Multivariate Statistics

by Samuel Ortion

Prof.: Cyril Dalmasso

Fall 2023

Contents

1.	Introduction			
	1.1.	Generalized Linear Model		
		1.1.1.	Penalized Regression	5
		1.1.2.	Simple Linear Model	5
		1.1.3.	Assumptions	5
		1.1.4.	Statistical Analysis Workflow	5
1	1.2.	Param	neter Estimation	
		1.2.1.	Simple Linear Regression	
		1.2.2.	General Case	5
		1.2.3.	Ordinary Least Square Algorithm	6
	1.3.	Coeffic	cient of Determination: R^2	6
2.	Elen	nents o	of Linear Algebra	7

This work is licensed under a Creative Commons "Attribution-Share Alike $4.0\,$ International" license.

Introduction

Definition 1: Long Term Nonprocessor (LTNP)

Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).

Example 1: Genotype: Qualitative or Quantitative?

$$SNP: \begin{cases} AA \\ AB \end{cases} \rightarrow \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix},$$

thus we might consider genotype either as a qualitative variable or quantitative variable.

When the variable are quantitative, we use regression, whereas for qualitative variables, we use an analysis of variance.

Part I.

1.1. Generalized Linear Model

$$g(\mathbb{E}(Y)) = X\beta$$

with g being

- Logistic regression: $g(v) = \log\left(\frac{v}{1-v}\right)$, for instance for boolean values,
- Poission regression: $g(v) = \log(v)$, for instance for discrete variables.

1.1.1. Penalized Regression

When the number of variables is large, e.g, when the number of explicative variable is above the number of observations, if p >> n (p: the number of explicative variable, n is the number of observations), we cannot estimate the parameters. In order to estimate the parameters, we can use penalties (additional terms).

Lasso regression, Elastic Net, etc.

1.1.2. Simple Linear Model

$$\mathbf{Y} = \mathbf{X} \qquad \beta + \qquad \varepsilon.$$

$$n \times 1n \times 2 \qquad 2 \times 1 + \qquad n \times 1$$

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix} \qquad \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \qquad \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

1.1.3. Assumptions

1.1.4. Statistical Analysis Workflow

Step 1. Graphical representation;

Step 2. ...

1.2. Parameter Estimation

1.2.1. Simple Linear Regression

1.2.2. General Case

If X^TX is invertible, the OLS estimator is:

$$\hat{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y} \tag{1.1}$$

1.2.3. Ordinary Least Square Algorithm

We want to minimize the distance between $X\beta$ and Y:

$$\min \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^{2}$$
(See chapter 2).
$$\Rightarrow \mathbf{X}\boldsymbol{\beta} = proj^{(1,\mathbf{X})}\mathbf{Y}$$

$$\Rightarrow \forall v \in w, \ vy = vproj^{w}(y)$$

$$\Rightarrow \forall i :$$

$$\mathbf{X}_{i}\mathbf{Y} = \mathbf{X}_{i}X\hat{\boldsymbol{\beta}} \quad \text{where } \hat{\boldsymbol{\beta}} \text{ is the estimator of } \boldsymbol{\beta}$$

$$\Rightarrow \mathbf{X}^{T}\mathbf{Y} = \mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}}$$

$$\Rightarrow (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{Y} = (\mathbf{X}^{T}\mathbf{X})^{-1}(\mathbf{X}^{T}\mathbf{X})\hat{\boldsymbol{\beta}}$$

This formula comes from the orthogonal projection of ${\bf Y}$ on the subspace define by the explicative variables ${\bf X}$

 $\mathbf{X}\hat{\beta}$ is the closest point to \mathbf{Y} in the subspace generated by \mathbf{X} .

If H is the projection matrix of the subspace generated by \mathbf{X} , $X\mathbf{Y}$ is the projection on \mathbf{Y} on this subspace, that corresponds to $\mathbf{X}\hat{\beta}$.

1.3. Coefficient of Determination: R^2

 $\Rightarrow \hat{\beta} = (X^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$

$$0 \le R^2 = \frac{\|\mathbf{X}\hat{\beta} - \bar{\mathbf{Y}}\mathbf{1}\|^2}{\|\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1}\|^2} = 1 - \frac{\|\mathbf{Y} - \mathbf{X}\hat{\beta}\|^2}{\|\mathbf{Y} - \bar{\mathbf{Y}}\mathbf{1}\|^2} \le 1$$

proportion of variation of ${\bf Y}$ explicated by the model.

Elements of Linear Algebra

Remark 1: vector

Let u a vector, we will use interchangeably the following notations: u and \vec{u}

Let
$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
 and $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$

$$\langle u, v \rangle = (u_1, \dots, u_v) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= u_1v_1 + u_2v_2 + \ldots + u_nv_n$$

Definition 3: Norm

Length of the vector.

$$||u|| = \sqrt{\langle u, v \rangle}$$

$$||u,v|| > 0$$

Definition 4: Distance

$$dist(u,v) = \|u - v\|$$

Definition 5: Orthogonality

$$u \perp v \Leftrightarrow \langle u, v \rangle = 0$$

Remark 2

$$(dist(u, v))^2 = ||u - v||^2,$$

and

$$\langle v - u, v - u \rangle$$

Scalar product properties:

•
$$\langle u, v \rangle = \langle v, u \rangle$$

•
$$\langle (u+v), w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

•
$$\langle u, v \rangle$$

•
$$\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\widehat{\vec{u}, \vec{v}})$$

$$\begin{split} \langle v-u,v-u\rangle &= \langle v,v\rangle + \langle u,u\rangle - 2\langle u,v\rangle \\ &= \|v\|^2 + \|u\|^2 \\ &= -2\langle u,v\rangle \end{split}$$

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2\langle u, v \rangle$$
$$||u + v||^2 = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$$

If
$$u \perp v$$
, then $\langle u, v \rangle = 0$

Indeed.
$$||u-v||^2 = ||u+v||^2$$
,
 $\Leftrightarrow -2\langle u,v\rangle = 2\langle u,v\rangle$
 $\Leftrightarrow 4\langle u,v\rangle = 0$
 $\Leftrightarrow \langle u,v\rangle = 0$

Theorem 1

Pythagorean theorem If $u \perp v,$ then $\|u+v\|^2 = \|u\|^2 + \|v\|^2$.

Definition 6: Orthogonal Projection

Let $y = \begin{pmatrix} y_1 \\ . \\ y_n \end{pmatrix} \in \mathbb{R}^n$ and w a subspace of \mathbb{R}^n \mathcal{Y} can be written as the orthogonal projection of y on w:

$$\mathcal{Y} = proj^w(y) + z,$$

where

$$\begin{cases} z \in w^{\perp} \\ proj^{w}(y) \in w \end{cases}$$

There is only one vector \mathcal{Y} that ?

The scalar product between z and (?) is zero.

Property 1. $proj^w(y)$ is the closest vector to y that belongs to w.

Definition 7: Matrix

A matrix is an application, that is, a function that transform a thing into another, it is a linear function.

Example 2: Matrix application

Let A be a matrix:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Then,

$$Ax = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} ax_1 + b_x 2 \\ cx_1 + dx_2 \end{pmatrix}$$

Similarly,

$$\begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \left(ax_1 + bx_2 + cx_3 \dots \right)$$

The number of columns has to be the same as the dimension of the vector to which the matrix is applied.

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, then $A^{\mathrm{T}} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$

Example 3

$$Y = X\beta + \varepsilon$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ 1 & x_{31} & x_{32} \\ 1 & x_{41} & x_{42} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{pmatrix}$$