278 lines
220 KiB
Plaintext
Raw Normal View History

<?xml version="1.0" encoding="utf-8"?>
<COLLADA xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.4.1" xmlns="http://www.collada.org/2005/11/COLLADASchema">
<asset>
<created>0001-01-01T00:00:00</created>
<modified>0001-01-01T00:00:00</modified>
<unit name="meter" meter="1"/>
<up_axis>Y_UP</up_axis>
</asset>
<library_images />
<library_materials>
<material id="ID1" name="DefaultMaterial">
<instance_effect url="#ID0" />
</material>
<material id="mat_ID4" name="leaves">
<instance_effect url="#ID3" />
</material>
<material id="mat_ID6" name="trainGrey">
<instance_effect url="#ID5" />
</material>
<material id="mat_ID8" name="ribbon">
<instance_effect url="#ID7" />
</material>
<material id="mat_ID10" name="wood">
<instance_effect url="#ID9" />
</material>
<material id="mat_ID12" name="gold">
<instance_effect url="#ID11" />
</material>
</library_materials>
<library_effects>
<effect id="ID0">
<profile_COMMON>
<technique sid="COMMON">
<phong>
<emission>
<color sid="emission">0.000000 0.000000 0.000000 1.000000</color>
</emission>
<ambient>
<color sid="ambient">0.000000 0.000000 0.000000 1.000000</color>
</ambient>
<diffuse>
<color sid="diffuse">0.500000 0.500000 0.500000 1.000000</color>
</diffuse>
<specular>
<color sid="specular">0.500000 0.500000 0.500000 1.000000</color>
</specular>
<shininess>
<float>50</float>
</shininess>
<index_of_refraction>
<float>1</float>
</index_of_refraction>
</phong>
</technique>
</profile_COMMON>
</effect>
<effect id="ID3">
<profile_COMMON>
<technique sid="COMMON">
<phong>
<emission>
<color sid="emission">0.000000 0.000000 0.000000 1.000000</color>
</emission>
<ambient>
<color sid="ambient">0.000000 0.000000 0.000000 1.000000</color>
</ambient>
<diffuse>
<color sid="diffuse">0.160784 0.670588 0.619608 1.000000</color>
</diffuse>
<specular>
<color sid="specular">0.500000 0.500000 0.500000 1.000000</color>
</specular>
<shininess>
<float>50</float>
</shininess>
<index_of_refraction>
<float>1</float>
</index_of_refraction>
</phong>
</technique>
</profile_COMMON>
</effect>
<effect id="ID5">
<profile_COMMON>
<technique sid="COMMON">
<phong>
<emission>
<color sid="emission">0.000000 0.000000 0.000000 1.000000</color>
</emission>
<ambient>
<color sid="ambient">0.000000 0.000000 0.000000 1.000000</color>
</ambient>
<diffuse>
<color sid="diffuse">0.243137 0.266667 0.298039 1.000000</color>
</diffuse>
<specular>
<color sid="specular">0.500000 0.500000 0.500000 1.000000</color>
</specular>
<shininess>
<float>50</float>
</shininess>
<index_of_refraction>
<float>1</float>
</index_of_refraction>
</phong>
</technique>
</profile_COMMON>
</effect>
<effect id="ID7">
<profile_COMMON>
<technique sid="COMMON">
<phong>
<emission>
<color sid="emission">0.000000 0.000000 0.000000 1.000000</color>
</emission>
<ambient>
<color sid="ambient">0.000000 0.000000 0.000000 1.000000</color>
</ambient>
<diffuse>
<color sid="diffuse">1.000000 0.325490 0.203922 1.000000</color>
</diffuse>
<specular>
<color sid="specular">0.500000 0.500000 0.500000 1.000000</color>
</specular>
<shininess>
<float>50</float>
</shininess>
<index_of_refraction>
<float>1</float>
</index_of_refraction>
</phong>
</technique>
</profile_COMMON>
</effect>
<effect id="ID9">
<profile_COMMON>
<technique sid="COMMON">
<phong>
<emission>
<color sid="emission">0.000000 0.000000 0.000000 1.000000</color>
</emission>
<ambient>
<color sid="ambient">0.000000 0.000000 0.000000 1.000000</color>
</ambient>
<diffuse>
<color sid="diffuse">0.831373 0.490196 0.282353 1.000000</color>
</diffuse>
<specular>
<color sid="specular">0.500000 0.500000 0.500000 1.000000</color>
</specular>
<shininess>
<float>50</float>
</shininess>
<index_of_refraction>
<float>1</float>
</index_of_refraction>
</phong>
</technique>
</profile_COMMON>
</effect>
<effect id="ID11">
<profile_COMMON>
<technique sid="COMMON">
<phong>
<emission>
<color sid="emission">0.000000 0.000000 0.000000 1.000000</color>
</emission>
<ambient>
<color sid="ambient">0.000000 0.000000 0.000000 1.000000</color>
</ambient>
<diffuse>
<color sid="diffuse">0.976471 0.890196 0.501961 1.000000</color>
</diffuse>
<specular>
<color sid="specular">0.500000 0.500000 0.500000 1.000000</color>
</specular>
<shininess>
<float>50</float>
</shininess>
<index_of_refraction>
<float>1</float>
</index_of_refraction>
</phong>
</technique>
</profile_COMMON>
</effect>
</library_effects>
<library_geometries>
<geometry id="ID13">
<mesh>
<source id="ID14">
<float_array id="ID15" count="6354">-0.118537 0.160000 0.001618 -0.124574 0.060000 0.003235 -0.117913 0.160000 0.003125 -0.123325 0.060000 0.006250 -0.157087 0.135000 0.003125 -0.158081 0.135000 0.004419 -0.151675 0.035000 0.006250 -0.153661 0.035000 0.008839 -0.167375 0.025000 -0.008444 -0.169394 0.025000 -0.006894 -0.168750 0.035000 -0.010825 -0.171339 0.035000 -0.008839 -0.156250 0.035000 0.010825 -0.153661 0.035000 0.008839 -0.159375 0.135000 0.005413 -0.158081 0.135000 0.004419 -0.101675 0.060000 -0.006250 -0.107087 0.160000 -0.003125 -0.100426 0.060000 -0.003235 -0.106463 0.160000 -0.001618 -0.168750 0.135000 0.000000 -0.168537 0.135000 0.001618 -0.168537 0.135000 -0.001618 -0.167913 0.135000 -0.003125 -0.167913 0.135000 0.003125 -0.166919 0.135000 -0.004419 -0.166919 0.135000 0.004419 -0.165625 0.135000 -0.005413 -0.165625 0.135000 0.005413 -0.164118 0.135000 -0.006037 -0.164118 0.135000 0.006037 -0.162500 0.135000 -0.006250 -0.162500 0.135000 0.006250 -0.160882 0.135000 -0.006037 -0.160882 0.135000 0.006037 -0.159375 0.135000 -0.005413 -0.159375 0.135000 0.005413 -0.158081 0.135000 -0.004419 -0.158081 0.135000 0.004419 -0.157087 0.135000 -0.003125 -0.157087 0.135000 0.003125 -0.156463 0.135000 -0.001618 -0.156463 0.135000 0.001618 -0.156250 0.135000 0.000000 -0.153661 0.035000 -0.008839 -0.156250 0.035000 -0.010825 -0.158081 0.135000 -0.004419 -0.159375 0.135000 -0.005413 -0.169394 0.025000 0.006894 -0.167375 0.025000 0.008444 -0.171339 0.035000 0.008839 -0.168750 0.035000 0.010825 -0.162500 0.025000 0.009750 -0.159977 0.025000 0.009418 -0.162500 0.035000 0.012500 -0.159265 0.035000 0.012074 -0.156463 0.135000 0.001618 -0.157087 0.135000 0.003125 -0.150426 0.035000 0.003235 -0.151675 0.035000 0.006250 -0.121918 0.050000 0.002523 -0.120944 0.050000 0.004875 -0.124574 0.060000 0.003235 -0.123325 0.060000 0.006250 -0.157625 0.025000 -0.008444 -0.159977 0.025000 -0.009418 -0.156250 0.035000 -0.010825 -0.159265 0.035000 -0.012074 -0.165735 0.035000 -0.012074 -0.168750 0.035000 -0.010825 -0.164118 0.135000 -0.006037 -0.165625 0.135000 -0.005413 -0.121339 0.060000 0.008839 -0.118750 0.060000 0.010825 -0.116919 0.160000 0.004419 -0.115625 0.160000 0.005413 -0.124574 0.060000 -0.003235 -0.125000 0.060000 0.000000 -0.118537 0.160000 -0.001618 -0.118750 0.160000 0.000000 -0.106463 0.160000 0.001618 -0.107087 0.160000 0.003125 -0.100426 0.060000 0.003235 -0.101675 0.060000 0.006250 -0.162500 0.025000 -0.009750 -0.165023 0.025000 -0.009418 -0.162500 0.035000 -0.012500 -0.165735 0.035000 -0.012074 -0.168750 0.135000 0.000000 -0.175000 0.035000 0.000000 -0.168537 0.135000 0.001618 -0.174574 0.035000 0.003235 -0.167375 0.025000 0.008444 -0.165023 0.025000 0.009418 -0.168750 0.035000 0.010825 -0.165735 0.035000 0.012074 -0.159977 0.025000 0.009418 -0.157625 0.025000 0.008444 -0.159265 0.035000 0.012074 -0.156250 0.035000 0.010825 -0.159265 0.035000 0.012074 -0.156250 0.035000 0.010825 -0.160882 0.135000 0.006037 -0.159375 0.135000 0.005413 -0.170944 0.025000 0.004875 -0.169394 0.025000 0.006894 -0.173325 0.035000 0.006250 -0.171339 0.035000 0.008839 -0.159265 0.035000 -0.012074 -0.162500 0.035000 -0.012500 -0.160882 0.135000 -0.006037 -0.162500 0.135000 -0.006250 -0.155606 0.025000 -0.006894 -0.157625 0.025000 -0.008444 -0.153661 0.035000 -0.008839 -0.156250 0.035000 -0.010825 -0.171918 0.025000 0.002523 -0.170944 0.025000 0.004875 -0.174574 0.035000 0.003235 -0.173325 0.035000 0.006250 -0.157625 0.025000 0.008444 -0.155606 0.025000 0.006894 -0.156250 0.035000 0.010825 -0.153661 0.035000 0.008839 -0.150000 0.035000 0.000000 -0.156250 0.135000 0.000000 -0.150426 0.035000 0.003235 -0.156463 0.135000 0.001618 -0.153082 0.025000 0.002523 -0.150426 0.035000 0.003235 -0.154056 0.025000 0.004875 -0.151675 0.035000 0.006250 -0.168537 0.135000 0.001618 -0.174574 0.035000 0.003235 -0.167913 0.135000 0.003125 -0.173325 0.035000 0.006250 -0.165023 0.025000 0.009418 -0.162500 0.025000 0.009750 -0.165735 0.035000 0.012074 -0.162500 0.035000 0.012500 -0.151675 0.035000 -0.006250 -0.157087 0.135000 -0.003125 -0.150426 0.035000 -0.0032
<technique_common>
<accessor count="2118" source="#ID15" stride="3">
<param name="X" type="float" />
<param name="Y" type="float" />
<param name="Z" type="float" />
</accessor>
</technique_common>
</source>
<source id="ID16">
<float_array id="ID17" count="6354">-0.964045 0.062378 0.258315 -0.960945 -0.101420 0.257485 -0.864339 0.062378 0.499026 -0.861560 -0.101420 0.497422 0.864339 0.062378 0.499026 0.705730 0.062378 0.705730 0.861560 -0.101420 0.497422 0.703461 -0.101420 0.703461 -0.482103 -0.265157 -0.835026 -0.681796 -0.265157 -0.681796 -0.497422 -0.101420 -0.861560 -0.703461 -0.101420 -0.703461 0.497422 -0.101420 0.861560 0.703461 -0.101420 0.703461 0.499026 0.062378 0.864339 0.705730 0.062378 0.705730 0.861560 -0.101420 -0.497422 0.864339 0.062378 -0.499026 0.960945 -0.101420 -0.257485 0.964045 0.062378 -0.258315 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.703461 -0.101420 -0.703461 0.497422 -0.101420 -0.861560 0.705730 0.062378 -0.705730 0.499026 0.062378 -0.864339 -0.681796 -0.265157 0.681796 -0.482103 -0.265157 0.835026 -0.703461 -0.101420 0.703461 -0.497422 -0.101420 0.861560 0.000000 -0.265156 0.964205 0.249555 -0.265157 0.931351 0.000000 -0.101420 0.994844 0.257484 -0.101420 0.960945 0.964045 0.062378 0.258315 0.864339 0.062378 0.499026 0.960945 -0.101420 0.257485 0.861560 -0.101420 0.497422 -0.931351 -0.265157 0.249555 -0.835026 -0.265157 0.482103 -0.960945 -0.101420 0.257485 -0.861560 -0.101420 0.497422 0.482103 -0.265157 -0.835026 0.249555 -0.265157 -0.931351 0.497422 -0.101420 -0.861560 0.257484 -0.101420 -0.960945 -0.257484 -0.101420 -0.960945 -0.497422 -0.101420 -0.861560 -0.258315 0.062378 -0.964045 -0.499026 0.062378 -0.864339 -0.703461 -0.101420 0.703461 -0.497422 -0.101420 0.861560 -0.705730 0.062378 0.705730 -0.499026 0.062378 0.864339 -0.960945 -0.101420 -0.257485 -0.994844 -0.101420 0.000000 -0.964045 0.062378 -0.258315 -0.998053 0.062378 0.000000 0.964045 0.062378 0.258315 0.864339 0.062378 0.499026 0.960945 -0.101420 0.257485 0.861560 -0.101420 0.497422 0.000000 -0.265156 -0.964205 -0.249555 -0.265157 -0.931351 0.000000 -0.101420 -0.994844 -0.257484 -0.101420 -0.960945 -0.998053 0.062378 0.000000 -0.994844 -0.101420 0.000000 -0.964045 0.062378 0.258315 -0.960945 -0.101420 0.257485 -0.482103 -0.265157 0.835026 -0.249555 -0.265157 0.931351 -0.497422 -0.101420 0.861560 -0.257484 -0.101420 0.960945 0.249555 -0.265157 0.931351 0.482103 -0.265157 0.835026 0.257484 -0.101420 0.960945 0.497422 -0.101420 0.861560 0.257484 -0.101420 0.960945 0.497422 -0.101420 0.861560 0.258315 0.062378 0.964045 0.499026 0.062378 0.864339 -0.835026 -0.265157 0.482103 -0.681796 -0.265157 0.681796 -0.861560 -0.101420 0.497422 -0.703461 -0.101420 0.703461 0.257484 -0.101420 -0.960945 0.000000 -0.101420 -0.994844 0.258315 0.062378 -0.964045 0.000000 0.062378 -0.998053 0.681796 -0.265157 -0.681796 0.482103 -0.265157 -0.835026 0.703461 -0.101420 -0.703461 0.497422 -0.101420 -0.861560 -0.931351 -0.265157 0.249555 -0.835026 -0.265157 0.482103 -0.960945 -0.101420 0.257485 -0.861560 -0.101420 0.497422 0.482103 -0.265157 0.835026 0.681796 -0.265157 0.681796 0.497422 -0.101420 0.861560 0.703461 -0.101420 0.703461 0.994844 -0.101420 0.000000 0.998053 0.062378 0.000000 0.960945 -0.101420 0.257485 0.964045 0.062378 0.258315 0.931351 -0.265157 0.249555 0.960945 -0.101420 0.257485 0.835026 -0.265157 0.482103 0.861560 -0.101420 0.497422 -0.964045 0.062378 0.258315 -0.960945 -0.101420 0.257485 -0.864339 0.062378 0.499026 -0.861560 -0.101420 0.497422 -0.249555 -0.265157 0.931351 0.000000 -0.265156 0.964205 -0.257484 -0.101420 0.960945 0.000000 -0.101420 0.994844 0.861560 -0.101420 -0.497422 0.864339 0.062378 -0.499026 0.960945 -0.101420 -0.257485 0.964045 0.
<technique_common>
<accessor count="2118" source="#ID17" stride="3">
<param name="X" type="float" />
<param name="Y" type="float" />
<param name="Z" type="float" />
</accessor>
</technique_common>
</source>
<source id="ID18">
<float_array id="ID19" count="4236">1.727074 6.018990 1.759192 2.074431 1.662838 6.018990 1.630721 2.074431 3.862517 5.603606 3.926753 5.603606 3.830400 1.659047 3.958870 1.659047 -5.025484 2.074165 -5.125691 2.074165 -5.011352 2.482237 -5.139822 2.482237 5.139822 1.586009 5.011352 1.586009 5.107705 5.530568 5.043469 5.530568 -1.759192 2.580582 -1.727074 6.525142 -1.630721 2.580582 -1.662838 6.525142 -6.643701 0.000000 -6.635316 0.063686 -6.635316 -0.063686 -6.610734 -0.123031 -6.610734 0.123031 -6.571630 -0.173993 -6.571630 0.173993 -6.520669 -0.213097 -6.520669 0.213097 -6.461324 -0.237679 -6.461324 0.237679 -6.397638 -0.246063 -6.397638 0.246063 -6.333952 -0.237679 -6.333952 0.237679 -6.274606 -0.213097 -6.274606 0.213097 -6.223645 -0.173993 -6.223645 0.173993 -6.184541 -0.123031 -6.184541 0.123031 -6.159959 -0.063686 -6.159959 0.063686 -6.151575 0.000000 -5.011352 1.586009 -5.139822 1.586009 -5.043469 5.530568 -5.107705 5.530568 5.125691 2.074165 5.025484 2.074165 5.139822 2.482237 5.011352 2.482237 6.393009 0.830040 6.292801 0.830040 6.407140 1.238111 6.278670 1.238111 2.416152 5.655252 2.480388 5.655252 2.384035 1.710693 2.512505 1.710693 1.745060 3.075667 1.644853 3.075667 1.759192 3.483739 1.630721 3.483739 -5.860543 0.405692 -5.960750 0.405692 -5.846411 0.813763 -5.974882 0.813763 -5.846411 1.193722 -5.974882 1.193722 -5.878529 5.138281 -5.942764 5.138281 3.578104 2.160750 3.449633 2.160750 3.545986 6.105309 3.481750 6.105309 -0.513883 2.055923 -0.642353 2.055923 -0.546000 6.000482 -0.610236 6.000482 1.662838 6.525142 1.727074 6.525142 1.630721 2.580582 1.759192 2.580582 -6.292801 1.269357 -6.393009 1.269357 -6.278670 1.677429 -6.407140 1.677429 0.867177 4.897410 0.899295 0.952851 0.802942 4.897410 0.770824 0.952851 5.960750 1.693705 5.860543 1.693705 5.974882 2.101777 5.846411 2.101777 5.960750 0.405692 5.860543 0.405692 5.974882 0.813763 5.846411 0.813763 5.974882 1.496556 5.846411 1.496556 5.942764 5.441115 5.878529 5.441115 3.944739 2.384809 3.844532 2.384809 3.958870 2.792881 3.830400 2.792881 -6.278670 1.396785 -6.407140 1.396785 -6.310788 5.341344 -6.375023 5.341344 -5.025484 0.025232 -5.125691 0.025232 -5.011352 0.433303 -5.139822 0.433303 2.498374 2.604468 2.398166 2.604468 2.512505 3.012540 2.384035 3.012540 5.125691 0.025232 5.025484 0.025232 5.139822 0.433303 5.011352 0.433303 0.770824 1.737427 0.802942 5.681986 0.899295 1.737427 0.867177 5.681986 2.398166 -0.505071 2.384035 -0.097000 2.498374 -0.505071 2.512505 -0.097000 2.480388 4.924144 2.512505 0.979585 2.416152 4.924144 2.384035 0.979585 6.393009 1.269357 6.292801 1.269357 6.407140 1.677429 6.278670 1.677429 -2.512505 1.710693 -2.480388 5.655252 -2.384035 1.710693 -2.416152 5.655252 -0.770824 0.952851 -0.899295 0.952851 -0.802942 4.897410 -0.867177 4.897410 -2.384035 0.979585 -2.512505 0.979585 -2.416152 4.924144 -2.480388 4.924144 -2.384035 3.012540 -2.398166 2.604468 -2.512505 3.012540 -2.498374 2.604468 6.407140 1.293493 6.278670 1.293493 6.375023 5.238052 6.310788 5.238052 -6.292801 0.830040 -6.393009 0.830040 -6.278670 1.238111 -6.407140 1.238111 3.926753 4.975790 3.958870 1.031231 3.862517 4.975790 3.830400 1.031231 -3.958870 0.122659 -3.830400 0.122659 -3.944739 -0.285413 -3.844532 -0.285413 -0.899295 -0.210703 -0.770824 -0.210703 -0.885163 -0.618775 -0.784956 -0.618775 5.974882 1.193722 5.846411 1.193722 5.942764 5.138281 5.878529 5.138281 -0.899295 1.737427 -0.867177 5.681986 -0.770824 1.737427 -0.802942 5.681986 6.407140 1.396785 6.278670 1.396785 6.375023 5.341344 6.310788 5.341344 3.844532 -0.285413 3.830400 0.122659 3.944739 -0.285413 3.958870 0.122659 0.784956 -0.618775 0.770824 -0.210703 0.885163 -0.618775 0.899295 -0.210703 -3.958870 1.659047 -3.926753 5.603606 -3.830400 1.659047 -3.862517 5.603606 5.139822 1.104269 5.011352 1.104269 5.107705 5.048828 5.043469 5.048828 -3.830400 2.792881 -3.844532 2.384809 -3.958870 2.792881 -3.944739 2.384809 -5.011352 1.104269 -5.139822 1.104269 -5.043469 5.048828 -5.107705 5.048828 0.899295 3.126244 0.885163 2.718172 0.770824 3.126244 0.784956 2.718172 -0.770824 3.126244 -0.784956 2
<technique_common>
<accessor count="2118" source="#ID19" stride="2">
<param name="X" type="float" />
<param name="Y" type="float" />
</accessor>
</technique_common>
</source>
<vertices id="ID20">
<input semantic="POSITION" source="#ID14" />
</vertices>
<triangles count="355" material="mat_ID4">
<input offset="0" semantic="VERTEX" source="#ID20" />
<input offset="1" semantic="NORMAL" source="#ID16" />
<input offset="2" semantic="TEXCOORD" source="#ID18" />
<p>0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 1 4 4 4 5 5 5 6 6 6 7 7 7 6 6 6 5 5 5 8 8 8 9 9 9 10 10 10 11 11 11 10 10 10 9 9 9 12 12 12 13 13 13 14 14 14 15 15 15 14 14 14 13 13 13 16 16 16 17 17 17 18 18 18 19 19 19 18 18 18 17 17 17 20 20 20 21 21 21 22 22 22 23 23 23 22 22 22 21 21 21 24 24 24 23 23 23 21 21 21 25 25 25 23 23 23 24 24 24 26 26 26 25 25 25 24 24 24 27 27 27 25 25 25 26 26 26 28 28 28 27 27 27 26 26 26 29 29 29 27 27 27 28 28 28 30 30 30 29 29 29 28 28 28 31 31 31 29 29 29 30 30 30 32 32 32 31 31 31 30 30 30 33 33 33 31 31 31 32 32 32 34 34 34 33 33 33 32 32 32 35 35 35 33 33 33 34 34 34 36 36 36 35 35 35 34 34 34 37 37 37 35 35 35 36 36 36 38 38 38 37 37 37 36 36 36 39 39 39 37 37 37 38 38 38 40 40 40 39 39 39 38 38 38 41 41 41 39 39 39 40 40 40 42 42 42 41 41 41 40 40 40 43 43 43 41 41 41 42 42 42 44 44 44 45 45 45 46 46 46 47 47 47 46 46 46 45 45 45 48 48 48 49 49 49 50 50 50 51 51 51 50 50 50 49 49 49 52 52 52 53 53 53 54 54 54 55 55 55 54 54 54 53 53 53 56 56 56 57 57 57 58 58 58 59 59 59 58 58 58 57 57 57 60 60 60 61 61 61 62 62 62 63 63 63 62 62 62 61 61 61 64 64 64 65 65 65 66 66 66 67 67 67 66 66 66 65 65 65 68 68 68 69 69 69 70 70 70 71 71 71 70 70 70 69 69 69 72 72 72 73 73 73 74 74 74 75 75 75 74 74 74 73 73 73 76 76 76 77 77 77 78 78 78 79 79 79 78 78 78 77 77 77 80 80 80 81 81 81 82 82 82 83 83 83 82 82 82 81 81 81 84 84 84 85 85 85 86 86 86 87 87 87 86 86 86 85 85 85 88 88 88 89 89 89 90 90 90 91 91 91 90 90 90 89 89 89 92 92 92 93 93 93 94 94 94 95 95 95 94 94 94 93 93 93 96 96 96 97 97 97 98 98 98 99 99 99 98 98 98 97 97 97 100 100 100 101 101 101 102 102 102 103 103 103 102 102 102 101 101 101 104 104 104 105 105 105 106 106 106 107 107 107 106 106 106 105 105 105 108 108 108 109 109 109 110 110 110 111 111 111 110 110 110 109 109 109 112 112 112 113 113 113 114 114 114 115 115 115 114 114 114 113 113 113 116 116 116 117 117 117 118 118 118 119 119 119 118 118 118 117 117 117 120 120 120 121 121 121 122 122 122 123 123 123 122 122 122 121 121 121 124 124 124 125 125 125 126 126 126 127 127 127 126 126 126 125 125 125 128 128 128 129 129 129 130 130 130 131 131 131 130 130 130 129 129 129 132 132 132 133 133 133 134 134 134 135 135 135 134 134 134 133 133 133 136 136 136 137 137 137 138 138 138 139 139 139 138 138 138 137 137 137 140 140 140 141 141 141 142 142 142 143 143 143 142 142 142 141 141 141 144 144 144 145 145 145 146 146 146 147 147 147 146 146 146 145 145 145 148 148 148 149 149 149 150 150 150 151 151 151 150 150 150 149 149 149 152 152 152 153 153 153 154 154 154 155 155 155 154 154 154 153 153 153 156 156 156 157 157 157 158 158 158 159 159 159 158 158 158 157 157 157 160 160 160 161 161 161 162 162 162 163 163 163 162 162 162 161 161 161 164 164 164 165 165 165 166 166 166 167 167 167 166 166 166 165 165 165 168 168 168 169 169 169 170 170 170 171 171 171 170 170 170 169 169 169 172 172 172 173 173 173 174 174 174 175 175 175 174 174 174 173 173 173 176 176 176 177 177 177 178 178 178 179 179 179 178 178 178 177 177 177 180 180 180 181 181 181 182 182 182 183 183 183 182 182 182 181 181 181 184 184 184 185 185 185 186 186 186 187 187 187 186 186 186 185 185 185 188 188 188 189 189 189 190 190 190 191 191 191 190 190 190 189 189 189 192 192 192 193 193 193 194 194 194 195 195 195 194 194 194 193 193 193 196 196 196 197 197 197 198 198 198 199 199 199 198 198 198 197 197 197 200 200 200 201 201 201 202 202 202 203 203 203 202 202 202 201 201 201 204 204 204 205 205 205 206 206 206 207 207 207 206 206 206 205 205 205 208 208 208 209 209 209 210 210 210 211 211 211 210 210 210 209 209 209 212 212 212 213 213 213 214 214 214 215 215 215 214 214 214 213 213 213 216 216 216 217 217 217 218 218 218 219 219 219 218 218 218 217 217 217 220 220 220 221 221 221 222 222 222 223 223 223 222 222 222 221 221 221 224 224 224 225 225 225 226 226 226 227 227 227 226 226 226 225 225 225 228 228 228 229 229 229 230 230 230 231 231 231 230 230 230 229 229 229 232 232 232 233 233 233 234 234 234 235 235 235 234 234 234 233 233 233 236 236 236 237 237 237 238 238 238 239 239 239 238 238 238
</triangles>
<triangles count="118" material="mat_ID6">
<input offset="0" semantic="VERTEX" source="#ID20" />
<input offset="1" semantic="NORMAL" source="#ID16" />
<input offset="2" semantic="TEXCOORD" source="#ID18" />
<p>649 649 649 650 650 650 651 651 651 652 652 652 651 651 651 650 650 650 653 653 653 652 652 652 650 650 650 654 654 654 652 652 652 653 653 653 655 655 655 654 654 654 653 653 653 656 656 656 654 654 654 655 655 655 657 657 657 656 656 656 655 655 655 658 658 658 656 656 656 657 657 657 659 659 659 658 658 658 657 657 657 660 660 660 658 658 658 659 659 659 661 661 661 660 660 660 659 659 659 662 662 662 660 660 660 661 661 661 663 663 663 662 662 662 661 661 661 664 664 664 662 662 662 663 663 663 665 665 665 664 664 664 663 663 663 666 666 666 664 664 664 665 665 665 667 667 667 666 666 666 665 665 665 668 668 668 666 666 666 667 667 667 669 669 669 668 668 668 667 667 667 670 670 670 668 668 668 669 669 669 671 671 671 670 670 670 669 669 669 672 672 672 670 670 670 671 671 671 673 673 673 674 674 674 675 675 675 676 676 676 675 675 675 674 674 674 677 677 677 678 678 678 679 679 679 680 680 680 679 679 679 678 678 678 681 681 681 682 682 682 683 683 683 684 684 684 683 683 683 682 682 682 685 685 685 686 686 686 687 687 687 688 688 688 687 687 687 686 686 686 689 689 689 690 690 690 691 691 691 692 692 692 691 691 691 690 690 690 693 693 693 694 694 694 695 695 695 696 696 696 695 695 695 694 694 694 697 697 697 698 698 698 699 699 699 700 700 700 699 699 699 698 698 698 701 701 701 702 702 702 703 703 703 704 704 704 703 703 703 702 702 702 705 705 705 706 706 706 707 707 707 708 708 708 707 707 707 706 706 706 709 709 709 710 710 710 711 711 711 712 712 712 711 711 711 710 710 710 713 713 713 714 714 714 715 715 715 716 716 716 715 715 715 714 714 714 717 717 717 718 718 718 719 719 719 720 720 720 719 719 719 718 718 718 721 721 721 722 722 722 723 723 723 724 724 724 723 723 723 722 722 722 725 725 725 726 726 726 727 727 727 728 728 728 727 727 727 726 726 726 729 729 729 730 730 730 731 731 731 732 732 732 731 731 731 730 730 730 733 733 733 734 734 734 735 735 735 736 736 736 735 735 735 734 734 734 737 737 737 738 738 738 739 739 739 740 740 740 739 739 739 738 738 738 741 741 741 742 742 742 743 743 743 744 744 744 743 743 743 742 742 742 745 745 745 746 746 746 747 747 747 748 748 748 747 747 747 746 746 746 749 749 749 750 750 750 751 751 751 752 752 752 751 751 751 750 750 750 753 753 753 754 754 754 755 755 755 756 756 756 755 755 755 754 754 754 757 757 757 758 758 758 759 759 759 760 760 760 759 759 759 758 758 758 761 761 761 762 762 762 763 763 763 764 764 764 763 763 763 762 762 762 765 765 765 766 766 766 767 767 767 768 768 768 767 767 767 766 766 766 769 769 769 770 770 770 771 771 771 772 772 772 771 771 771 770 770 770 773 773 773 774 774 774 775 775 775 776 776 776 775 775 775 774 774 774 777 777 777 778 778 778 779 779 779 780 780 780 779 779 779 778 778 778 781 781 781 782 782 782 783 783 783 784 784 784 783 783 783 782 782 782 785 785 785 786 786 786 787 787 787 788 788 788 787 787 787 786 786 786 789 789 789 790 790 790 791 791 791 792 792 792 791 791 791 790 790 790 793 793 793 794 794 794 795 795 795 796 796 796 795 795 795 794 794 794 797 797 797 798 798 798 799 799 799 800 800 800 799 799 799 798 798 798 801 801 801 802 802 802 803 803 803 804 804 804 803 803 803 802 802 802 805 805 805 806 806 806 807 807 807 808 808 808 807 807 807 806 806 806 809 809 809 810 810 810 811 811 811 812 812 812 811 811 811 810 810 810 813 813 813 814 814 814 815 815 815 816 816 816 815 815 815 814 814 814 817 817 817 818 818 818 819 819 819 820 820 820 819 819 819 818 818 818 821 821 821 822 822 822 823 823 823 824 824 824 823 823 823 822 822 822 825 825 825 826 826 826 827 827 827 828 828 828 827 827 827 826 826 826 829 829 829 830 830 830 831 831 831 832 832 832 831 831 831 830 830 830 833 833 833 834 834 834 835 835 835 836 836 836 835 835 835 834 834 834 837 837 837 838 838 838 839 839 839 840 840 840 839 839 839 838 838 838 841 841 841 842 842 842 843 843 843 844 844 844 843 843 843 842 842 842 845 845 845 846 846 846 847 847 847 848 848 848 847 847 847 846 846 846 849 849 849 850 850 850 851 851 851 852 852 852 851 851 851 850 850 850 853 853 853 854 854 854 855 855 855 856 856 856 85
</triangles>
<triangles count="354" material="mat_ID8">
<input offset="0" semantic="VERTEX" source="#ID20" />
<input offset="1" semantic="NORMAL" source="#ID16" />
<input offset="2" semantic="TEXCOORD" source="#ID18" />
<p>865 865 865 866 866 866 867 867 867 868 868 868 867 867 867 866 866 866 869 869 869 870 870 870 871 871 871 872 872 872 871 871 871 870 870 870 873 873 873 874 874 874 875 875 875 876 876 876 875 875 875 874 874 874 877 877 877 878 878 878 879 879 879 880 880 880 879 879 879 878 878 878 881 881 881 882 882 882 883 883 883 884 884 884 883 883 883 882 882 882 885 885 885 886 886 886 887 887 887 888 888 888 887 887 887 886 886 886 889 889 889 890 890 890 891 891 891 892 892 892 891 891 891 890 890 890 893 893 893 894 894 894 895 895 895 896 896 896 895 895 895 894 894 894 897 897 897 898 898 898 899 899 899 900 900 900 899 899 899 898 898 898 901 901 901 902 902 902 903 903 903 904 904 904 903 903 903 902 902 902 905 905 905 904 904 904 902 902 902 906 906 906 904 904 904 905 905 905 907 907 907 906 906 906 905 905 905 908 908 908 906 906 906 907 907 907 909 909 909 908 908 908 907 907 907 910 910 910 908 908 908 909 909 909 911 911 911 910 910 910 909 909 909 912 912 912 910 910 910 911 911 911 913 913 913 912 912 912 911 911 911 914 914 914 912 912 912 913 913 913 915 915 915 914 914 914 913 913 913 916 916 916 914 914 914 915 915 915 917 917 917 916 916 916 915 915 915 918 918 918 916 916 916 917 917 917 919 919 919 918 918 918 917 917 917 920 920 920 918 918 918 919 919 919 921 921 921 920 920 920 919 919 919 922 922 922 920 920 920 921 921 921 923 923 923 922 922 922 921 921 921 924 924 924 922 922 922 923 923 923 925 925 925 926 926 926 927 927 927 928 928 928 927 927 927 926 926 926 929 929 929 930 930 930 931 931 931 932 932 932 931 931 931 930 930 930 933 933 933 934 934 934 935 935 935 936 936 936 935 935 935 934 934 934 937 937 937 938 938 938 939 939 939 940 940 940 939 939 939 938 938 938 941 941 941 942 942 942 943 943 943 944 944 944 943 943 943 942 942 942 945 945 945 946 946 946 947 947 947 948 948 948 947 947 947 946 946 946 949 949 949 950 950 950 951 951 951 952 952 952 951 951 951 950 950 950 953 953 953 954 954 954 955 955 955 956 956 956 955 955 955 954 954 954 957 957 957 958 958 958 959 959 959 960 960 960 959 959 959 958 958 958 961 961 961 962 962 962 963 963 963 964 964 964 963 963 963 962 962 962 965 965 965 966 966 966 967 967 967 968 968 968 967 967 967 966 966 966 969 969 969 970 970 970 971 971 971 972 972 972 971 971 971 970 970 970 973 973 973 974 974 974 975 975 975 976 976 976 975 975 975 974 974 974 977 977 977 978 978 978 979 979 979 980 980 980 979 979 979 978 978 978 981 981 981 982 982 982 983 983 983 984 984 984 983 983 983 982 982 982 985 985 985 986 986 986 987 987 987 988 988 988 987 987 987 986 986 986 989 989 989 990 990 990 991 991 991 992 992 992 991 991 991 990 990 990 993 993 993 994 994 994 995 995 995 996 996 996 995 995 995 994 994 994 997 997 997 998 998 998 999 999 999 1000 1000 1000 999 999 999 998 998 998 1001 1001 1001 1002 1002 1002 1003 1003 1003 1004 1004 1004 1003 1003 1003 1002 1002 1002 1005 1005 1005 1006 1006 1006 1007 1007 1007 1008 1008 1008 1007 1007 1007 1006 1006 1006 1009 1009 1009 1010 1010 1010 1011 1011 1011 1012 1012 1012 1011 1011 1011 1010 1010 1010 1013 1013 1013 1014 1014 1014 1015 1015 1015 1016 1016 1016 1015 1015 1015 1014 1014 1014 1017 1017 1017 1018 1018 1018 1019 1019 1019 1020 1020 1020 1019 1019 1019 1018 1018 1018 1021 1021 1021 1022 1022 1022 1023 1023 1023 1024 1024 1024 1023 1023 1023 1022 1022 1022 1025 1025 1025 1026 1026 1026 1027 1027 1027 1028 1028 1028 1027 1027 1027 1026 1026 1026 1029 1029 1029 1030 1030 1030 1031 1031 1031 1032 1032 1032 1031 1031 1031 1030 1030 1030 1033 1033 1033 1034 1034 1034 1035 1035 1035 1036 1036 1036 1035 1035 1035 1034 1034 1034 1037 1037 1037 1038 1038 1038 1039 1039 1039 1040 1040 1040 1039 1039 1039 1038 1038 1038 1041 1041 1041 1042 1042 1042 1043 1043 1043 1044 1044 1044 1043 1043 1043 1042 1042 1042 1045 1045 1045 1046 1046 1046 1047 1047 1047 1048 1048 1048 1047 1047 1047 1046 1046 1046 1049 1049 1049 1050 1050 1050 1051 1051 1051 1052 1052 1052 1051 1051 1051 1050 1050 1050 1053 1053 1053 1054 1054 1054 1055 1055 1055 1056 1056 1056 1055 1055 1055 1054 1054 1054 1057 1057 1
</triangles>
<triangles count="247" material="mat_ID10">
<input offset="0" semantic="VERTEX" source="#ID20" />
<input offset="1" semantic="NORMAL" source="#ID16" />
<input offset="2" semantic="TEXCOORD" source="#ID18" />
<p>1513 1513 1513 1514 1514 1514 1515 1515 1515 1516 1516 1516 1515 1515 1515 1514 1514 1514 1517 1517 1517 1515 1515 1515 1516 1516 1516 1518 1518 1518 1515 1515 1515 1517 1517 1517 1519 1519 1519 1514 1514 1514 1513 1513 1513 1520 1520 1520 1519 1519 1519 1513 1513 1513 1521 1521 1521 1518 1518 1518 1517 1517 1517 1522 1522 1522 1518 1518 1518 1521 1521 1521 1523 1523 1523 1518 1518 1518 1522 1522 1522 1524 1524 1524 1518 1518 1518 1523 1523 1523 1525 1525 1525 1518 1518 1518 1524 1524 1524 1526 1526 1526 1518 1518 1518 1525 1525 1525 1527 1527 1527 1518 1518 1518 1526 1526 1526 1528 1528 1528 1518 1518 1518 1527 1527 1527 1520 1520 1520 1513 1513 1513 1529 1529 1529 1518 1518 1518 1528 1528 1528 1530 1530 1530 1528 1528 1528 1531 1531 1531 1530 1530 1530 1531 1531 1531 1532 1532 1532 1530 1530 1530 1532 1532 1532 1533 1533 1533 1530 1530 1530 1533 1533 1533 1534 1534 1534 1530 1530 1530 1534 1534 1534 1535 1535 1535 1530 1530 1530 1535 1535 1535 1536 1536 1536 1530 1530 1530 1536 1536 1536 1537 1537 1537 1530 1530 1530 1537 1537 1537 1538 1538 1538 1530 1530 1530 1530 1530 1530 1538 1538 1538 1513 1513 1513 1539 1539 1539 1513 1513 1513 1538 1538 1538 1540 1540 1540 1513 1513 1513 1539 1539 1539 1529 1529 1529 1513 1513 1513 1540 1540 1540 1541 1541 1541 1542 1542 1542 1543 1543 1543 1544 1544 1544 1543 1543 1543 1542 1542 1542 1545 1545 1545 1543 1543 1543 1544 1544 1544 1546 1546 1546 1543 1543 1543 1545 1545 1545 1547 1547 1547 1542 1542 1542 1541 1541 1541 1548 1548 1548 1547 1547 1547 1541 1541 1541 1549 1549 1549 1546 1546 1546 1545 1545 1545 1550 1550 1550 1546 1546 1546 1549 1549 1549 1551 1551 1551 1546 1546 1546 1550 1550 1550 1552 1552 1552 1546 1546 1546 1551 1551 1551 1553 1553 1553 1546 1546 1546 1552 1552 1552 1554 1554 1554 1546 1546 1546 1553 1553 1553 1555 1555 1555 1546 1546 1546 1554 1554 1554 1556 1556 1556 1546 1546 1546 1555 1555 1555 1548 1548 1548 1541 1541 1541 1557 1557 1557 1546 1546 1546 1556 1556 1556 1558 1558 1558 1556 1556 1556 1559 1559 1559 1558 1558 1558 1559 1559 1559 1560 1560 1560 1558 1558 1558 1560 1560 1560 1561 1561 1561 1558 1558 1558 1561 1561 1561 1562 1562 1562 1558 1558 1558 1562 1562 1562 1563 1563 1563 1558 1558 1558 1563 1563 1563 1564 1564 1564 1558 1558 1558 1564 1564 1564 1565 1565 1565 1558 1558 1558 1565 1565 1565 1566 1566 1566 1558 1558 1558 1558 1558 1558 1566 1566 1566 1541 1541 1541 1567 1567 1567 1541 1541 1541 1566 1566 1566 1568 1568 1568 1541 1541 1541 1567 1567 1567 1557 1557 1557 1541 1541 1541 1568 1568 1568 1569 1569 1569 1570 1570 1570 1571 1571 1571 1572 1572 1572 1571 1571 1571 1570 1570 1570 1573 1573 1573 1571 1571 1571 1572 1572 1572 1574 1574 1574 1571 1571 1571 1573 1573 1573 1575 1575 1575 1570 1570 1570 1569 1569 1569 1576 1576 1576 1575 1575 1575 1569 1569 1569 1577 1577 1577 1574 1574 1574 1573 1573 1573 1578 1578 1578 1574 1574 1574 1577 1577 1577 1579 1579 1579 1574 1574 1574 1578 1578 1578 1580 1580 1580 1574 1574 1574 1579 1579 1579 1581 1581 1581 1574 1574 1574 1580 1580 1580 1582 1582 1582 1574 1574 1574 1581 1581 1581 1583 1583 1583 1574 1574 1574 1582 1582 1582 1584 1584 1584 1574 1574 1574 1583 1583 1583 1576 1576 1576 1569 1569 1569 1585 1585 1585 1574 1574 1574 1584 1584 1584 1586 1586 1586 1584 1584 1584 1587 1587 1587 1586 1586 1586 1587 1587 1587 1588 1588 1588 1586 1586 1586 1588 1588 1588 1589 1589 1589 1586 1586 1586 1589 1589 1589 1590 1590 1590 1586 1586 1586 1590 1590 1590 1591 1591 1591 1586 1586 1586 1591 1591 1591 1592 1592 1592 1586 1586 1586 1592 1592 1592 1593 1593 1593 1586 1586 1586 1593 1593 1593 1594 1594 1594 1586 1586 1586 1586 1586 1586 1594 1594 1594 1569 1569 1569 1595 1595 1595 1569 1569 1569 1594 1594 1594 1596 1596 1596 1569 1569 1569 1595 1595 1595 1585 1585 1585 1569 1569 1569 1596 1596 1596 1597 1597 1597 1598 1598 1598 1599 1599 1599 1600 1600 1600 1599 1599 1599 1598 1598 1598 1601 1601 1601 1602 1602 1602 1603 1603 1603 1604 1604 1604 1603 1603 1603 1602 1602 1602 1605 1605 1605 1606 1606 1606 1607 1607 1607 1608 1608 1608 1607 1607 1607 1606 1606 1606 1609 1609 1609 1610 1610 1610 16
</triangles>
<triangles count="308" material="mat_ID12">
<input offset="0" semantic="VERTEX" source="#ID20" />
<input offset="1" semantic="NORMAL" source="#ID16" />
<input offset="2" semantic="TEXCOORD" source="#ID18" />
<p>1782 1782 1782 1783 1783 1783 1784 1784 1784 1785 1785 1785 1784 1784 1784 1783 1783 1783 1786 1786 1786 1785 1785 1785 1783 1783 1783 1787 1787 1787 1785 1785 1785 1786 1786 1786 1788 1788 1788 1787 1787 1787 1786 1786 1786 1789 1789 1789 1787 1787 1787 1788 1788 1788 1790 1790 1790 1789 1789 1789 1788 1788 1788 1791 1791 1791 1789 1789 1789 1790 1790 1790 1792 1792 1792 1791 1791 1791 1790 1790 1790 1793 1793 1793 1791 1791 1791 1792 1792 1792 1794 1794 1794 1793 1793 1793 1792 1792 1792 1795 1795 1795 1793 1793 1793 1794 1794 1794 1796 1796 1796 1795 1795 1795 1794 1794 1794 1797 1797 1797 1795 1795 1795 1796 1796 1796 1798 1798 1798 1797 1797 1797 1796 1796 1796 1799 1799 1799 1797 1797 1797 1798 1798 1798 1800 1800 1800 1799 1799 1799 1798 1798 1798 1801 1801 1801 1799 1799 1799 1800 1800 1800 1802 1802 1802 1801 1801 1801 1800 1800 1800 1803 1803 1803 1801 1801 1801 1802 1802 1802 1804 1804 1804 1803 1803 1803 1802 1802 1802 1805 1805 1805 1803 1803 1803 1804 1804 1804 1806 1806 1806 1807 1807 1807 1808 1808 1808 1807 1807 1807 1806 1806 1806 1809 1809 1809 1807 1807 1807 1809 1809 1809 1810 1810 1810 1810 1810 1810 1809 1809 1809 1811 1811 1811 1810 1810 1810 1811 1811 1811 1812 1812 1812 1812 1812 1812 1811 1811 1811 1813 1813 1813 1812 1812 1812 1813 1813 1813 1814 1814 1814 1814 1814 1814 1813 1813 1813 1815 1815 1815 1814 1814 1814 1815 1815 1815 1816 1816 1816 1816 1816 1816 1815 1815 1815 1817 1817 1817 1816 1816 1816 1817 1817 1817 1818 1818 1818 1818 1818 1818 1817 1817 1817 1819 1819 1819 1818 1818 1818 1819 1819 1819 1820 1820 1820 1820 1820 1820 1819 1819 1819 1821 1821 1821 1820 1820 1820 1821 1821 1821 1822 1822 1822 1822 1822 1822 1821 1821 1821 1823 1823 1823 1822 1822 1822 1823 1823 1823 1824 1824 1824 1824 1824 1824 1823 1823 1823 1825 1825 1825 1824 1824 1824 1825 1825 1825 1826 1826 1826 1826 1826 1826 1825 1825 1825 1827 1827 1827 1826 1826 1826 1827 1827 1827 1828 1828 1828 1828 1828 1828 1827 1827 1827 1829 1829 1829 1830 1830 1830 1831 1831 1831 1832 1832 1832 1833 1833 1833 1832 1832 1832 1831 1831 1831 1834 1834 1834 1833 1833 1833 1831 1831 1831 1835 1835 1835 1833 1833 1833 1834 1834 1834 1836 1836 1836 1835 1835 1835 1834 1834 1834 1837 1837 1837 1835 1835 1835 1836 1836 1836 1838 1838 1838 1837 1837 1837 1836 1836 1836 1839 1839 1839 1837 1837 1837 1838 1838 1838 1840 1840 1840 1839 1839 1839 1838 1838 1838 1841 1841 1841 1839 1839 1839 1840 1840 1840 1842 1842 1842 1841 1841 1841 1840 1840 1840 1843 1843 1843 1841 1841 1841 1842 1842 1842 1844 1844 1844 1843 1843 1843 1842 1842 1842 1845 1845 1845 1843 1843 1843 1844 1844 1844 1846 1846 1846 1845 1845 1845 1844 1844 1844 1847 1847 1847 1845 1845 1845 1846 1846 1846 1848 1848 1848 1847 1847 1847 1846 1846 1846 1849 1849 1849 1847 1847 1847 1848 1848 1848 1850 1850 1850 1849 1849 1849 1848 1848 1848 1851 1851 1851 1849 1849 1849 1850 1850 1850 1852 1852 1852 1851 1851 1851 1850 1850 1850 1853 1853 1853 1851 1851 1851 1852 1852 1852 1854 1854 1854 1855 1855 1855 1856 1856 1856 1855 1855 1855 1854 1854 1854 1857 1857 1857 1855 1855 1855 1857 1857 1857 1858 1858 1858 1858 1858 1858 1857 1857 1857 1859 1859 1859 1858 1858 1858 1859 1859 1859 1860 1860 1860 1860 1860 1860 1859 1859 1859 1861 1861 1861 1860 1860 1860 1861 1861 1861 1862 1862 1862 1862 1862 1862 1861 1861 1861 1863 1863 1863 1862 1862 1862 1863 1863 1863 1864 1864 1864 1864 1864 1864 1863 1863 1863 1865 1865 1865 1864 1864 1864 1865 1865 1865 1866 1866 1866 1866 1866 1866 1865 1865 1865 1867 1867 1867 1866 1866 1866 1867 1867 1867 1868 1868 1868 1868 1868 1868 1867 1867 1867 1869 1869 1869 1868 1868 1868 1869 1869 1869 1870 1870 1870 1870 1870 1870 1869 1869 1869 1871 1871 1871 1870 1870 1870 1871 1871 1871 1872 1872 1872 1872 1872 1872 1871 1871 1871 1873 1873 1873 1872 1872 1872 1873 1873 1873 1874 1874 1874 1874 1874 1874 1873 1873 1873 1875 1875 1875 1874 1874 1874 1875 1875 1875 1876 1876 1876 1876 1876 1876 1875 1875 1875 1877 1877 1877 1878 1878 1878 1879 1879 1879 1880 1880 1880 1881 1881 1881 1880 1880 1880 1879 1879 1879 1882 1882 1882 1881 1881 1881 18
</triangles>
</mesh>
</geometry>
</library_geometries>
<library_visual_scenes>
<visual_scene id="ID2">
<node id="ID21" name="kwanzaaKinara">
<matrix>1.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 1.000000</matrix>
<instance_geometry url="#ID13">
<bind_material>
<technique_common>
<instance_material symbol="mat_ID4" target="#mat_ID4" />
<instance_material symbol="mat_ID6" target="#mat_ID6" />
<instance_material symbol="mat_ID8" target="#mat_ID8" />
<instance_material symbol="mat_ID10" target="#mat_ID10" />
<instance_material symbol="mat_ID12" target="#mat_ID12" />
</technique_common>
</bind_material>
</instance_geometry>
</node>
</visual_scene>
</library_visual_scenes>
<scene>
<instance_visual_scene url="#ID2" />
</scene>
</COLLADA>