jumeaux-numeriques/portail_coulissant/porcou.py

477 lines
21 KiB
Python

import bge # Bibliothèque Blender Game Engine (UPBGE)
import twin # Bibliothèque de l'environnement 3D des jumeaux numériques
import math
import time
import runpy # Exécution de script Python légère (sans import)
###############################################################################
# porcou.py
# @title: Commandes pour le portail coulissant
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2020-2024 Philippe Roy
# @license: GNU GPL
###############################################################################
# Récupérer la scène UPBGE
scene = bge.logic.getCurrentScene()
# Configuration des variables publiques
# 'nom_variable' :
# - Objet 3D : [nom de l'objet 3D, propriété associée à la valeur (activate ou activated_real), type de la valeur ('d' (digital, binary), 'a', (analog) ou 'n' (numeric)), échelle (1 si ommis)]
# - Configuration de la broche : [nom de la propriété stockant l'object broche (pyfirmata),
# type de broche par défaut : 'd' (digital), 'a' (analog) ou 'p' (pwm)), mode de la broche par défaut : 'i' (input) ou 'o' (output)]
# - Configuration du graphique : ['marque', 'type de ligne', 'couleur', linewidth]] (Codification de Matplotlib)
#
# 'nom_variable_r' est la valeur réelle de la variable (valeur numérique) 'nom_variable' issue du jumelage numérique.
# Dans ce cas, il n'y a pas configuration de broche car elle est présente sur la variable 'nom_variable'.
# Ce distinguo ne concerne que les entrées, car les sorties sont pilotées par le numérique.
#
# 'mot_s' et 'mot_v' ne concernent que la maquette Grove (variante 1)
public_vars = {
't' : [['System','time','a'],[],[]],
'bp_ext' : [['Bp cote rue','activated','d'],['pin','d','i'],['.','-','green',1]],
'bp_ext_r' : [['Bp cote rue','activated_real','d'],[],['.','--','green',1]],
'bp_int' : [['Bp cote cour','activated','d'],['pin','d','i'],['.','-','darkgreen',1]],
'bp_int_r' : [['Bp cote cour','activated_real','d'],[],['.','--','darkgreen',1]],
'fdc_o' : [['Microrupteur fdc ouvert','activated','d'],['pin','d','i'],['.','-','orange',1]],
'fdc_o_r' : [['Microrupteur fdc ouvert','activated_real','d'],[],['.','--','orange',1]],
'fdc_f' : [['Microrupteur fdc ferme','activated','d'],['pin','d','i'],['.','-','darkorange',1]],
'fdc_f_r' : [['Microrupteur fdc ferme','activated_real','d'],[],['.','--','darkorange',1]],
'mot_o' : [['Moteur','open','d'],['pin_open','d','o'],['.','-','violet',1]],
'mot_f' : [['Moteur','close','d'],['pin_close','d','o'],['.','-','darkviolet',1]],
'mot_s' : [['Moteur','direction','d'],['pin_direction','d','o'],['.','-','blue',1]],
'mot_v' : [['Moteur','speed_real','a'],['pin_speed','p','o'],['.','-','darkblue',1]],
'mot_angle' : [['Moteur','alpha','a'],[],['.','-','blue',1]],
'mot_vitesse' : [['Moteur','speed','a'],[],['.','-','darkblue',1]],
'mot_pas' : [['Moteur','step','a'],[],[]],
'portail_x' : [['Portail','x','a'],[],['.','-','turquoise',1]],
'portail_vitesse' : [['Portail','speed','a'],[],['.','-','darkturquoise',1]],
'portail_pas' : [['Portail','step','a'],[],[]],
'gyr' : [['Led','activated','d'],['pin','d','o'],['.','-','gold',1]],
'ir_emet' : [['Emetteur IR','activated','d'],['pin','d','o'],['.','-','red',1]],
'ir_recep' : [['Recepteur IR','activated','d'],['pin','d','i'],['.','-','darkred',1]],
'ir_recep_r' : [['Recepteur IR','activated_real','d'],[],['.','--','darkred',1]]}
# Couleurs
color_passive = (0.800, 0.005, 0.315,1) # bouton non activable : magenta
color_active = (0.799, 0.130, 0.063,1) # bouton activable : orange
color_hl = (0.8, 0.8, 0.8, 1) # bouton focus : blanc
color_activated = (0.8, 0.619, 0.021, 1) # bouton activé numériquement uniquement : jaune
color_activated_real = (0.799, 0.031, 0.038, 1) # élément activé physiquement uniquement : rouge (hors clic)
color_activated_dbl = (0.246, 0.687, 0.078, 1) # élément activé physiquement et numériquement : vert clair
# Constantes UPBGE
JUST_ACTIVATED = bge.logic.KX_INPUT_JUST_ACTIVATED
JUST_RELEASED = bge.logic.KX_INPUT_JUST_RELEASED
ACTIVATE = bge.logic.KX_INPUT_ACTIVE
# JUST_DEACTIVATED = bge.logic.KX_SENSOR_JUST_DEACTIVATED
###############################################################################
# Initialisation de la scène
###############################################################################
def init(cont):
if cont.sensors['Init'].positive == False: # 1 seule fois
return False
twin.manip_init() # Manipulation du modèle 3D
twin.cmd_init() # Commandes
# Brochage
for pin in public_vars:
if public_vars[pin][1] != []:
scene.objects[public_vars[pin][0][0]][public_vars[pin][1][0]] = None
# Mémorisation de la position et orientation des composants du système
scene.objects['Portail']['init_lx']=scene.objects['Portail'].worldPosition.x
scene.objects['Portail']['init_ly']=scene.objects['Portail'].worldPosition.y
scene.objects['Portail']['init_lz']=scene.objects['Portail'].worldPosition.z
scene.objects['Engrenage']['init_rx']=scene.objects['Engrenage'].worldOrientation.to_euler().x
scene.objects['Engrenage']['init_ry']=scene.objects['Engrenage'].worldOrientation.to_euler().y
scene.objects['Engrenage']['init_rz']=scene.objects['Engrenage'].worldOrientation.to_euler().z
# Groupe de focus pour les actionneurs
twin.cycle_def_focusgroup([["Moteur","blue"] ,
["Reducteur","blue"],
["Pattes moteur","blue"],
["Engrenage","blue-dark"],
["Engrennage patte","blue-dark"],
["Engrenage vis1","grey"],
["Engrenage vis2","grey"],
["Engrenage vis3","grey"]], "Moteur : mot_o(True | False), mot_f(True | False)")
twin.cycle_def_focusgroup([["Led", "led_yellow"]], "Gyrophare : gyr(True | False)")
# Focus sur les boutons et capteurs
scene.objects['Bp cote cour']['description']="Bouton poussoir coté cour : bp_int()"
scene.objects['Bp cote rue']['description']="Bouton poussoir coté rue : bp_ext()"
scene.objects['Microrupteur fdc ouvert']['description']="Capteur fin de course portail ouvert : fdc_o()"
scene.objects['Microrupteur fdc ferme']['description']="Capteur fin de course portail fermé : fdc_f()"
scene.objects['Emetteur IR']['description']="Capteur barrage émetteur IR : ir_emet (True | False)"
scene.objects['Recepteur IR']['description']="Capteur barrage recepteur IR (absence d\"obstacle) : ir_recep()"
system_init() # Initialisation du système
def get_public_vars():
return public_vars
###############################################################################
# Actionneurs
###############################################################################
##
# Pour la commande du moteur de la variante 1 version Grove , le brochage du shield moteur CC 4 x 1,2 A DRI0039 (DFROBOT) est fixe,
# il doit respecter le tableau suivant :
# Motor Direction(Forward/Backward) Speed Speed range
# M1 4 LOW HIGH 3 0-255
# M2 12 HIGH LOW 11 0-255
# M3 8 LOW HIGH 5 0-255
# M4 7 HIGH LOW 6 0-255
##
##
# Moteur et portail
##
def mot (cont):
if scene.objects['System']['run']:
fps = 60 # frame per second
obj = cont.owner
obj_engrenage = scene.objects['Engrenage']
obj_portail = scene.objects['Portail']
# Réducteur
r = 1/100 # Rapport de réduction
# Crémaillaire
pas_dent = 7.85 # 7.85 mm soit 2.35 m (bender)
z = 14 # nb dents
obj['step']= obj['speed_setting'] / fps # Vitesse du moteur numérique : 1,3 rad /s par défaut
obj_engrenage['step']= obj['step'] * r
obj_portail['step'] = obj_engrenage['step'] * (pas_dent * z)/(2*math.pi)
# Ouvrir
if obj['open']:
# Physique du modèle 3D
if obj['prior']:
obj_engrenage.applyRotation((0, 0, -obj_engrenage['step']), True)
obj['alpha']= obj['alpha']-obj['step']
if scene.objects['System']['time'] != obj['last_time']:
obj['speed']= (-obj['step'])/(scene.objects['System']['time']-obj['last_time'])
obj_portail.applyMovement((-obj_portail['step'], 0, 0), True)
obj_portail['x']= obj_portail['x']-obj_portail['step'] # Echelle pris en compte par le scale de 'System' : 0,3)
if scene.objects['System']['time'] != obj['last_time']:
obj_portail['speed']= -obj_portail['step']/(scene.objects['System']['time']-obj['last_time'])
obj['last_time'] = scene.objects['System']['time']
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
# Version Grove
if scene.objects['System']['variant'] == 1:
if scene.objects['Moteur']['pin_direction'] is not None:
if scene.objects['Moteur']['pin_speed'] is not None:
scene.objects['Moteur']['pin_direction'].write(1)
scene.objects['Moteur']['pin_speed'].write(scene.objects['Moteur']['speed_real_setting']/255)
# Version AutoProg
if scene.objects['System']['variant'] == 2:
if scene.objects['Moteur']['pin_open'] is not None :
if scene.objects['Moteur']['pin_close'] is not None:
scene.objects['Moteur']['pin_close'].write(0)
scene.objects['Moteur']['pin_open'].write(1)
# Fermer
# else: # Pas de priorité
if obj['close']:
# Physique du modèle 3D
if obj['prior']:
obj_engrenage.applyRotation((0, 0, obj_engrenage['step']), True)
obj['alpha']= obj['alpha']+obj['step']
if scene.objects['System']['time'] != obj['last_time']:
obj['speed']= (obj['step'])/(scene.objects['System']['time']-obj['last_time'])
obj_portail.applyMovement((obj_portail['step'], 0, 0), True)
obj_portail['x']= obj_portail['x']+obj_portail['step'] # Echelle pris en compte par le scale de 'System' : 0,3)
if scene.objects['System']['time'] != obj['last_time']:
obj_portail['speed']= obj_portail['step']/(scene.objects['System']['time']-obj['last_time'])
obj['last_time'] = scene.objects['System']['time']
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
# Version Grove
if scene.objects['System']['variant'] == 1:
if scene.objects['Moteur']['pin_direction'] is not None:
if scene.objects['Moteur']['pin_speed'] is not None:
scene.objects['Moteur']['pin_direction'].write(0)
scene.objects['Moteur']['pin_speed'].write(scene.objects['Moteur']['speed_real_setting']/255)
# Version AutoProg
if scene.objects['System']['variant'] == 2:
if scene.objects['Moteur']['pin_close'] is not None:
if scene.objects['Moteur']['pin_open'] is not None:
scene.objects['Moteur']['pin_open'].write(0)
scene.objects['Moteur']['pin_close'].write(1)
# Arrêrer
if obj['open']== False and obj['close'] == False and obj['prior']:
# Physique du modèle 3D
if obj['prior']:
obj['speed']= 0
obj_portail['speed']= 0
obj['last_time'] = scene.objects['System']['time']
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
# Version Grove
if scene.objects['System']['variant'] == 1:
if scene.objects['Moteur']['pin_direction'] is not None:
if scene.objects['Moteur']['pin_speed'] is not None:
scene.objects['Moteur']['pin_direction'].write(0)
scene.objects['Moteur']['pin_speed'].write(0)
# Version AutoProg
if scene.objects['System']['variant'] == 2:
if scene.objects['Moteur']['pin_close'] is not None:
if scene.objects['Moteur']['pin_open'] is not None:
scene.objects['Moteur']['pin_open'].write(0)
scene.objects['Moteur']['pin_close'].write(0)
###############################################################################
# Capteurs fin de course
###############################################################################
##
# Etat capteur fin de course portail ouvert
##
def fdc_o (cont):
if scene.objects['System']['run'] :
obj = cont.owner
# Arduino -> Modele 3D
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
if obj['pin'].read()==True and obj['activated_real'] == False :
obj['activated_real'] = True
if obj['pin'].read()==False and obj['activated_real'] == True :
obj['activated_real'] = False
# Etat capteur en fonction de la grille : worldPosition.x : 0 -> 65.5 et localPosition.x : 0 -> 218
if scene.objects['Portail'].localPosition.x <= 0 and obj['activated'] == False and obj['prior']:
obj['activated'] = True
if scene.objects['Portail'].localPosition.x > 0 and obj['activated'] == True and obj['prior']:
obj['activated'] = False
# Forçage par clic
if obj['click'] == True and obj['prior']:
obj['activated'] = True
# Couleurs
twin.cycle_sensitive_color(obj)
##
# Etat capteur fin de course portail fermé
##
def fdc_f (cont):
if scene.objects['System']['run'] :
obj = cont.owner
# Arduino -> Modele 3D
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
if obj['pin'].read()==True and obj['activated_real'] == False :
obj['activated_real'] = True
if obj['pin'].read()==False and obj['activated_real'] == True :
obj['activated_real'] = False
# Etat capteur en fonction de la grille : worldPosition.x : 0 -> 65.5 et localPosition.x : 0 -> 218
if scene.objects['Portail'].localPosition.x >= 218 and obj['activated'] == False and obj['prior']:
obj['activated'] = True
if scene.objects['Portail'].localPosition.x < 218 and obj['activated'] == True and obj['prior']:
obj['activated'] = False
# Forçage par clic
if obj['click'] == True and obj['prior']:
obj['activated'] = True
# Couleurs
twin.cycle_sensitive_color(obj)
###############################################################################
# Capteur barrage
###############################################################################
##
# Emetteur IR
##
def ir_emet (cont):
if scene.objects['System']['run'] :
obj = cont.owner
obj_off = scene.objects['Emetteur IR Led']
obj_on = scene.objects['Emetteur IR Led-on']
# Gestion de la led (Physique du modèle 3D)
if obj['activated']:
if obj_on.visible == False and obj['prior']:
obj_on.setVisible(True,False)
obj_off.setVisible(False,False)
else:
if obj_on.visible == True and obj['prior']:
obj_on.setVisible(False,False)
obj_off.setVisible(True,False)
# Mouse over
if obj['mo'] == True and obj['click'] == False and obj.color !=color_hl:
obj.color =color_hl
return
# Activation
if obj['activated']:
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
obj['pin'].write(1)
# Désactivation
if obj['activated']==False:
# Modele 3D -> Arduino
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
obj['pin'].write(0)
# Forçage par clic
if obj['click'] == True and obj['prior']:
obj['activated'] = True
# Couleurs
# twin.cycle_sensitive_color(obj)
if obj['activated'] == True and obj.color !=color_activated:
obj.color =color_activated
elif obj['activated'] == False and obj.color !=color_active:
obj.color =color_active
##
# Récepteur IR
##
def ir_recep (cont):
if scene.objects['System']['run'] :
obj = cont.owner
# Mouse over
if obj['mo'] == True and obj['click'] == False and obj.color !=color_hl:
obj.color =color_hl
return
# Lien avec l'émetteur
if obj['click'] == False:
if scene.objects['Emetteur IR']['activated'] == False and obj['active']:
obj['active'] = False
obj['actived'] = False
if scene.objects['Emetteur IR']['activated'] and obj['active'] == False:
obj['active'] = True
obj['actived'] = True
# Passif
if obj['active'] == False and obj.color !=color_passive:
obj.color =color_passive
return
# Arduino -> Modele 3D
if scene.objects['System']['twins'] and obj['prior_real']:
if obj['pin'] is not None:
if obj['pin'].read()==True and obj['activated_real'] == False :
obj['activated_real'] = True
if obj['pin'].read()==False and obj['activated_real'] == True :
obj['activated_real'] = False
# Forçage par clic
if obj['click'] == True and obj['prior']:
obj['activated'] = False
# Couleurs
twin.cycle_sensitive_color(obj)
###############################################################################
# Système
###############################################################################
##
# Initialisation du système
##
def system_init ():
system_reset()
##
# Réinitialisation du système
##
def system_reset ():
# Mise en place de la variante
runpy.run_path(scene.objects['System']['script'], run_name='init')
# Entrées à l'état initial
objs= ['Microrupteur fdc ouvert', 'Microrupteur fdc ferme', 'Bp cote cour','Bp cote rue']
for obj in objs:
scene.objects[obj]['activated']=False
scene.objects[obj]['activated_real']=False
# Grille à l'état initial
scene.objects['Portail']['x']=0
scene.objects['Portail']['speed']=0
scene.objects['Portail']['step']=0
scene.objects['Portail'].worldPosition.x = scene.objects['Portail']['init_lx']-scene.objects['System']['init_lx']+scene.objects['System'].worldPosition.x
scene.objects['Portail'].worldPosition.y = scene.objects['Portail']['init_ly']-scene.objects['System']['init_ly']+scene.objects['System'].worldPosition.y
scene.objects['Portail'].worldPosition.z = scene.objects['Portail']['init_lz']-scene.objects['System']['init_lz']+scene.objects['System'].worldPosition.z
# Moteur à l'état initial
scene.objects['Moteur']['open']=False
scene.objects['Moteur']['close']=False
scene.objects['Moteur']['alpha']=0
scene.objects['Moteur']['speed']=0
scene.objects['Moteur']['speed_setting']=125.6 # Vitesse du moteur numérique : 125.6 rad /s ( 20 tr / s )
scene.objects['Moteur']['speed_real_setting']=255 # Vitesse du moteur réel sur maquette Grove
scene.objects['Moteur']['step']=0
rres=0.001 # Resolution rotation
obj1=scene.objects['Engrenage']
while (obj1.localOrientation.to_euler().y) > 1.1*rres :
obj1.applyRotation((0, 0, -rres), True)
while (obj1.localOrientation.to_euler().y) < -1.1*rres :
obj1.applyRotation((0, 0, rres), True)
# Gyrophare à l'état initial
scene.objects['Led']['activated']=False
scene.objects['Led'].setVisible(True,False)
scene.objects['Led-on'].setVisible(False,False)
# Capteur barrage IR
scene.objects['Emetteur IR'].color = color_active
scene.objects['Emetteur IR']['activated'] =False
scene.objects['Emetteur IR Led'].setVisible(True,False)
scene.objects['Emetteur IR Led-on'].setVisible(False,False)
scene.objects['Recepteur IR'].color = color_passive
scene.objects['Recepteur IR']['active'] =False
scene.objects['Recepteur IR']['activated'] =True # Absence d'obstacle -> True, présence d'obstacle -> False
scene.objects['Recepteur IR']['activated_real'] =True # Absence d'obstacle -> True, présence d'obstacle -> False
# Priorités activées
objs= ['Led', 'Moteur', 'Microrupteur fdc ouvert', 'Microrupteur fdc ferme',
'Bp cote cour','Bp cote rue', 'Emetteur IR', 'Recepteur IR']
for obj in objs:
scene.objects[obj]['prior']=True
scene.objects[obj]['prior_real']=True