379 lines
19 KiB
Python

import bge # Bibliothèque Blender Game Engine (UPBGE)
import twin # Bibliothèque de l'environnement 3D des jumeaux numériques
import math
import time
import runpy # Exécution de script Python légère (sans import)
###############################################################################
# montchg.py
# @title: Commandes pour le monte-charge
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2022-2023 Philippe Roy
# @license: GNU GPL
###############################################################################
# Récupérer la scène UPBGE
scene = bge.logic.getCurrentScene()
# Configuration des variables publiques
# 'nom_variable' :
# - Objet 3D : [nom de l'objet 3D, propriété associée à la valeur (activate ou activated_real), type de la valeur ('d' (digital, binary), 'a', (analog) ou 'n' (numeric)), échelle (1 si ommis)]
# - Configuration de la broche : [nom de la propriété stockant l'object broche (pyfirmata),
# type de broche par défaut : 'd' (digital), 'a' (analog) ou 'p' (pwm)), mode de la broche par défaut : 'i' (input) ou 'o' (output)]
# - Configuration du graphique : ['marque', 'type de ligne', 'couleur', linewidth]] (Codification de Matplotlib)
#
# 'nom_variable_r' est la valeur réelle de la variable (valeur numérique) 'nom_variable' issue du jumelage numérique.
# Dans ce cas, il n'y a pas configuration de broche car elle est présente sur la variable 'nom_variable'.
# Ce distinguo ne concerne que les entrées, car les sorties sont pilotées par le numérique.
#
# 'mot_s' et 'mot_v' ne concernent que la maquette Grove (variante 1)
public_vars = {
't' : [['System','time','a'], [], []],
'voy_0' : [['Led niveau 0','activated','d'], ['pin', 'd','o'], []],
'voy_1' : [['Led niveau 1','activated','d'], ['pin', 'd','o'], []],
'pc_0' : [['Microrupteur niveau 0','activated','d'], ['pin', 'd','i'], []],
'pc_0_r' : [['Microrupteur niveau 0','activated_real','d'], [], []],
'pc_1' : [['Microrupteur niveau 1','activated','d'], ['pin', 'd','i'], []],
'pc_1_r' : [['Microrupteur niveau 1','activated_real','d'], [], []],
'ba_0' : [['Bp niveau 0','activated','d'], ['pin', 'd','i'], []],
'ba_0_r' : [['Bp niveau 0','activated_real','d'], [], []],
'ba_1' : [['Bp niveau 1','activated','d'], ['pin', 'd','i'], []],
'ba_1_r' : [['Bp niveau 1','activated_real','d'], [], []],
'mot_m' : [['Moteur','up','d'], ['pin_up', 'd','o'], []],
'mot_d' : [['Moteur','down','d'], ['pin_down', 'd','o'], []],
'mot_s' : [['Moteur','direction','d'],['pin_direction','d','o'], []],
'mot_v' : [['Moteur','speed_real','a'],['pin_speed','p','o'], []],
'mot_angle' : [['Moteur','alpha','a'], [], []],
'mot_vitesse' : [['Moteur','speed','a'], [], []],
'mot_pas' : [['Moteur','step','a'], [], []],
'cabine_z' : [['Cabine','z','a', 1/0.333], [], []],
'cabine_vitesse' : [['Cabine','speed','a', 1/0.333], [], []],
'cabine_pas' : [['Cabine','step','a', 1/0.333], [], []]}
# Couleurs
color_passive = (0.800, 0.005, 0.315,1) # bouton non activable : magenta
color_active = (0.799, 0.130, 0.063,1) # bouton activable : orange
color_hl = (0.8, 0.8, 0.8, 1) # bouton focus : blanc
color_activated = (0.8, 0.619, 0.021, 1) # bouton activé numériquement uniquement : jaune
color_activated_real = (0.799, 0.031, 0.038, 1) # élément activé physiquement uniquement : rouge (hors clic)
color_activated_dbl = (0.246, 0.687, 0.078, 1) # élément activé physiquement et numériquement : vert clair
# Constantes UPBGE
JUST_ACTIVATED = bge.logic.KX_INPUT_JUST_ACTIVATED
JUST_RELEASED = bge.logic.KX_INPUT_JUST_RELEASED
ACTIVATE = bge.logic.KX_INPUT_ACTIVE
# JUST_DEACTIVATED = bge.logic.KX_SENSOR_JUST_DEACTIVATED
###############################################################################
# Initialisation de la scène
###############################################################################
def init(cont):
if cont.sensors['Init'].positive == False: # 1 seule fois
return False
twin.manip_init() # Manipulation du modèle 3D
twin.cmd_init() # Commandes
# Brochage
for pin in public_vars:
if public_vars[pin][1] != []:
scene.objects[public_vars[pin][0][0]][public_vars[pin][1][0]] = None
# Mémorisation de la position et orientation des composants du système au départ
scene.objects['Cabine']['init_lx']=scene.objects['Cabine'].worldPosition.x
scene.objects['Cabine']['init_ly']=scene.objects['Cabine'].worldPosition.y
scene.objects['Cabine']['init_lz']=scene.objects['Cabine'].worldPosition.z
scene.objects['Contrepoids']['init_lx']=scene.objects['Contrepoids'].worldPosition.x
scene.objects['Contrepoids']['init_ly']=scene.objects['Contrepoids'].worldPosition.y
scene.objects['Contrepoids']['init_lz']=scene.objects['Contrepoids'].worldPosition.z
scene.objects['Moteur vis sans fin']['init_rx']=scene.objects['Moteur vis sans fin'].worldOrientation.to_euler().x
scene.objects['Moteur vis sans fin']['init_ry']=scene.objects['Moteur vis sans fin'].worldOrientation.to_euler().y
scene.objects['Moteur vis sans fin']['init_rz']=scene.objects['Moteur vis sans fin'].worldOrientation.to_euler().z
scene.objects['Moteur pignon']['init_rx']=scene.objects['Moteur pignon'].worldOrientation.to_euler().x
scene.objects['Moteur pignon']['init_ry']=scene.objects['Moteur pignon'].worldOrientation.to_euler().y
scene.objects['Moteur pignon']['init_rz']=scene.objects['Moteur pignon'].worldOrientation.to_euler().z
# Groupe de focus pour les actionneurs
twin.cycle_def_focusgroup([["Moteur","blue-dark"] ,
["Moteur arriere","blue-dark"] ,
["Moteur condensateur","grey"],
["Reducteur flanc droit","blue"],
["Reducteur flanc gauche","blue"],
["Moteur vis sans fin","blue-dark"],
["Moteur pignon","blue-dark"],
["Moteur axe 1","blue"],
["Moteur axe 2","blue-dark"],
["Moteur gaine thermo","blue"],
["Cable","blue"]], "Moteur : mot_m(True | False), mot_d(True | False)")
twin.cycle_def_focusgroup([["Led niveau 0", "led_yellow"]], "Voyant témoin d\"étage niveau 0 : voy_0(True | False)")
twin.cycle_def_focusgroup([["Led niveau 1", "led_yellow"]], "Voyant témoin d\"étage niveau 1 : voy_1(True | False)")
# Description des composants sensibles
scene.objects['Bp niveau 0']['description']="Bouton poussoir appel niveau 0 : ba_0()"
scene.objects['Bp niveau 1']['description']="Bouton poussoir appel niveau 1 : ba_1()"
scene.objects['Microrupteur niveau 0']['description']="Capteur présence cabine niveau 0 : pc_0()"
scene.objects['Microrupteur niveau 1']['description']="Capteur présence cabine niveau 1 : pc_1()"
system_init() # Initialisation du système
def get_public_vars():
return public_vars
###############################################################################
# Actionneurs
###############################################################################
##
# Pour la commande du moteur de la variante 1 version Grove , le brochage du shield moteur CC 4 x 1,2 A DRI0039 (DFROBOT) est fixe,
# il doit respecter le tableau suivant :
# Motor Direction(Forward/Backward) Speed Speed range
# M1 4 LOW HIGH 3 0-255
# M2 12 HIGH LOW 11 0-255
# M3 8 LOW HIGH 5 0-255
# M4 7 HIGH LOW 6 0-255
##
##
# Moteur et cabine
##
def mot (cont):
if scene.objects['System']['run']:
fps = 60 # frame per second
obj = cont.owner
obj_vissansfin = scene.objects['Moteur vis sans fin']
obj_pignon = scene.objects['Moteur pignon']
obj_cabine = scene.objects['Cabine']
obj_contrepoids = scene.objects['Contrepoids']
obj_cable = scene.objects['Cable'] # FIXME : animation du cable -> plus tard
# Roue et vis sans fin
z = 48 # nb dents pignon
diam_axe = 3 # diamètre de l'axe moteur
obj['step']= obj['speed_setting'] / fps # Vitesse du moteur numérique : 1,3 rad /s par défaut
obj_pignon['step'] = obj['step'] / z
obj_cabine['step'] = obj_pignon['step'] * (math.pi*diam_axe)
# Monter
if obj['up']:
# Physique du modèle 3D
if obj['prior']:
obj_vissansfin.applyRotation((0, 0, obj['step']), True)
obj['alpha']= obj['alpha']+obj['step']
if scene.objects['System']['time'] != obj['last_time']:
obj['speed']= (obj['step'])/(scene.objects['System']['time']-obj['last_time'])
obj_pignon.applyRotation((obj_pignon['step'], 0, 0), True)
obj_cabine.applyMovement((0, 0, obj_cabine['step']), True)
obj_cabine['z']= obj_cabine['z']+obj_cabine['step'] # Echelle pas pris en compte
if scene.objects['System']['time'] != obj['last_time']:
obj_cabine['speed']= obj_cabine['step']/(scene.objects['System']['time']-obj['last_time'])
obj_contrepoids.applyMovement((0, 0, -obj_cabine['step']), True)
obj['last_time'] = scene.objects['System']['time']
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
# Version Grove
if scene.objects['System']['variant'] == 1:
if scene.objects['Moteur']['pin_direction'] is not None:
if scene.objects['Moteur']['pin_speed'] is not None:
scene.objects['Moteur']['pin_direction'].write(1)
scene.objects['Moteur']['pin_speed'].write(scene.objects['Moteur']['speed_real_setting']/255)
# Version AutoProg
if scene.objects['System']['variant'] == 2:
if scene.objects['Moteur']['pin_up'] is not None:
if scene.objects['Moteur']['pin_down'] is not None:
scene.objects['Moteur']['pin_down'].write(0)
scene.objects['Moteur']['pin_up'].write(1)
# Descendre
# else: # Pas de priorité
if obj['down']:
# Physique du modèle 3D
if obj['prior']:
obj_vissansfin.applyRotation((0, 0, -obj['step']), True)
obj['alpha']= obj['alpha']-obj['step']
if scene.objects['System']['time'] != obj['last_time']:
obj['speed']= (-obj['step'])/(scene.objects['System']['time']-obj['last_time'])
obj_pignon.applyRotation((-obj_pignon['step'], 0, 0), True)
obj_cabine.applyMovement((0, 0, -obj_cabine['step']), True)
obj_cabine['z']= obj_cabine['z']-obj_cabine['step'] # Echelle pas pris en compte
if scene.objects['System']['time'] != obj['last_time']:
obj_cabine['speed']= -obj_cabine['step']/(scene.objects['System']['time']-obj['last_time'])
obj_contrepoids.applyMovement((0, 0, obj_cabine['step']), True)
obj['last_time'] = scene.objects['System']['time']
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
# Version Grove
if scene.objects['System']['variant'] == 1:
if scene.objects['Moteur']['pin_direction'] is not None:
if scene.objects['Moteur']['pin_speed'] is not None:
scene.objects['Moteur']['pin_direction'].write(0)
scene.objects['Moteur']['pin_speed'].write(scene.objects['Moteur']['speed_real_setting']/255)
# Version AutoProg
if scene.objects['System']['variant'] == 2:
if scene.objects['Moteur']['pin_down'] is not None:
if scene.objects['Moteur']['pin_up'] is not None:
scene.objects['Moteur']['pin_up'].write(0)
scene.objects['Moteur']['pin_down'].write(1)
# Arrêter
if obj['up']== False and obj['down'] == False :
# Physique du modèle 3D
if obj['prior']:
obj['speed']= 0
obj_cabine['speed']= 0
obj['last_time'] = scene.objects['System']['time']
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
# Version Grove
if scene.objects['System']['variant'] == 1:
if scene.objects['Moteur']['pin_direction'] is not None:
if scene.objects['Moteur']['pin_speed'] is not None:
scene.objects['Moteur']['pin_direction'].write(0)
scene.objects['Moteur']['pin_speed'].write(0)
# Version AutoProg
if scene.objects['System']['variant'] == 2:
if scene.objects['Moteur']['pin_down'] is not None:
if scene.objects['Moteur']['pin_up'] is not None:
scene.objects['Moteur']['pin_up'].write(0)
scene.objects['Moteur']['pin_down'].write(0)
###############################################################################
# Capteurs
###############################################################################
##
# Etat capteur présence cabine niveau 0
##
def pc_0 (cont):
if scene.objects['System']['run'] :
obj = cont.owner
# Arduino -> Modele 3D
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
if obj['pin'].read()==True and obj['activated_real'] == False :
obj['activated_real'] = True
if obj['pin'].read()==False and obj['activated_real'] == True :
obj['activated_real'] = False
# Etat capteur en fonction de la position de la cabine : localPosition.z entre -40 et -42
if scene.objects['Cabine'].localPosition.z <-40 and scene.objects['Cabine'].localPosition.z >-42 and obj['activated'] == False and obj['prior']:
obj['activated'] = True
if (scene.objects['Cabine'].localPosition.z > -40 or scene.objects['Cabine'].localPosition.z <-42) and obj['activated'] == True and obj['prior']:
obj['activated'] = False
# Forçage par clic
if obj['click'] == True and obj['prior']:
obj['activated'] = True
# Couleurs
twin.cycle_sensitive_color(obj)
##
# Etat capteur présence cabine niveau 1
##
def pc_1 (cont):
if scene.objects['System']['run'] :
obj = cont.owner
# Arduino -> Modele 3D
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
if obj['pin'].read()==True and obj['activated_real'] == False :
obj['activated_real'] = True
if obj['pin'].read()==False and obj['activated_real'] == True :
obj['activated_real'] = False
# Etat capteur en fonction de la position de la cabine : localPosition.z entre 0 et -2
if scene.objects['Cabine'].localPosition.z <0 and scene.objects['Cabine'].localPosition.z >-2 and obj['activated'] == False and obj['prior']:
obj['activated'] = True
if (scene.objects['Cabine'].localPosition.z > 0 or scene.objects['Cabine'].localPosition.z <-2) and obj['activated'] == True and obj['prior']:
obj['activated'] = False
# Forçage par clic
if obj['click'] == True and obj['prior']:
obj['activated'] = True
# Couleurs
twin.cycle_sensitive_color(obj)
###############################################################################
# Système
###############################################################################
##
# Initialisation du système
# # Le moteur est géré en continue.
##
def system_init ():
system_reset()
##
# Réinitialisation du système
##
def system_reset ():
# Mise en place de la variante
runpy.run_path(scene.objects['System']['script'], run_name='init')
# Entrées à l'état initial
objs= ['Bp niveau 0', 'Bp niveau 1', 'Microrupteur niveau 0','Microrupteur niveau 1']
for obj in objs:
scene.objects[obj]['activated']=False
scene.objects[obj]['activated_real']=False
# Voyants aux états initiaux
scene.objects['Led niveau 0']['activated']=False
scene.objects['Led niveau 1']['activated']=False
scene.objects['Led niveau 0'].setVisible(True,False)
scene.objects['Led niveau 0-on'].setVisible(False,False)
scene.objects['Led niveau 1'].setVisible(True,False)
scene.objects['Led niveau 1-on'].setVisible(False,False)
# Cabine
scene.objects['Cabine']['z']=0
scene.objects['Cabine']['speed']=0
scene.objects['Cabine']['step']=0
scene.objects['Cabine'].worldPosition.x = scene.objects['Cabine']['init_lx']-scene.objects['System']['init_lx']+scene.objects['System'].worldPosition.x
scene.objects['Cabine'].worldPosition.y = scene.objects['Cabine']['init_ly']-scene.objects['System']['init_ly']+scene.objects['System'].worldPosition.y
scene.objects['Cabine'].worldPosition.z = scene.objects['Cabine']['init_lz']-scene.objects['System']['init_lz']+scene.objects['System'].worldPosition.z
scene.objects['Contrepoids'].worldPosition.x = scene.objects['Contrepoids']['init_lx']-scene.objects['System']['init_lx']+scene.objects['System'].worldPosition.x
scene.objects['Contrepoids'].worldPosition.y = scene.objects['Contrepoids']['init_ly']-scene.objects['System']['init_ly']+scene.objects['System'].worldPosition.y
scene.objects['Contrepoids'].worldPosition.z = scene.objects['Contrepoids']['init_lz']-scene.objects['System']['init_lz']+scene.objects['System'].worldPosition.z
# Moteur
scene.objects['Moteur']['up']=False
scene.objects['Moteur']['down']=False
scene.objects['Moteur']['alpha']=0
scene.objects['Moteur']['speed']=0
scene.objects['Moteur']['speed_setting']=31.4 # Vitesse du moteur numérique : 31,4 rad /s ( 5 tr / s )
scene.objects['Moteur']['speed_real_setting']=255 # Vitesse du moteur réel sur maquette Grove
scene.objects['Moteur']['step']=0
# Priorités activées
objs= ['Bp niveau 0', 'Bp niveau 1', 'Microrupteur niveau 0','Microrupteur niveau 1', 'Led niveau 0', 'Led niveau 1', 'Moteur']
for obj in objs:
scene.objects[obj]['prior']=True
scene.objects[obj]['prior_real']=True