Ajout de la balise, des sons

This commit is contained in:
Philippe Roy 2022-08-26 01:58:49 +02:00
parent 18cdd236a0
commit ea4db7f0fc
15 changed files with 173 additions and 1441 deletions

View File

@ -0,0 +1,32 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
id="svg8"
version="1.1">
<metadata
id="metadata12">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<defs
id="defs2" />
<g
transform="translate(-524.9369,-124.64255)"
id="g6">
<path
style="fill:#000000;stroke:none"
id="path4"
d="m 565,160 h 4.95 v 4 H 567 v 24 h 2.95 v 4 H 565 c -0.56667,0 -1.05,-0.18333 -1.45,-0.55 -0.36667,-0.4 -0.55,-0.88333 -0.55,-1.45 v -27.95 c 0,-0.56667 0.18333,-1.05 0.55,-1.45 0.4,-0.4 0.88333,-0.6 1.45,-0.6 m 13.4,17.45 c 0.4,-0.4 0.6,-0.88333 0.6,-1.45 0,-0.53333 -0.2,-1 -0.6,-1.4 h 0.05 c -0.4,-0.4 -0.88333,-0.6 -1.45,-0.6 -0.53333,0 -1,0.2 -1.4,0.6 -0.4,0.4 -0.6,0.86667 -0.6,1.4 0,0.56667 0.2,1.05 0.6,1.45 0.36667,0.36667 0.83333,0.55 1.4,0.55 0.56667,0 1.03333,-0.18333 1.4,-0.55 m -5.85,-14 c 0.4,-0.46667 0.86667,-0.75 1.4,-0.85 L 588,159.9 v 30 l -14.05,2.7 c -0.53333,0.1 -1,0 -1.4,-0.3 -0.36667,-0.33333 -0.55,-0.78333 -0.55,-1.35 V 165 c 0,-0.56667 0.18333,-1.08333 0.55,-1.55" />
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

BIN
asset/sounds/rp_click.ogg Normal file

Binary file not shown.

BIN
asset/sounds/rp_close.ogg Normal file

Binary file not shown.

BIN
asset/sounds/rp_grid.ogg Normal file

Binary file not shown.

BIN
asset/sounds/rp_open.ogg Normal file

Binary file not shown.

BIN
ropy-08.blend Normal file

Binary file not shown.

View File

@ -1,42 +0,0 @@
import bge # Bibliothèque Blender Game Engine (BGE)
import math # Bibliothèque Math
from ropy_lib import * # Bibliothèque Ropy
import ropy_init # Initialisation du robot Ropy
###############################################################################
# ropy_cmd.py
# @title: Commandes du Robot Ropy
# @project: Blender-EduTech
###############################################################################
def main():
###############################################################################
# Récupérer les objets du moteur 3D (BGE) << NE PAS MODIFIER CETTE SECTION >>
###############################################################################
scene = bge.logic.getCurrentScene() # Récupérer la scène 3D
cont = bge.logic.getCurrentController() # Récupérer le contrôleur BGE
obj = cont.owner # Récupérer le robot de la scène 3D
obj.visible=False
###############################################################################
# Initialisation du niveau :
# Niveau 0 : Vide
# Niveau 1 : Les premiers pas de Ropy
# Niveau 2 : Sécuriser Ropy
# Niveau 3 : Partir au bout du monde
# Niveau 4 : Faire face à l'inconnu
# Niveau 5 : Se rendre utile
###############################################################################
rp_niveau (1) # Saisir le niveau (de 0 à 5)
ropy_init.main() # Initialisation de la scène 3D
###############################################################################
# Fonctions
###############################################################################
###############################################################################
# Commandes
###############################################################################

View File

@ -1,161 +0,0 @@
import bge # Bibliothèque Blender Game Engine (BGE)
import random
from ropy_lib import *
###############################################################################
# ropy_init.py
# @title: Initialisation du Robot Ropy
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2020-2022 Philippe Roy
# @license: GNU GPL
#
# Initialisation du Robot
#
# Ropy est destiné à la découverte de la programmation procédurale et du language Python.
# A travers plusieurs challenges, donc de manière graduée, les élèves vont apprendre à manipuler les structures algorithmiques de base et à les coder en Python.
#
###############################################################################
def main():
###############################################################################
# Récupérer les objets du moteur 3D (BGE)
###############################################################################
scene = bge.logic.getCurrentScene() # Récupérer la scène 3D
cont = bge.logic.getCurrentController() # Récupérer le contrô´leur BGE
obj = cont.owner # Récupérer le robot de la scène 3D
###############################################################################
# Initialisation
###############################################################################
# niveau = obj['level']
# print ("")
# print ("Construction du niveau ...")
# # Position initiale du robot
# rp_init_position() # zone de 10x10 -> par défaut, au centre case (X,Y) : 5,5
# rp_orientation("est") # il y a nord, sud, est, ouest
# obj['mvts'] = "" # Liste des mouvements
# obj['mvt_i'] = 0 # Liste des mouvements
# # obj.visible=False
# # Enlever les murs et les marques
# def_murs=[]
# rp_enlever_marques()
###############################################################################
# Construction du niveau
# Zone de 10x10
#
# Murs :
# Longueur des murs : fixe d' une case
# Position des murs : liste imbriquée : [[mur1_x1,mur1_y1,mur1_x2,mur1_y2],[mur2_x1,mur2_y1,mur2_x2,mur2_y2], ...]
###############################################################################
niveau = obj['level']
print ("")
print ("Construction du niveau ...")
# Enlever les murs et les marques
def_murs=[]
rp_enlever_marques()
rp_orientation("est") # il y a nord, sud, est, ouest
# niveau 0 : Vide (bac à sable élève)
if niveau==0:
def_murs=[]
obj['x_init'] = 5
obj['y_init'] = 5
# niveau 10 : Bac à sable enseignant
if niveau==10:
# Murs de test
def_murs=[[4,3, 5,3],[4,3, 4,4]]
# def_murs=[[4,3, 4,4]]
# def_murs=[[4,3, 5,3]]
rp_construire_murs(def_murs)
obj['x_init'] = 5
obj['y_init'] = 5
###############################################################################
# niveau 1 : Mission 1 : Les premiers pas de Ropy
###############################################################################
if niveau==1:
# Petite maison
def_murs=[
[4,3, 4,4],[4,4, 4,5],[4,5, 4,6],
[4,6, 5,6],[5,6, 6,6],[6,6, 7,6],
[7,5, 7,6],[7,4, 7,5],[7,3, 7,4],
[4,3, 5,3], [6,3, 7,3]]
rp_construire_murs(def_murs)
rp_marquer_objectif (7,2)
obj['x_init'] = 5
obj['y_init'] = 5
###############################################################################
# Mission 2 : Sécuriser Ropy
###############################################################################
if niveau==2:
# Petite maison
def_murs=[
[4,3, 4,4],[4,4, 4,5],[4,5, 4,6],
[4,6, 5,6],[5,6, 6,6],[6,6, 7,6],
[7,5, 7,6],[7,4, 7,5],[7,3, 7,4],
[4,3, 5,3], [6,3, 7,3]]
rp_construire_murs(def_murs)
rp_marquer_objectif (7,2)
obj['x_init'] = 5
obj['y_init'] = 5
###############################################################################
# Mission 3 : Partir au bout du monde
###############################################################################
if niveau==3:
def_murs=[]
rp_marquer_objectif (10,10)
obj['x_init'] = 5
obj['y_init'] = 4
###############################################################################
# Mission 4 : Faire face à l'inconnu
###############################################################################
if niveau==4:
def_murs=[]
rp_marquer_objectif (10,10)
obj['x_init'] = random.randint(1,10)
obj['y_init'] = random.randint(1,10)
###############################################################################
# Mission 5 : Se rendre utile
###############################################################################
if niveau==5:
for i in range (10):
rp_marquer_objectif (random.randint(1,10),random.randint(1,10)) # Position aléatoire des objectifs
def_murs=[]
obj['x_init'] = random.randint(1,10)
obj['y_init'] = random.randint(1,10)
###############################################################################
# Position initiale du robot
###############################################################################
rp_init_position()
# rp_orientation("est") # il y a nord, sud, est, ouest
obj['mvts'] = "" # Liste des mouvements
obj['mvt_i'] = 0 # Liste des mouvements
# obj.visible=False

View File

@ -1,373 +0,0 @@
import bge # Bibliothèque Blender Game Engine (BGE)
import math
import time
###############################################################################
# ropy_lib.py
# @title: Bibliothèque du Robot Ropy (rp_*)
# @project: Ropy du projet Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2020-2022 Philippe Roy
# @license: GNU GPL
#
# Bibliothèque des actions du robot
# Bibliothèque pour la construction des murs
#
# Ropy est destiné à la découverte de la programmation procédurale et du language Python.
# A travers plusieurs challenges, donc de manière graduée, les élèves vont apprendre à manipuler les structures algorithmiques de base et à les coder en Python.
#
###############################################################################
# Récupérer l'objet robot
cont = bge.logic.getCurrentController()
obj = cont.owner
scene = bge.logic.getCurrentScene()
nb_objets_fixes = len(scene.objects)
# print ("Nombre d'objets fixes de la scene : ", nb_objets_fixes)
print("Objets de la scene : ", scene.objects)
# Configuration des mouvements
pas=3 # Pas linéaire
pas_rot=math.pi/2 # Pas angulaire
###############################################################################
# Initialisation de la position du robot
###############################################################################
# Position initiale du robot
def rp_init_position():
x = obj['x_init']
y = obj['y_init']
obj.worldPosition.x = -((y-4.5)*3)+3
obj.worldPosition.y = (x-5.5)*3
obj.worldPosition.z = 1.25
print('\x1b[6;30;47m', "Placer le robot case (X,Y) :", x, y, '\x1b[0m')
#MODIF
obj['x'],obj['y'] = x,y
obj['d'] = 1 #est
# Pile des mouvements
# obj['mvts'] = ""
# obj['mvt_i'] = 0
# Répérer le robot détruit
if obj['detruit']:
start = 300
end = start+75
layer = 0
priority = 1
blendin = 1.0
mode = bge.logic.KX_ACTION_MODE_PLAY
layerWeight = 0.0
ipoFlags = 0
speed = 3
scene.objects['Armature'].playAction('ArmatureAction.Saut.001', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Body'].playAction('BodyAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Eyes_glass'].playAction('Eyes_glassAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Mouth'].playAction('MouthAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Jetpack'].playAction('JetpackAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee1'].playAction('poignee1Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee2'].playAction('poignee2Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee3'].playAction('poignee3Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee4'].playAction('poignee4Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
obj['detruit']=False
###############################################################################
# Affichage
###############################################################################
#Afficher position
def rp_print_position():
print('\x1b[6;30;42m', "Position case (X,Y) : ", round(-obj.worldPosition.x/3+5.5), round(obj.worldPosition.y/3+5.5), '\x1b[0m')
###############################################################################
# Moteur physique
# Détection des collisions aves les murs
###############################################################################
# Détection d'une collision
# rpcore_ : fonction bas niveau
def rpcore_detect_mur(debug_flag=False):
# Vecteur du mouvement
#MODIF
init_x,init_y = obj['x'],obj['y']
final_x,final_y = init_x,init_y
direction = obj['d']
if direction == 0: #nord
final_y+=1
elif direction == 1: #est
final_x+=1
elif direction == 2: #sud
final_y-=1
elif direction == 3: #ouest
final_x-=1
#init_x = round(obj.worldPosition.y/3+5.5)
#init_y = round(-obj.worldPosition.x/3+5.5)
#obj.applyMovement((0, -pas, 0), True)
#final_x = round(obj.worldPosition.y/3+5.5)
#final_y = round(-obj.worldPosition.x/3+5.5)
#obj.applyMovement((0, pas, 0), True)
# Calcul du centre du mouvement
mov_xc =init_x + (final_x - init_x)/2-0.5
mov_yc =init_y + (final_y - init_y)/2-0.5
if debug_flag:
print('\x1b[6;30;47m', "Mouvement (X_init,Y_init,X_final,Y_final) : ", init_x,init_y, final_x,final_y, '\x1b[0m')
print('\x1b[6;30;47m', "Mouvement (xc,yc) : ", mov_xc, mov_yc, '\x1b[0m')
# Test sur les murs exterieurs (10x10)
if ((final_x <1) or (final_y <1) or (final_x >10) or (final_y >10)):
if debug_flag:
print ("Détection de mur : mur détecté")
return True
# Test sur les murs intéreurs
else:
i=0
for mur in scene.objects:
i +=1
if mur.name=="Mur":
# Mur en X : calcul du centre du mur
if (round(mur.worldOrientation.to_euler().z,2) == round(math.pi,2)) or (round(mur.worldOrientation.to_euler().z,2) == round(-math.pi,2)):
mur_xc =mur['x1']
mur_yc =mur['y1']+0.5
# Mur en Y : calcul du centre du mur
elif (round(mur.worldOrientation.to_euler().z,2) == round(math.pi/2,2)) or (round(mur.worldOrientation.to_euler().z,2) == round(-math.pi/2,2)):
mur_xc =mur['x1']+0.5
mur_yc =mur['y1']
# Trace de debug
if debug_flag:
print('\x1b[6;30;47m', "Mur",mur['murId'],"X (x1,y1,x2,y2) : ", mur['x1'], mur['y1'], mur['x2'], mur['y2'], '\x1b[0m')
print('\x1b[6;30;47m', "Mur",mur['murId'],"Y (xc,yc) : ", mur_xc, mur_yc, '\x1b[0m')
# Même centre -> mouvement pas possible
if (mov_xc == mur_xc) and(mov_yc == mur_yc):
if debug_flag:
print ("Détection de mur : mur détecté")
return True
# Mouvement possible
if debug_flag:
print ("Détection de mur : pas de mur")
return False
# Fonction pour l'élève
def rp_detect_mur():
if rpcore_detect_mur() == True:
print('\x1b[6;30;45m', "Détection de mur : mur devant ! : Position case (X,Y): ", round(-obj.worldPosition.x/3+5.5), round(obj.worldPosition.y/3+5.5), '\x1b[0m')
return True
else:
print('\x1b[6;30;45m', "Détection de mur : voie libre : Position case (X,Y):", round(-obj.worldPosition.x/3+5.5), round(obj.worldPosition.y/3+5.5), '\x1b[0m')
return False
###############################################################################
# Mouvements
###############################################################################
# Avancer
def rp_avancer(debug_flag=False):
obj.visible=False
#MODIF
if obj['detruit']!=True and obj['d'] >= 0:
# Vecteur du mouvement
#MODIF
init_x,init_y = obj['x'],obj['y']
final_x,final_y = init_x,init_y
direction = obj['d']
if direction == 0: #nord
final_y+=1
elif direction == 1: #est
final_x+=1
elif direction == 2: #sud
final_y-=1
elif direction == 3: #ouest
final_x-=1
#init_x = round(obj.worldPosition.y/3+5.5)
#init_y = round(-obj.worldPosition.x/3+5.5)
#obj.applyMovement((0, -pas, 0), True)
#final_x = round(obj.worldPosition.y/3+5.5)
#final_y = round(-obj.worldPosition.x/3+5.5)
#obj.applyMovement((0, pas, 0), True)
# Test des murs
if rpcore_detect_mur(debug_flag) == True:
print('\x1b[6;30;41m', "Avancer case (X,Y) -> case (X,Y) :", init_x,",",init_y,"->",final_x,",",final_y, '\x1b[0m')
print('\x1b[6;30;41m', "Bling, blang ... L'aventure de Ropy s'arrête donc ici ...", '\x1b[0m')
obj['mvts'] = obj['mvts']+"c"
#MODIF
obj['d'] = -1
#obj['detruit']=True
else:
#MODIF
obj['x'],obj['y']=final_x,final_y
#obj.applyMovement((0, -pas, 0), True)
obj['mvts'] = obj['mvts']+"a"
print('\x1b[6;30;42m', "Avancer case (X,Y) -> case (X,Y) :", init_x,",",init_y,"->",final_x,",",final_y, '\x1b[0m')
# Test de l'objectif
i=0
for objectif in scene.objects:
i +=1
if objectif.name=="Objectif":
if objectif['x'] == final_x and objectif['y'] == final_y:
print('\x1b[6;30;42m', "Objectif atteint", '\x1b[0m')
obj['mvts'] = obj['mvts']+"o"
# Tourner à droite
def rp_droite():
# obj.visible=False
#MODIF
if obj['detruit']!=True and obj['d'] >= 0:
# scene.objects['Robot'].applyRotation((0, 0, -pas_rot), True)
#MODIF
#obj.applyRotation((0, 0, -pas_rot), True)
obj['d'] = (obj['d']+1)%4
obj['mvts'] = obj['mvts']+"d"
print('\x1b[6;30;42m', "Tourner à droite", '\x1b[0m')
# print("Orientation : ", obj.worldOrientation.to_euler().z)
# Tourner à gauche
def rp_gauche():
# obj.visible=False
#MODIF
if obj['detruit']!=True and obj['d'] >= 0:
# scene.objects['Robot'].applyRotation((0, 0, pas_rot), True)
#MODIF
obj['d'] = (obj['d']+3)%4
#obj.applyRotation((0, 0, pas_rot), True)
obj['mvts'] = obj['mvts']+"g"
print('\x1b[6;30;42m', "Tourner à gauche", '\x1b[0m')
# print("Orientation : ", obj.worldOrientation.to_euler().z)
# Orienter
def rp_orientation(orientation):
if orientation=="nord":
obj.applyRotation((0, 0, -obj.worldOrientation.to_euler().z-math.pi/2), True)
#MODIF
obj['d']=0
if orientation=="sud":
obj.applyRotation((0, 0, -obj.worldOrientation.to_euler().z+math.pi/2), True)
#MODIF
obj['d']=2
if orientation=="est":
obj.applyRotation((0, 0, -obj.worldOrientation.to_euler().z+math.pi), True)
#MODIF
obj['d']=1
if orientation=="ouest":
obj.applyRotation((0, 0, -obj.worldOrientation.to_euler().z), True)
#MODIF
obj['d']=3
# print("Orientation : ", obj.worldOrientation.to_euler().z)
###############################################################################
# Marquage du sol
###############################################################################
# Marquer une case
def rp_marquer():
if obj['detruit']!=True:
obj['mvts'] = obj['mvts']+"m"
if obj['mvts_start'] ==False : # à condition d'avoir terminé le mouvement
marque1= scene.addObject("Marque", obj)
marque1.worldPosition.x = obj.worldPosition.x
marque1.worldPosition.y = obj.worldPosition.y
marque1.worldPosition.z = 0.2
# print('\x1b[6;30;43m', "Marquer case (X,Y) :", round(obj.worldPosition.y/3+5.5),",",round(-obj.worldPosition.x/3+5.5), '\x1b[0m')
# Enlever l'ensemble des murs et des marques
def rp_enlever_marques():
print ("")
print ("Table rase !")
for i in range (nb_objets_fixes, len(scene.objects)):
scene.objects[i].endObject()
###############################################################################
# Construction du niveau
###############################################################################
# Définition du niveau
def rp_niveau (niveau=0):
obj['level'] =niveau
# Construire les murs
# Longueur : fixe d' une case
# Position des murs : liste imbriquée : [[mur1_x1,mur1_y1,mur1_x2,mur1_y2],[mur2_x1,mur2_y1,mur2_x2,mur2_y2], ...]
# FIXME : verifier si les murs sont dans la zone 10x10
# FIXME : intervertir l'ordre des coordonnéees
# FIXME : verifier si le mur est d'une case
def rp_construire_murs (def_murs):
# print("Objets de la scene : ", scene.objects)
i=0
for def_mur in def_murs:
i +=1
# print (def_mur)
# Mur en X
if def_mur[0] == def_mur[2]:
mur1= scene.addObject("Mur", obj)
mur1['murId'] = i
mur1['x1'] = def_mur[0]
mur1['y1'] = def_mur[1]
mur1['x2'] = def_mur[2]
mur1['y2'] = def_mur[3]
# print ("mur ", 0)
# mur1.applyRotation((0, 0, -obj.worldOrientation.to_euler().z), True)
# mur1.applyRotation((0, 0, -math.pi/2), True)
# mur1.applyRotation((0, 0, -obj.worldOrientation.to_euler().z), True)
# mur1.worldOrientation.to_euler().z = 0
mur1.worldPosition.x = -((def_mur[1]-4.5)*3)
mur1.worldPosition.y = ((def_mur[0]-5.5)*3)+1.5
mur1.worldPosition.z = 1.5
print('\x1b[6;30;47m', "Construire mur X",mur1['murId'],"coordonnées (x1,y1,x2,y2) :", def_mur[0], def_mur[1], def_mur[2], def_mur[3], '\x1b[0m')
# Mur en Y
elif def_mur[1] == def_mur[3]:
mur2= scene.addObject("Mur", obj)
mur2['murId'] = i
mur2['x1'] = def_mur[0]
mur2['y1'] = def_mur[1]
mur2['x2'] = def_mur[2]
mur2['y2'] = def_mur[3]
# print ("mur ", -obj.worldOrientation.to_euler().z-math.pi/2)
mur2.applyRotation((0, 0, -obj.worldOrientation.to_euler().z-math.pi/2), True)
# print ("mur ", math.pi/2)
# mur2.applyRotation((0, 0, -math.pi), True)
# mur2.worldOrientation.to_euler().z = math.pi/2
mur2.worldPosition.x = -((def_mur[1]-5.5)*3)-1.5
mur2.worldPosition.y = ((def_mur[0]-4.5)*3)
mur2.worldPosition.z = 1.5
print('\x1b[6;30;47m', "Construire mur Y",mur2['murId'],"coordonnées (x1,y1,x2,y2) :", def_mur[0], def_mur[1], def_mur[2], def_mur[3], '\x1b[0m')
else:
print ('\x1b[6;30;41m', "Mur ni sur X ni sur Y !", '\x1b[0m')
# Marquer l'objectif
def rp_marquer_objectif (x,y):
objectif1= scene.addObject("Objectif", obj)
objectif1.worldPosition.x = -((y-4.5)*3)+3
objectif1.worldPosition.y = (x-5.5)*3
objectif1.worldPosition.z = 0.2
objectif1['x'] = x
objectif1['y'] = y
print('\x1b[6;30;47m', "Marquer l'objectif case (X,Y) :", x,y, '\x1b[0m')

View File

@ -1,141 +0,0 @@
import bge # Bibliothèque Blender Game Engine (BGE)
import math
import time
from ropy_init import * # Bibliothèque Ropy
import ropy_init # Initialisation du robot Ropy
import ropy_cmd # Comnandes élèves du robot Ropy
###############################################################################
# ropy_module.py
# @title: Module pour UPBGE
# @project: Blender-EduTech
# @lang: fr
# @authors: Philippe Roy <philippe.roy@ac-grenoble.fr>
# @copyright: Copyright (C) 2020-2022 Philippe Roy
# @license: GNU GPL
#
# Fonctions autres que ceux de la bibliothèque du Robot Ropy (rp_*)
#
# Ropy est destiné à la découverte de la programmation procédurale et du language Python.
# A travers plusieurs challenges, donc de manière graduée, les élèves vont apprendre à manipuler les structures algorithmiques de base et à les coder en Python.
#
###############################################################################
# Récupérer l'objet robot
cont = bge.logic.getCurrentController()
obj = cont.owner
scene = bge.logic.getCurrentScene()
nb_objets_fixes = len(scene.objects)
# print ("Nombre d'objets fixes de la scene : ", nb_objets_fixes)
# print("Objets de la scene : ", scene.objects)
# Configuration des mouvements
pas=3 # Pas linéaire
pas_rot=math.pi/2 # Pas angulaire
###############################################################################
# Rustines pour corriger des bugs de UPBGE EEVEE (version alpha)
###############################################################################
# Mouvement
# Problème : Les mouvements du robot ne sont pas vue
# Solution : Dépilage de la liste des mouvements du robot
def mvt():
if obj['mvts_start']:
# print ("Mouvements : ", obj['mvts'])
# print ("Nombre de mouvement : ", len(obj['mvts']))
# print ("Nombre actuel : ", obj['mvt_i'])
# Au debut
if obj['mvt_i'] == 0:
rp_init_position()
rp_orientation("est") # il y a nord, sud, est, ouest
obj.visible=True
# Tous les mouvements sont dépilés
if obj['mvt_i'] >= len(obj['mvts']):
# print ("Plus de mouvement")
obj['mvts_start'] =False
# Execution des mouvements
# a : avancer, d : droite, g : gauche, m : marquer
# c : crash, o : objectif atteint
else:
# print ("Mouvement actuel : ", obj['mvt_i'], " ", obj['mvts'][obj['mvt_i']])
# Avancer
if obj['mvts'][obj['mvt_i']]=="a":
obj.applyMovement((0, -pas, 0), True)
# Droite
if obj['mvts'][obj['mvt_i']]=="d":
# scene.objects['Robot'].applyRotation((0, 0, -pas_rot), True)
obj.applyRotation((0, 0, -pas_rot), True)
# Gauche
if obj['mvts'][obj['mvt_i']]=="g":
# scene.objects['Robot'].applyRotation((0, 0, pas_rot), True)
obj.applyRotation((0, 0, pas_rot), True)
# Marquer
if obj['mvts'][obj['mvt_i']]=="m":
marque1= scene.addObject("Marque", obj)
marque1.worldPosition.x = obj.worldPosition.x
marque1.worldPosition.y = obj.worldPosition.y
marque1.worldPosition.z = 0.2
# Objectif
if obj['mvts'][obj['mvt_i']]=="o":
if obj['level'] != 5: # Bug sur l'animation -> pas d'animation quand il y a plusieurs objectifs
start = 1
end = 125
layer = 0
priority = 1
blendin = 1.0
mode = bge.logic.KX_ACTION_MODE_PLAY
layerWeight = 0.0
ipoFlags = 0
speed = 3.0
scene.objects['Armature'].playAction('ArmatureAction.Saut.001', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['Body'].playAction('BodyAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['Eyes_glass'].playAction('Eyes_glassAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['Mouth'].playAction('MouthAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['Jetpack'].playAction('JetpackAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee1'].playAction('poignee1Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee2'].playAction('poignee2Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee3'].playAction('poignee3Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee4'].playAction('poignee4Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# Crash
if obj['mvts'][obj['mvt_i']]=="c":
start = 150
end = start+75
layer = 0
priority = 1
blendin = 1.0
mode = bge.logic.KX_ACTION_MODE_PLAY
layerWeight = 0.0
ipoFlags = 0
speed = 3
scene.objects['Armature'].playAction('ArmatureAction.Saut.001', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Body'].playAction('BodyAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Eyes_glass'].playAction('Eyes_glassAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Mouth'].playAction('MouthAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
# scene.objects['Jetpack'].playAction('JetpackAction.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee1'].playAction('poignee1Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee2'].playAction('poignee2Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee3'].playAction('poignee3Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
scene.objects['poignee4'].playAction('poignee4Action.Saut', start, end, layer, priority, blendin, mode, layerWeight, ipoFlags, speed)
obj['detruit']=True
obj['mvt_i'] = len(obj['mvts']) # Annulation des mouvements suivants
else:
# Mouvement suivant
if obj['mvts'][obj['mvt_i']]!="c":
obj['mvt_i']+=1

61
rp.py
View File

@ -51,7 +51,6 @@ eevee = bpy.context.scene.eevee
fps_time=0.0
# Config file
# print (os.getcwd())
rp_config = ET.parse('rp_config.xml')
rp_config_tree = rp_config.getroot()
@ -145,13 +144,26 @@ def terrain_init ():
# Init de la carte
scene.objects['Map_aim'].setVisible(False,True)
rp_map.map_init()
scene.objects['Terrain']['map_tile_beacon']= []
# for i in range (500):
for i in range (100):
beacon= scene.addObject("Beacon", scene.objects['Terrain'])
beacon.worldPosition=[29,1+i,0.2]
beacon.setVisible(False,True)
beacon.name="Beacon-"+str(i)
beacon.suspendPhysics (True)
beacon['activated']=False
# print("Objets de la scene : ", scene.objects)
rp_map.map_reset()
# Récupération de la position de la caméra
scene.objects['Camera'].worldPosition.x = float(rp_config_tree[0][2][0].text)
scene.objects['Camera'].worldPosition.y = float(rp_config_tree[0][2][1].text)
scene.objects['Camera'].worldPosition.z = float(rp_config_tree[0][2][2].text)
scene.objects['Camera']['current_lx'] = float(rp_config_tree[0][2][0].text)
scene.objects['Camera']['current_ly'] = float(rp_config_tree[0][2][1].text)
scene.objects['Camera']['current_lz'] = float(rp_config_tree[0][2][2].text)
scene.objects['Camera'].worldPosition.x = scene.objects['Camera']['current_lx']
scene.objects['Camera'].worldPosition.y = scene.objects['Camera']['current_ly']
scene.objects['Camera'].worldPosition.z = scene.objects['Camera']['current_lz']
##
# Mise en route et pause du cycle
@ -183,6 +195,7 @@ def terrain_run ():
if scene.objects['Terrain']['thread_cmd']==False:
scene.objects['Terrain']['thread_cmd']=True
rp_map.map_reset()
time.sleep(0.25)
runpy.run_module('rp_cmd', run_name='start') # Execution du script utilisateur
# Arrêt de la pause
@ -247,16 +260,22 @@ def terrain_grid ():
scene.objects['Grid-v'].setVisible(False,True)
scene.objects['Map_aim'].setVisible(False,True)
else:
scene.objects['Grid-u']['timer'] = 0.2
bpy.data.materials["Grid"].node_tree.nodes["Emission"].inputs[1].default_value =scene.objects['Grid-u']['timer']
scene.objects['Grid-u']['timer'] = 0
bpy.data.materials["Grid"].node_tree.nodes["Shader de mélange"].inputs[0].default_value = 0
bpy.data.materials["Grid-Holo"].node_tree.nodes["Émission"].inputs[1].default_value = 0
# bpy.data.materials["Grid"].node_tree.nodes["Emission"].inputs[1].default_value =scene.objects['Grid-u']['timer']
scene.objects['Grid-u'].setVisible(True,True)
scene.objects['Grid-v'].setVisible(True,True)
scene.objects['Map_aim'].setVisible(True,True)
# scene.objects['Map_aim'].setVisible(True,True)
scene.objects['Grid-u']['anim'] = True
def terrain_grid_anim ():
bpy.data.materials["Grid"].node_tree.nodes["Emission"].inputs[1].default_value =scene.objects['Grid-u']['timer']
bpy.data.materials["Grid"].node_tree.nodes["Shader de mélange"].inputs[0].default_value=scene.objects['Grid-u']['timer']
bpy.data.materials["Grid-Holo"].node_tree.nodes["Émission"].inputs[1].default_value =scene.objects['Grid-u']['timer']*5
# bpy.data.materials["Grid"].node_tree.nodes["Emission"].inputs[1].default_value =scene.objects['Grid-u']['timer']
scene.objects['Grid-u']['timer']+=0.01
if scene.objects['Grid-u']['timer']>= 0.05 and scene.objects['Grid-u'].visible :
scene.objects['Map_aim'].setVisible(True,True)
if scene.objects['Grid-u']['timer']>= 1:
scene.objects['Grid-u']['anim'] = False
@ -533,9 +552,9 @@ def mode(cont):
terrain_stop ()
# Maj du fichier de config (position de la camera : data/config/cam_x,y,z -> [0][2][0].text, [0][2][1].text, [0][2][2].text)
rp_config_tree[0][2][0].text=str(scene.objects['Camera'].worldPosition.x)
rp_config_tree[0][2][1].text=str(scene.objects['Camera'].worldPosition.y)
rp_config_tree[0][2][2].text=str(scene.objects['Camera'].worldPosition.z)
rp_config_tree[0][2][0].text=str(scene.objects['Camera']['current_lx'])
rp_config_tree[0][2][1].text=str(scene.objects['Camera']['current_ly'])
rp_config_tree[0][2][2].text=str(scene.objects['Camera']['current_lz'])
# print ("Fin :", scene.objects['Camera'].worldPosition.x, scene.objects['Camera'].worldPosition.y, scene.objects['Camera'].worldPosition.z)
buffer_xml = ET.tostring(rp_config_tree)
with open("rp_config.xml", "wb") as f:
@ -658,8 +677,11 @@ def manip_start(cont):
##
def manip_stop(cont):
scene.objects['Camera']['current_lx'] = scene.objects['Camera'].worldPosition.x
scene.objects['Camera']['current_ly'] = scene.objects['Camera'].worldPosition.y
scene.objects['Camera']['current_lz'] = scene.objects['Camera'].worldPosition.z
# scene.objects['Orbit'].setVisible(False,False)
pass
##
# Manipulation du modèle ou de la caméra
@ -734,6 +756,7 @@ def manip_wheel(cont):
# scene.objects['Mouse_main'].worldScale /= sensibilite_wheel* (distance_cam_past/distance_cam) *size_scale
else:
return
manip_stop(cont)
##
# Icone de la souris
@ -876,6 +899,11 @@ def tablet_close ():
# audiodev.unlock()
scene.objects['Cmd-text'].setVisible(False,False)
# Camera
scene.objects['Camera'].worldPosition.x = scene.objects['Camera']['current_lx']
scene.objects['Camera'].worldPosition.y = scene.objects['Camera']['current_ly']
scene.objects['Camera'].worldPosition.z = scene.objects['Camera']['current_lz']
##
# Clic pour fermer la tablette
##
@ -899,11 +927,11 @@ color_link_hl = (0.799, 0.617, 0.021, 1) # Jaune
def about_open():
scene.objects['Terrain']['manip_mode']=9 # Fenêtre modale About
manip_reset()
scene.objects['About_link-git'].color= color_link
scene.objects['About_link-gpl'].color= color_link
scene.objects['About_link-upbge'].color= color_link
# scene.objects['About_link-kay'].color= color_link
scene.objects['About_link-kay'].color= color_link
scene.objects['About_link-kenney'].color= color_link
scene.objects['About_link-polygonrunway'].color= color_link
scene.objects['About_link-icons'].color= color_link
@ -954,6 +982,9 @@ def about_close():
scene.objects['About'].setVisible(False,True)
scene.objects['About'].worldPosition = [42, -2, 3]
scene.objects['About']['timer']= 0
scene.objects['Camera'].worldPosition.x = scene.objects['Camera']['current_lx']
scene.objects['Camera'].worldPosition.y = scene.objects['Camera']['current_ly']
scene.objects['Camera'].worldPosition.z = scene.objects['Camera']['current_lz']
##
# Click pour fermer le about

View File

@ -11,6 +11,9 @@ from rp_lib import * # Bibliothèque Ropy
# Fonctions
###############################################################################
def mrp_avancer():
rp_avancer()
rp_marquer()
###############################################################################
# Commandes
@ -19,16 +22,38 @@ from rp_lib import * # Bibliothèque Ropy
def commands():
print("Go !!")
# rp_marquer() # A tendance au plantage
rp_gauche()
rp_avancer()
rp_droite()
rp_avancer()
rp_avancer()
rp_avancer()
rp_avancer()
rp_marquer()
mrp_avancer()
rp_marquer()
mrp_avancer()
rp_marquer()
mrp_avancer()
mrp_avancer()
rp_droite()
rp_avancer()
rp_avancer()
mrp_avancer()
mrp_avancer()
rp_droite()
rp_droite()
mrp_avancer()
mrp_avancer()
mrp_avancer()
mrp_avancer()
rp_droite()
mrp_avancer()
mrp_avancer()
mrp_avancer()
mrp_avancer()
mrp_avancer()
mrp_avancer()
mrp_avancer()
mrp_avancer()
rp_fin()

View File

@ -1,11 +1,11 @@
<data>
<config>
<speed>0.25</speed>
<speed>4.0</speed>
<sound>True</sound>
<cam>
<worldPosition.x>-8.529211044311523</worldPosition.x>
<worldPosition.y>-2.480304479598999</worldPosition.y>
<worldPosition.z>4.401391983032227</worldPosition.z>
<worldPosition.x>-7.034218788146973</worldPosition.x>
<worldPosition.y>-10.528145790100098</worldPosition.y>
<worldPosition.z>12.590240478515625</worldPosition.z>
</cam>
</config>
<mission>

740
rp_lib.py
View File

@ -178,7 +178,7 @@ def sound_play (sound):
##
def rp_avancer ():
print ("rp_avancer")
print ("rp_avancer()")
step =1
obj=scene.objects['Rover']
# print (obj.worldOrientation.to_euler().z)
@ -193,37 +193,61 @@ def rp_avancer ():
obj.worldPosition=[x0+step, y0, z0]
if round(obj.worldOrientation.to_euler().z, 2) == round(-math.pi/2,2) or round(obj.worldOrientation.to_euler().z, 2) == round(3*(math.pi/2),2) : # Ouest
obj.worldPosition=[x0-step, y0, z0]
rp_sleep (0.25)
rp_tempo (0.1)
##
# Tourner à gauche
##
def rp_gauche ():
print ("rp_gauche")
print ("rp_gauche()")
step=math.pi/2 # Pas angulaire
obj=scene.objects['Rover']
obj.applyRotation((0, 0, step), True)
rp_sleep (0.25)
rp_tempo (0.1)
##
# Tourner à droite
##
def rp_droite ():
print ("rp_droite")
print ("rp_droite()")
step=math.pi/2 # Pas angulaire
obj=scene.objects['Rover']
obj.applyRotation((0, 0, -step), True)
rp_sleep (0.25)
rp_tempo (0.1)
##
# Marquer
##
def rp_marquer ():
print ("rp_marquer")
# FIXME
rp_tempo (0.1)
print ("rp_marquer()")
obj=scene.objects['Rover']
x = obj.worldPosition.x
y = obj.worldPosition.y
z = obj.worldPosition.z
# Vérification de l'absence de balise sur la tuile
if [x,y] in scene.objects['Terrain']['map_tile_beacon'] :
print ("Case déjà marquée !")
return False
for i in range (100):
beacon = scene.objects["Beacon-"+str(i)]
if beacon['activated']==False:
beacon.worldPosition=[x,y,0.2]
beacon['activated']=True
beacon.setVisible(True, True)
break
if i ==99 :
print ("Plus de balise disponible !")
# beacon= scene.addObject("Beacon", scene.objects['Terrain'])
# beacon.worldPosition=[x,y,0.2]
scene.objects['Terrain']['map_tile_beacon'].append([x,y])
rp_tempo (0.1)
return True
##
# Détecter
@ -266,688 +290,22 @@ def rover_colision ():
###############################################################################
def rp_sleep (duration):
# time.sleep(duration*(1/scene.objects['Terrain']['speed']))
time.sleep(duration)
# def ct_tempo (duration):
# scene.objects['Terrain']['delay_cmd']=0
# while scene.objects['Terrain']['delay_cmd']<duration*(1/scene.objects['Terrain']['speed']):
# # print("Temporization commands :",scene.objects['Terrain']['delay_cmd'])
# time.sleep(0.001)
# # pass
# ###############################################################################
# # Waves (minions)
# ###############################################################################
# ##
# # Création d'un minion
# #
# # Minion caracteristics : category (class), level, hp, speed, armor, bounty, lifes_damage
# # Minion 3d body : body (male,female,old, ...), variante (A,B,C,D, ...), level
# ##
# def ct_minion_create(x,y,cat,level):
# category=cat+"-lv"+str(level)
# minion_3d= scene.objects['Terrain']['minion_3d']
# body = random.choice(minion_3d[category][0])+"_"+random.choice(minion_3d[category][1])+"_"+random.choice(minion_3d[category][2])
# return (ct_minion_create_details(x,y,cat,level,body))
# # Création d'un minion détaillée
# def ct_minion_create_details(x,y,cat,level,body="Knight_m_A_common"):
# category=cat+"-lv"+str(level)
# # Pause
# while scene.objects['Terrain']['run'] == False:
# time.sleep(0.01)
# # Synchronisation des threads : attente de la création d'une tour
# while scene.objects['Terrain']['thread_cmd_lock'] == True:
# # print ("ct_minion : thread_cmd_lock =True")
# time.sleep(0.01)
# # Blocage des autres threads pendant l'apparition du minion
# scene.objects['Terrain']['thread_cmd_lock'] = True
# # Object 3D
# minion= scene.addObject(body, scene.objects['Terrain'])
# minion.worldScale=[0.25,0.25,0.25]
# minion.worldPosition=[x,y,0.1]
# minion.suspendPhysics (True)
# minion.setVisible(False)
# scene.objects['Terrain']['idm']=scene.objects['Terrain']['idm']+1
# minion['id']=scene.objects['Terrain']['idm']
# minion.name="wm("+str(minion['id'])+")" # Wave minion (wm), identifier minion (idm)
# scene.objects['Points']['minions'] +=1
# scene.objects['Points']['minions_run'] +=1
# # Gestion de la distance et des minions zombis
# minion['dist']=0.0
# minion['dist_old']=0.0
# minion['dist_last_x']=minion.worldPosition.x
# minion['dist_last_y']=minion.worldPosition.y
# minion['dist_new']=True
# # Caracteristics
# minion_carac= scene.objects['Terrain']['minion_carac']
# minion['cat']=minion_carac[category][0]
# minion['level']=minion_carac[category][1]
# minion['hp']=minion_carac[category][2]
# minion['speed']=minion_carac[category][3]
# minion['speed_base']=minion_carac[category][3]
# minion['armor']=minion_carac[category][4]
# minion['bounty']=minion_carac[category][5]
# minion['lifes_damage']=minion_carac[category][6]
# minion['buff']=[]
# minion['resist']=[]
# # Actuator Steering
# minion.actuators['Steering'].navmesh=scene.objects[scene.objects['Terrain']['navmesh']]
# minion.actuators['Steering'].target=scene.objects[scene.objects['Terrain']['endtile']]
# minion.actuators['Steering'].distance=2
# # minion.actuators['Steering'].distance=0.5
# minion.actuators['Steering'].velocity=minion['speed_base']*scene.objects['Terrain']['speed']
# # Déblocage des autres threads après l'apparition du minion
# scene.objects['Terrain']['thread_cmd_lock'] = False
# return minion.name
# ##
# # Activation du minion (steering)
# ##
# def ct_minion_go(minion_name):
# minion=scene.objects[minion_name]
# minion.restorePhysics()
# minion.setVisible(True)
# ##
# # Destruction d'un minion
# ##
# def scn_minion_dead(cont):
# obj = cont.owner
# scene.objects['Points']['minions'] -=1
# scene.objects['Points']['minions_run'] -=1
# scene.objects['Points']['kills'] +=1
# scene.objects['Points']['coins']= scene.objects['Points']['coins']+obj['bounty']
# obj.setVisible(False)
# obj.suspendPhysics (True)
# # obj.endObject()
# ###############################################################################
# # Spells / Casts
# ###############################################################################
# ##
# # Buff/debuff Minion
# ##
# def scn_minion_affect(cont):
# if scene.objects['Terrain']['run'] == False: # Pause
# return
# obj = cont.owner
# # print (obj.name, obj['buff'])
# slow_state=False
# # Distance parcourue
# obj['dist']=obj['dist']+ math.sqrt((obj.worldPosition.x-obj['dist_last_x'])**2+(obj.worldPosition.y-obj['dist_last_y'])**2)
# obj['dist_last_x']=obj.worldPosition.x
# obj['dist_last_y']=obj.worldPosition.y
# # Lod
# # print(obj.currentLodLevel)
# # Etats actif
# for debuff_i in obj['buff']:
# if debuff_i[1] <= 0:
# obj['buff'].remove(debuff_i)
# continue
# if debuff_i[0] == "slow":
# slow_state=True
# debuff_i[1] -= scene.objects['Terrain']['speed']
# # Effets
# if slow_state:
# obj.actuators['Steering'].velocity =(obj['speed_base']*scene.objects['Terrain']['speed'])/3
# # obj.actuators['Steering'].velocity =(obj['speed_base']*scene.objects['Terrain']['speed'])/2
# else:
# obj.actuators['Steering'].velocity = obj['speed_base']*scene.objects['Terrain']['speed']
# ###############################################################################
# # Towers
# ###############################################################################
# ##
# # Création d'une tour
# #
# # Tower caracteristics : category (class), damage, speed, range
# ##
# def ct_build(x,y, cat='Archer tower', tower_name="Tower", color=tower_purple, building="square-A"):
# tower_minion_3d= scene.objects['Terrain']['tower_minion_3d']
# if cat=='Archer tower': # Archer
# category="Archer-lv1"
# if cat=='Mage tower': # Mage
# category="Mage-lv1"
# body = random.choice(tower_minion_3d[category][0])+"_"+random.choice(tower_minion_3d[category][1])+"_"+random.choice(tower_minion_3d[category][2])
# return (ct_build_details(x,y, cat, tower_name, color, building, body))
# ##
# # Création d'une tour détaillée
# ##
# def ct_build_details(x,y, cat='Archer tower', tower_name="Tower", color=tower_purple, building="square-A", body="Archer_m_A_common"):
# # Vérification de la place
# if [x,y] in scene.objects['Terrain']['scene_tile_noncontruct'] or [x,y] in scene.objects['Terrain']['scene_tile_tower']:
# return False
# # Vérification du niveau
# scene.objects['Points']['level']= scene.objects['Points']['level'] + 1
# if scene.objects['Points']['level'] > scene.objects['Points']['level_max'] :
# tour= scene.addObject("Tower_error", scene.objects['Terrain'])
# tour.worldPosition=[x,y,0.2]
# tour.worldScale=[1,1,1]
# scene.objects['Terrain']['scene_tile_tower'].append([x,y])
# return False
# # Blocage des autres threads pendant la construction
# scene.objects['Terrain']['thread_cmd_lock'] = True
# # Objets 3D
# time.sleep(0.02)
# tour= scene.addObject('Tower-'+building, scene.objects['Terrain'])
# time.sleep(0.02)
# tour.color = color
# tour.worldPosition=[x,y,0.2]
# tour.worldScale=[1,1,1]
# tour.name="tower("+str(x)+','+str(y)+")"
# scene.objects['Terrain']['scene_tile_tower'].append([x,y])
# tower_minion= scene.addObject(body, scene.objects['Terrain'])
# tower_minion['type_towerminion']=False
# del tower_minion['type_minion']
# tower_minion.name="tm("+str(x)+','+str(y)+")" # Tower minion (tm)
# tower_minion.worldPosition=[x,y,1]
# tower_minion.worldScale=[0.25,0.25,0.25]
# # Draw3d
# if cat=="Archer tower":
# for i in range (3):
# ct_add_tower_bullet(x,y,i, "Arrow")
# if cat=="Mage tower":
# ct_add_tower_cast(x,y)
# # Sounds
# sound_play(sndbuff_build)
# # Caracteristics
# tower_carac= scene.objects['Terrain']['tower_carac']
# tour['cat']=tower_carac[cat][0]
# tour['tower_name']=tower_name
# tour['xp']=0
# tour['lvl_current']=1
# tour['lvl']=1
# tour['damage']=tower_carac[cat][1]
# tour['speed']=tower_carac[cat][2]
# tour['range']=tower_carac[cat][3]
# tour['techno']=[]
# tour['cast']="slow"
# # tour['cast_duration']=2
# tour['cast_duration']=3
# tour['target']=[]
# tour['target_past']=[]
# # Capteur Near
# tour.sensors['Near'].distance=tour['range']*2.5 # Range : 1 point = 2,5
# # tour.sensors['Near'].skippedTicks =round(1/(tour['speed']*scene.objects['Terrain']['speed']))
# tour.sensors['Near'].skippedTicks =round(tour['speed']*50*scene.objects['Terrain']['speed']) # Speed : 1 point = 50 tics
# # Déblocage des autres threads après la construction
# scene.objects['Terrain']['thread_cmd_lock'] = False
# # print (scene.objects)
# return True
# ##
# # Suppression d'une tour
# ##
# def ct_remove(x,y):
# for obj_i in scene.objects:
# if "type_tower" in obj_i.getPropertyNames():
# if x == obj_i.worldPosition.x and y == obj_i.worldPosition.y:
# scene.objects["tm("+str(round(obj_i.worldPosition.x))+','+str(round(obj_i.worldPosition.y))+")"].endObject()
# obj_i.endObject()
# scene.objects['Points']['level']= scene.objects['Points']['level'] - 1
# ##
# # Création d'un projectile
# ##
# def ct_add_tower_bullet(x, y, num, cat="Ball"):
# if cat=="Ball":
# bullet= scene.addObject("Bullet", scene.objects['Terrain'])
# if cat=="Arrow":
# bullet= scene.addObject("Arrow", scene.objects['Terrain'])
# bullet.name="tower("+str(x)+','+str(y)+")-bullet"+str(num)
# bullet.worldPosition=[x,y,1.5]
# bullet.worldScale=[0.75,0.75,0.75]
# bullet.suspendPhysics (True)
# bullet.setVisible(False)
# bullet['activated']=False
# ##
# # Création des sorts
# ##
# def ct_add_tower_cast(x, y):
# cast= scene.addObject("Cast-slow", scene.objects['Terrain'])
# cast.name="tower("+str(x)+','+str(y)+")-cast"
# cast.worldPosition=[x,y,1.5]
# cast.worldScale=[0.75,0.75,0.75]
# cast.suspendPhysics (True)
# cast.setVisible(False)
# cast['activated']=False
# ##
# # Réaction d'une tour
# ##
# def scn_tower_near(cont):
# obj = cont.owner
# sensor = obj.sensors['Near']
# # Tir
# if sensor.positive and len(sensor.hitObjectList)>0 and scene.objects['Terrain']['run']==True :
# # Tir sur le plus avancé basé sur les distances parcourues
# target=sensor.hitObjectList[0]
# target_dist = target['dist']
# for obj_i in sensor.hitObjectList:
# if obj_i['dist']> target_dist:
# target=obj_i
# target_dist = target['dist']
# # Tir sur le plus avancé basé sur l'ordre de passage
# # target=sensor.hitObjectList[0]
# # target_id = target['navPosition']
# # for obj_i in sensor.hitObjectList:
# # if obj_i['navPosition']< target_id:
# # target=obj_i
# # target_id = target['navPosition']
# # Tir sur le plus avancé basé sur les distances par rapport à la tour -> ne marche pas
# # target=sensor.hitObjectList[0]
# # if len(sensor.hitObjectList)>1:
# # target_eloignement = False
# # target_distance_eloignement = 0
# # target_distance_approche = 100
# # print ("detection:",sensor.hitObjectList)
# # for obj_i in sensor.hitObjectList:
# # for obj_j in obj['target_past']:
# # if obj_j[0]==obj_i.name:
# # print ("name :", obj_j[0], "distance :", obj.getDistanceTo(obj_i), "distance old :", obj_j[1], "ecart :", obj.getDistanceTo(obj_i) - obj_j[1])
# # # Éloignement
# # if obj.getDistanceTo(obj_i) - obj_j[1] > 0: # Ecart de distance
# # target_eloignement = True
# # if obj.getDistanceTo(obj_i) > target_distance_eloignement:
# # target=obj_i
# # target_distance_eloignement = obj.getDistanceTo(obj_i)
# # # Approche
# # else:
# # if target_eloignement == False:
# # if obj.getDistanceTo(obj_i) < target_distance_approche:
# # target=obj_i
# # target_distance_approche = obj.getDistanceTo(obj_i)
# # if target_eloignement == True:
# # print ("Eloignement : target:", target.name, "distance :", obj.getDistanceTo(target))
# # print ("")
# # else:
# # print ("Approche : target:", target.name, "distance :", obj.getDistanceTo(target))
# # print ("")
# # obj['target_past']=[]
# # for obj_i in sensor.hitObjectList:
# # obj['target_past'].append([obj_i.name, obj.getDistanceTo(obj_i)])
# # Orientation du tower minion
# towerminion="tm("+str(round(obj.worldPosition.x))+','+str(round(obj.worldPosition.y))+")"
# angle =math.atan((target.worldPosition.y-obj.worldPosition.y)/(target.worldPosition.x-obj.worldPosition.x))
# if target.worldPosition.x>obj.worldPosition.x:
# angle2=math.pi/2+angle-scene.objects[towerminion].worldOrientation.to_euler().z
# angle3=angle
# else:
# angle2=math.pi+math.pi/2+angle-scene.objects[towerminion].worldOrientation.to_euler().z
# angle3=math.pi+angle
# scene.objects[towerminion].applyRotation((0, 0, angle2), False)
# # Sounds
# if obj['cat']=="Archer tower":
# sound_play(sndbuff_archer)
# if obj['cat']=="Mage tower":
# sound_play(sndbuff_mage)
# # Ligne (drawLine) (vitesse rapide)
# if scene.objects['Terrain']['speed']<4: # Pas d'animation à 10 -> plantage
# # Archer (tir de flêche)
# if obj['cat']=="Archer tower":
# if target.name in scene.objects:
# for i in range (3):
# bullet = scene.objects[obj.name+"-bullet"+str(i)]
# if bullet['activated']==False:
# bullet.worldPosition=[obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8]
# bullet['activated']=True
# bullet.setVisible(True)
# scene.objects['Terrain']['draw3d_process']=True
# scene.objects['Terrain']['draw3d_list'].append([20, "arrow", obj.name, bullet.name, target.name, "normal", 20])
# break
# if i ==3 :
# print ("Plus de bullet de disponible pour la tour : "+obj.name)
# # Cast zone
# if obj['cat']=="Mage tower": # Mage (cast)
# cast = scene.objects[obj.name+"-cast"]
# cast.worldPosition=[obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8]
# cast.worldScale=[0.01,0.01,0.01]
# cast.setVisible(True)
# scene.objects['Terrain']['draw3d_process']=True
# scene.objects['Terrain']['draw3d_list'].append([60, "cast", obj.name, cast.name, "slow", 60])
# # Rayon
# # FIXME : ne marche plus (zoom et pan)
# # if obj['cat']=="Test":
# # if target.name in scene.objects:
# # scene.objects['Terrain']['draw2d_process']=True
# # scene.objects['Terrain']['draw2d_list'].append([5, "ray", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8], target.name, angle3, ray_yellow,5]) # Suivi du minion
# # Dégats : pas d'animation à 10
# if scene.objects['Terrain']['speed'] >= 4:
# target['hp'] = target['hp'] - obj['damage']
# if target['hp']<=0:
# target['dead']=True
# # Cast (buff and debuff)
# if obj['cat']=="Mage tower":
# for target_i in sensor.hitObjectList:
# target_i['buff'].append([obj['cast'], obj['cast_duration']])
# ###############################################################################
# # Carte
# ###############################################################################
# ##
# # Texte de carte
# ##
# def ct_map_text_wave(wave):
# scene.objects['Points-Map-text']['Text']=("Wave " + str(wave))
# scene.objects['Points-Map-text'].setVisible(True,False)
# scene.objects['Points-Map-text'].color = color_text_yellow
# scene.objects['Points-Map-text']['timer']=0
# scene.objects['Points-Map-text']['anim']=True
# ##
# # Texte de carte
# ##
# def ct_map_text(text):
# scene.objects['Points-Map-text']['Text']=text
# scene.objects['Points-Map-text'].setVisible(True,False)
# ##
# # Fin
# ##
# def ct_map_end(x,y):
# scene.objects['Map_end'].worldPosition=[x,y,0.2]
# scene.objects['Map_end'].worldScale=[0.25,0.25,0.25]
# ##
# # Minion arrivé à la fin
# ##
# def scn_map_end_near(cont):
# obj = cont.owner
# sensor = obj.sensors['Near']
# if sensor.positive :
# for obj_i in sensor.hitObjectList :
# sound_play(sndbuff_life)
# if scene.objects['Points']['lifes']>0:
# scene.objects['Points']['lifes']= scene.objects['Points']['lifes']-obj_i['lifes_damage']
# scene.objects['Points']['minions_run'] -=1
# for obj_i in sensor.hitObjectList :
# obj_i.setVisible(False)
# obj_i.suspendPhysics (True)
# # obj_i.endObject()
# ##
# # Drapeau de fin
# ##
# def ct_map_endflag(x,y):
# endflag= scene.addObject("Map_endflag", scene.objects['Terrain'])
# endflag.worldPosition=[x,y,0.3]
# endflag.worldScale=[0.3,0.3,0.3]
# if round(x) == x :
# if round(y) == y :
# scene.objects['Terrain']['scene_tile_noncontruct'].append([x,y])
# else:
# scene.objects['Terrain']['scene_tile_noncontruct'].append([x,math.floor(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([x,math.ceil(y)])
# else:
# if round(y) == y :
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.floor(x),y])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.ceil(x),y])
# else:
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.floor(x),math.floor(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.floor(x),math.ceil(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.ceil(x),math.floor(y)])
# scene.objects['Terrain']['scene_tile_noncontruct'].append([math.ceil(x),math.ceil(y)])
# ###############################################################################
# # Affichage
# ###############################################################################
# ##
# # Texte du panel d'information
# ##
# def ct_print (text):
# # text_info (texte)
# if text=="":
# scene.objects['Info-1-text'].setVisible(False,False)
# scene.objects['Info-2-text'].setVisible(False,False)
# else:
# lines_txt=text.split("\n", 6)
# for i in range (len(lines_txt),6):
# lines_txt.append("")
# scene.objects['Info-1-text'].setVisible(True,False)
# scene.objects['Info-2-text'].setVisible(True,False)
# scene.objects['Info-1-text']['Text']=lines_txt[0]+"\n"+lines_txt[1]+"\n"+lines_txt[2]
# scene.objects['Info-2-text']['Text']=lines_txt[3]+"\n"+lines_txt[4]+"\n"+lines_txt[5]
# ###############################################################################
# # Dessin 3d
# ###############################################################################
# def scn_draw3d(cont):
# obj = cont.owner
# if obj.sensors['Draw3d'].positive==False:
# return
# if len(scene.objects['Terrain']['draw3d_list'])==0:
# scene.objects['Terrain']['draw3d_process']=False
# return
# # Dépilage des draws à executer
# for draw_cmd in scene.objects['Terrain']['draw3d_list']:
# # Archer (tir de flêche)
# # scene.objects['Terrain']['draw3d_list'].append([20, "arrow", obj.name, bullet.name, target.name, "normal", 20])
# if draw_cmd[1]=="arrow":
# if draw_cmd[4] in scene.objects:
# tower= scene.objects[draw_cmd[2]]
# bullet = scene.objects[draw_cmd[3]]
# target = scene.objects[draw_cmd[4]]
# x0 = tower.worldPosition.x
# y0 = tower.worldPosition.y
# # z0 = tower.worldPosition.z+0.8 # ajustement +0.8
# z0 = tower.worldPosition.z+1 # ajustement +1
# x1 = target.worldPosition.x
# y1 = target.worldPosition.y
# z1 = target.worldPosition.z+0.5 # ajustement +0.5
# if x1>x0:
# angle_z =math.atan((y1-y0)/(x1-x0))+math.pi/2
# else:
# angle_z =math.pi+math.atan((y1-y0)/(x1-x0))+math.pi/2
# angle_y =math.atan((z1-z0)/(math.sqrt((x1-x0)**2+(y1-y0)**2)))
# step_x=(x1-x0)/draw_cmd[6]
# step_y=(y1-y0)/draw_cmd[6]
# step_z=(z1-z0)/draw_cmd[6]
# step = draw_cmd[6]-draw_cmd[0]
# bullet.worldPosition=[x0+step_x*step, y0+step_y*step, z0+step_z*step]
# bullet.worldOrientation=[0, angle_y, angle_z]
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # Dégats
# if draw_cmd[0]<=0:
# bullet['activated']=False
# bullet.setVisible(False)
# target['hp'] = target['hp'] - tower['damage']
# if target['hp']<=0: # Mort
# target['dead']=True
# # Mage (cast)
# # scene.objects['Terrain']['draw3d_list'].append([60, "cast", obj.name, cast.name, "slow", 60])
# if draw_cmd[1]=="cast":
# cast = scene.objects[draw_cmd[3]]
# step = draw_cmd[5]-draw_cmd[0]
# cast.worldScale=[0.05*step,0.05*step,0.05*step]
# # cast.worldScale=[0.75*step,0.75*step,0.75*step]
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # Fin
# if draw_cmd[0]<=0:
# cast.setVisible(False)
# # Suppression des draws finis
# i=0
# for draw_cmd in scene.objects['Terrain']['draw3d_list']:
# if draw_cmd[0]<=0:
# scene.objects['Terrain']['draw3d_list'].pop(i)
# else:
# i=i+1
# if len(scene.objects['Terrain']['draw3d_list'])==0:
# scene.objects['Terrain']['draw3d_process']=False
# ###############################################################################
# # Dessin 2d (bge.render.drawLine)
# ###############################################################################
# def circle (center, radius, color):
# ang = 0.0
# # ang_step = 0.1
# ang_step = 0.2
# while ang< 2 * math.pi:
# x0 = center[0]+float(radius*math.cos(ang))
# y0 = center[1]+float(radius*math.sin(ang))
# x1 = center[0]+float(radius*math.cos(ang+ang_step))
# y1 = center[1]+float(radius*math.sin(ang+ang_step))
# bge.render.drawLine([x0,y0,center[2]],[x1,y1,center[2]],color)
# ang += ang_step
# ##
# # Affiche les draws 2d en cours
# #
# # Type de draw 2d:
# # arrow : [5, "arrow", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8],target.name, angle3, ray_yellow,5]
# # cast : [30, "cast", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8], ray_blue,30]
# # ray : [5, "ray", [obj.worldPosition.x, obj.worldPosition.y, obj.worldPosition.z+0.8],[target.worldPosition.x, target.worldPosition.y, target.worldPosition.z], angle3, ray_yellow,5]
# ##
# def scn_draw2d(cont):
# obj = cont.owner
# if obj.sensors['Draw2d'].positive==False:
# return
# if len(scene.objects['Terrain']['draw2d_list'])==0:
# scene.objects['Terrain']['draw2d_process']=False
# return
# # Dépilage des draws à executer
# for draw_cmd in scene.objects['Terrain']['draw2d_list']:
# # Archer (tir de flêche)
# if draw_cmd[1]=="arrow":
# if draw_cmd[3] in scene.objects:
# # x0 = draw_cmd[2][0]+0.25*(math.cos(draw_cmd[4]))
# # y0 = draw_cmd[2][1]+0.25*(math.sin(draw_cmd[4]))
# x0 = draw_cmd[2][0]
# y0 = draw_cmd[2][1]
# z0 = draw_cmd[2][2]
# x1 = scene.objects[draw_cmd[3]].worldPosition.x
# y1 = scene.objects[draw_cmd[3]].worldPosition.y
# z1 = scene.objects[draw_cmd[3]].worldPosition.z-0.1 # ajustement -0.1
# distance = math.sqrt((x1-x0)**2+(y1-y0)**2+(z1-z0)**2)
# distance_xy = math.sqrt((x1-x0)**2+(y1-y0)**2)
# distance_z = z1-z0
# angle_z =math.atan((z1-z0)/(distance_xy))
# angle_xy =math.atan((y1-y0)/(x1-x0))
# step=distance_xy/(2+draw_cmd[6])
# step_z=distance_z/(2+draw_cmd[6])
# if x1>x0:
# angle2=angle_xy
# else:
# angle2=math.pi+angle_xy
# x2=x0+(((6-draw_cmd[0])*step)*(math.cos(angle2)))
# y2=y0+(((6-draw_cmd[0])*step)*(math.sin(angle2)))
# z2=z0-(((6-draw_cmd[0])*step_z)*(math.sin(angle_z)))
# x3=x0+(((6-draw_cmd[0])*step+step)*(math.cos(angle2)))
# y3=y0+(((6-draw_cmd[0])*step+step)*(math.sin(angle2)))
# z3=z0-(((6-draw_cmd[0])*step_z+step_z)*(math.sin(angle_z)))
# bge.render.drawLine([x2,y2, z2], [x3,y3,z3], draw_cmd[5])
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # if scene.objects['Terrain']['speed']<1:
# # draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # else:
# # draw_cmd[0] = draw_cmd[0]-1
# # bge.render.drawLine([draw_cmd[2][0]+((6-draw_cmd[0])*0.25)*(math.cos(draw_cmd[4])), draw_cmd[2][1]+((6-draw_cmd[0])*0.25)*(math.sin(draw_cmd[4])),draw_cmd[2][2]],
# # [draw_cmd[2][0]+((6-draw_cmd[0])*0.25+0.25)*(math.cos(draw_cmd[4])), draw_cmd[2][1]+((6-draw_cmd[0])*0.25+0.25)*(math.sin(draw_cmd[4])),draw_cmd[2][2]],
# # draw_cmd[5])
# # Mage (cast)
# # FIXME : Problème
# if draw_cmd[1]=="cast": # Mage (cast)
# circle(draw_cmd[2], 3.1-draw_cmd[0]*0.1, draw_cmd[3])
# circle(draw_cmd[2], 3-draw_cmd[0]*0.1, draw_cmd[3])
# circle(draw_cmd[2], 2.9-draw_cmd[0]*0.1, draw_cmd[3])
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # if scene.objects['Terrain']['speed']<=2:
# # draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # if scene.objects['Terrain']['speed']==4:
# # draw_cmd[0] = draw_cmd[0]-draw_cmd[4]/2
# # circle(draw_cmd[2], 3, draw_cmd[3]) # simple
# # radius=[3,3,2.5,2.5,2,2,1.5,1.5,1,1,1] # basé sur un tableau
# # circle(draw_cmd[2], radius[draw_cmd[0]], draw_cmd[3])
# # Rayon
# if draw_cmd[1]=="ray":
# if draw_cmd[3] in scene.objects:
# x0 = draw_cmd[2][0]+0.25*(math.cos(draw_cmd[4]))
# y0 = draw_cmd[2][1]+0.25*(math.sin(draw_cmd[4]))
# x1 = scene.objects[draw_cmd[3]].worldPosition.x
# y1 = scene.objects[draw_cmd[3]].worldPosition.y
# z1 = scene.objects[draw_cmd[3]].worldPosition.z
# bge.render.drawLine([x0,y0, draw_cmd[2][2]], [x1,y1,z1], draw_cmd[5]) # suivi minion
# # bge.render.drawLine([draw_cmd[2][0]+0.25*(math.cos(draw_cmd[4])), draw_cmd[2][1]+0.25*(math.sin(draw_cmd[4])), draw_cmd[2][2]], draw_cmd[3], draw_cmd[5]) # décalage minion
# # bge.render.drawLine(draw_cmd[2], draw_cmd[3], draw_cmd[5]) # simple
# draw_cmd[0] = draw_cmd[0]-scene.objects['Terrain']['speed']
# # Suppression des draws finis
# i=0
# for draw_cmd in scene.objects['Terrain']['draw2d_list']:
# if draw_cmd[0]<=0:
# scene.objects['Terrain']['draw2d_list'].pop(i)
# else:
# i=i+1
# if len(scene.objects['Terrain']['draw2d_list'])==0:
# scene.objects['Terrain']['draw2d_process']=False
def rp_tempo (duration):
# time.sleep(duration*(1/scene.objects['Commands']['speed']))
scene.objects['Commands']['time']=0
while scene.objects['Commands']['time']<duration*(1/scene.objects['Commands']['speed']):
# print("Temporization commands :",scene.objects['Terrain']['delay_cmd'])
time.sleep(0.001)
# # pass
###############################################################################
# Map
###############################################################################
def map_aim_near (cont):
obj = cont.owner
sensor = obj.sensors['Near']
if sensor.positive :
print ("Goall !!")

View File

@ -102,9 +102,8 @@ def get_card_description():
# Initialization
def map_init():
# Base
scene.objects['Terrain']['size'] = [-15,15,-10,10] # Map size
scene.objects['Terrain']['map_tile_montain']= [[-6,11],[-6,10],[-7,10],[-8,10],[-9,10],[-10,10],[-11,10],[-12,10]]
scene.objects['Terrain']['map_tile_colony']= []
# Landscape
# file_path = 'asset/map/map1-landscape.blend'
@ -119,12 +118,20 @@ def map_init():
def map_reset():
scene.objects['Points']['step']=0
scene.objects['Points']['nbligne']=0
# Mission
if scene.objects['Terrain']['mission_current']==1:
mission_init= mission_1_init
mission_aim= mission_1_aim
# Cacher les balises
for i in range (100):
beacon = scene.objects["Beacon-"+str(i)]
beacon.worldPosition=[29,1+i,0.2]
beacon.setVisible(False,True)
beacon['activated']=False
scene.objects['Terrain']['map_tile_beacon']= []
# Initialisation du rover
obj = scene.objects['Rover']
obj.worldPosition.x = mission_init[0]
@ -144,10 +151,6 @@ def map_reset():
obj_aim.worldPosition.y = mission_aim[1]
obj_aim.worldPosition.z = 0.5
# Initialization
def map_aim_near(cont):
print ("Goall !!")
###############################################################################
# Fonction bas niveau
###############################################################################