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Introduction

6 Definition 1: Long Term Nonprocessor (LTNP)

Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).

e Example 1: Genotype: Qualitative or Quantitative?

AA 0
SNP:{AB — | 1],
BB 2

thus we might consider genotype either as a qualitative variable or quantitative variable.

When the variable are quantitative, we use regression, whereas for qualitative variables, we use an

analysis of variance.
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1.1. Generalized Linear Model

g(E(Y)) = X5

with g being
« Logistic regression: g(v) = log (ﬁ), for instance for boolean values,

o Poission regression: g(v) = log(v), for instance for discrete variables.

1.1.1. Penalized Regression

When the number of variables is large, e.g, when the number of explicative variable is above the number
of observations, if p >> n (p: the number of explicative variable, n is the number of observations), we
cannot estimate the parameters. In order to estimate the parameters, we can use penalties (additional
terms).

Lasso regression, Elastic Net, etc.

1.1.2. Simple Linear Model

Y=X B+ E.
n X 1ln x 2 2 x 1+ nx1
Y; 1 X; €1
Y, 1 X5 €2

A (?ﬁ)* :
Y, 1 X, En

1.1.8. Assumptions

1.1.4. Statistical Analysis Workflow

Step 1. Graphical representation;

Step 2. ...

1.2. Parameter Estimation

1.2.1. Simple Linear Regression

1.2.2. General Case

If XTX is invertible, the OLS estimator is:

f=(XTX)"'X"Y (1.1)



1.2.3. Ordinary Least Square Algorithm

We want to minimize the distance between XS and Y:
min[[Y — X3|*
(See chapter 2).

=X = proj(l’X)Y
=Y € w, vy = vproj®(y)
=Vi:
X, Y =X; X 3 where B is the estimator of 3
=>XTy = XTXz3
=(XTX)'XTY = (XTX)"YXTX)3
=4 =(X"X)"'XTY
This formula comes from the orthogonal projection of Y on the subspace define by the explicative
Variaples X
X3 is the closest point to Y in the subspace generated by X.

If H is the projection matrix of the subspace generated by X, XY is the projection on Y on this
subspace, that corresponds to XB.

1.3. Coefficient of Determination: R?

6 Definition 2: R?

AV 2 _ 2112
o _ IXB-Y1? _ Y -XB|* _

0<R*= = _
- Y = Y1 Y =Y1)* ~

proportion of variation of Y explicated by the model.



Elements of
Linear

Algebra

0 Remark 1: vector

Let u a vector, we will use interchangeably the following notations: u and 4

Uy U1
Let u = ‘| and v =
Un, Up
U1
(u,v) = (u1,...,up) | :
Un,

= U1V1 + UV2 + ...+ UV,

@ Definition 3: Norm

Length of the vector.

[ull = v/ {u, v)
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@ Definition 4: Distance
dist(u,v) = ||u — v
@ Definition 5: Orthogonality
ulve (u,v)y=0
o Remark 2

(diSt(u7 v))Q = ”u - ’U||2,
and

(v —u,v—u)

Scalar product properties:

u,v) = (v, u)

(u+v),w) = (u,w) + (v, w)

u,v)

(
(
(
(@

- =
4, v) = ||| x [|7]] x cos(@, v)

(v —u,v—u) = (v,v) + (u,u) — 2{u,v)

= [l + [[ull?
= —2(u,v)
lu =l = [lull + [lo]]* — 2{u, v)

lu+ ol = [ull? + [[o]] + 2(u, v)
If w L v, then (u,v) =0
Indeed. ||u—v|)? = ||u+v|?,

< — 2(u,v) = 2(u,v)
<4{u,vy =0
S (u,v) =0

@ Theorem 1

Pythagorean theorem If v L v, then |lu + v[|? = |Ju|® + ||v||? .
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Definition 6: Orthogonal Projection

Y1
Let y = .| € R® and w a subspace of R™ ) can be written as the orthogonal projection of y on w:

Yn
Y =proj“(y) +z

where

AS wt
proj*(y) € w
There is only one vector ) that ?

The scalar product between z and (?) is zero.

Property 1. proj*“(y) is the closest vector to y that belongs to w.

Definition 7: Matrix

A matrix is an application, that is, a function that transform a thing into another, it is a linear

function.

O Example 2: Matrix application
Let A be a matrix:
a b
A =
and
xTr =
T2
Then,
a b T
A =
_ [az1 + b2
 \exy + das
Similarly,
a b ¢ d il
e f g h 2 =<am1+bx2—|—cx3...)
. . z3
i g k1
T4

The number of columns has to be the same as the dimension of the vector to which the matrix is

applied.
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Definition 8: Tranpose of a Matrix

a b a c
et (C d)’ then (b d>

0 Example 3

Y=X0(+¢
N 1z 710 €1
Yo 1 z91 T2 Po €9
= B |+
Ys 1 231 w32 €3
B2
Ya 1 241 740 €4

10



	Introduction
	Generalized Linear Model
	Penalized Regression
	Simple Linear Model
	Assumptions
	Statistical Analysis Workflow

	Parameter Estimation
	Simple Linear Regression
	General Case
	Ordinary Least Square Algorithm

	Coefficient of Determination: R2

	Elements of Linear Algebra

