['System']['twins_listen'] = True
# while scene.objects['System']['twins_readline'] == "":
# if scene.objects['System']['twins_readline'] != "":
# break
# # scene.objects['Twins-text']['Text'] = "Connection\nouverte :\n"+scene.objects['System']['twins_port']+"\n"+str(scene.objects['System']['twins_speed'])+" baud"
# return scene.objects['System']['twins_readline']

Binary file not shown.

1
monte_charge/twin.py Symbolic link
View File

@ -0,0 +1 @@
/home/phroy/Bureau/seriousgames/blender-edutech/git/digital_twin/twin.py

1
monte_charge/twin_about.py Symbolic link
View File

@ -0,0 +1 @@
/home/phroy/Bureau/seriousgames/blender-edutech/git/digital_twin/twin_about.py

View File

@ -0,0 +1 @@
/home/phroy/Bureau/seriousgames/blender-edutech/git/digital_twin/twin_config.xml

1
monte_charge/twin_doc.py Symbolic link
View File

@ -0,0 +1 @@
/home/phroy/Bureau/seriousgames/blender-edutech/git/digital_twin/twin_doc.py