RDOO/recup_donnees_OSM_Overpass.py

200 lines
6.3 KiB
Python

#!/usr/bin/env python3
# inspiration :
# https://towardsdatascience.com/loading-data-from-openstreetmap-with-python-and-the-overpass-api-513882a27fd0
# https://geo.api.gouv.fr/adresse
# https://wiki.cartocite.fr/doku.php?id=umap:10_-_je_valorise_les_donnees_openstreetmap_avec_umap
# https://sites-formations.univ-rennes2.fr/mastersigat/Cours/Intro_Overpass.pdf
# usage des tags : https://taginfo.openstreetmap.org/tags/?key=amenity&value=bicycle_parking#combinations
# exemple URL données pour umap : https://www.velocite63.fr/velocite63/OSM/stationnements_velos_publics.json
# penser à cocher "proxy" dans la rubrique "données distantes" du calque
# export ODS :
# https://pythonhosted.org/pyexcel-ods/
# pip3 install pyexcel-ods3
import requests
import json
import time
from pyexcel_ods3 import save_data
from collections import OrderedDict
import os
from osm_vc63 import errors
from osm_vc63 import requetes
from osm_vc63.save import Save
overpass_url="http://overpass-api.de/api/interpreter"
geo_api_url = "https://api-adresse.data.gouv.fr"
dossier_sauvegarde = "resultats/"
# nombre maxi de retries quand echec API
max_retry = 4
# delai en secondes entre les tentatives
retry_delay = 120
# id du département "Puy de Dôme" : 7406
# id Riom : 1693144
# id Clermont : 110866
# id Romagnat : 138269
# l'id de l'area se calcule en ajoutant 3600000000 au numéro de l'objet OSM
aire_de_recherche = str(3600000000+110866)
# ----------------------------------------------
trad_bicycle_parking = {
"stands": "Arceaux",
"wall_loops": "Pince roues",
"rack": "Râteliers",
"anchors": "Ancrage",
"shed": "Abri collectif",
"bollard": "Potelet",
"lockers": "Abris individuels",
"wide_stands": "Arceaux espacés",
"ground_slots": "Fente dans le sol",
"building": "Bâtiment",
"informal": "Informel",
"wave": "Râteliers",
"streetpod": "Arceaux",
"tree": "Arbre à bicyclettes",
"crossbar": "Barre",
"rope": "Câble",
"two-tier": "Deux étages",
"floor": "Sol",
"handlebar_holder": "Accroche-guidons"}
def run_overpass_query(critere, aire_de_recherche) :
"""Envoie la requête Overpass et retourne la réponse JSON."""
overpass_query = """[out:json];
(
"""+critere+"""
);
out center;
"""
overpass_query = overpass_query.replace("aire_de_recherche", aire_de_recherche)
print("Execution requete overpass : \n" + overpass_query)
response = requests.get(overpass_url, params={'data': overpass_query})
if (response.status_code != 200) :
raise errors.Overpass_error(response.status_code)
return (response.json())
def run_reverse_geocoding(lat, lon) :
"""Retourne une adresse JSON à partir d'une position GPS."""
url = geo_api_url + "/reverse/"
response = requests.get(url, params={'lon' : str(lon), 'lat' : str(lat)})
if (response.status_code != 200) :
raise errors.Geo_api_error(response.status_code)
return (response.json())
def executer_requete_et_exporter_resultats(nom_req, critere, aire_de_recherche, overpass_query_fields) :
data = run_overpass_query(critere, aire_de_recherche)
nb_elements = len(data["elements"])
print("Nombre d'elements : "+str(nb_elements))
"""
print("Géocodage inversé : ", end="", flush=True)
# @TODO : optimiser en faisant un appel au service /reverse/csv/ plutot que le service unitaire /reverse/
for element in data["elements"]:
if (element["type"] == "node") :
rev_geocode = run_reverse_geocoding(element["lat"], element["lon"])
else :
rev_geocode = run_reverse_geocoding(element["center"]["lat"], element["center"]["lon"])
api_adresse = rev_geocode["features"][0]
element["tags"]["api_adresse:geometry:coordinates:lon"] = api_adresse["geometry"]["coordinates"][0]
element["tags"]["api_adresse:geometry:coordinates:lat"] = api_adresse["geometry"]["coordinates"][1]
element["tags"]["api_adresse:properties:label"] = api_adresse["properties"]["label"]
element["tags"]["api_adresse:properties:score"] = api_adresse["properties"]["score"]
if ("housenumber" in api_adresse["properties"]) :
element["tags"]["api_adresse:properties:housenumber"] = api_adresse["properties"]["housenumber"]
element["tags"]["api_adresse:properties:type"] = api_adresse["properties"]["type"]
element["tags"]["api_adresse:properties:name"] = api_adresse["properties"]["name"]
element["tags"]["api_adresse:properties:postcode"] = api_adresse["properties"]["postcode"]
element["tags"]["api_adresse:properties:citycode"] = api_adresse["properties"]["citycode"]
element["tags"]["api_adresse:properties:city"] = api_adresse["properties"]["city"]
if ("street" in api_adresse["properties"]) :
element["tags"]["api_adresse:properties:street"] = api_adresse["properties"]["street"]
element["tags"]["api_adresse:properties:attribution"] = rev_geocode["attribution"]
element["tags"]["api_adresse:properties:licence"] = rev_geocode["licence"]
# traduction
if "bicycle_parking" in element["tags"]:
element["tags"]["bicycle_parking"] = trad_bicycle_parking[element["tags"]["bicycle_parking"]]
print("X", end="", flush=True)
#else :
# print("-", end="", flush=True)
print()
"""
export_json = Save().nettoyage_json_pour_umap(data, overpass_query_fields)
# Sauvegarde
os.makedirs(dossier_sauvegarde, exist_ok = True)
Save().as_json(export_json, dossier_sauvegarde, nom_req)
Save().as_ods(overpass_query_fields, data, dossier_sauvegarde, nom_req)
def main():
for req in requetes.reqs:
for nb_essai in range(max_retry): # on tente max_retry fois
try:
executer_requete_et_exporter_resultats(
req.nom, req.critere, aire_de_recherche, req.champs
)
break
except errors.Api_error:
if nb_essai == max_retry:
print("trop d'erreurs d'API - abandon")
exit()
print("erreur API - on retente dans " + str(retry_delay) + "s")
time.sleep(retry_delay)
print("Fini")
if __name__ == "__main__":
main()