You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

238 lines
17 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"id": "unnecessary-combine",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "touched-clerk",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"../data/analyses/guesses.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "lasting-buffer",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>date</th>\n",
" <th>probability</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>6239.000000</td>\n",
" <td>6.239000e+03</td>\n",
" <td>6239.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>3119.000000</td>\n",
" <td>2.021030e+13</td>\n",
" <td>0.632259</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>1801.188497</td>\n",
" <td>1.239403e+06</td>\n",
" <td>0.196005</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>2.021030e+13</td>\n",
" <td>0.217052</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>1559.500000</td>\n",
" <td>2.021030e+13</td>\n",
" <td>0.479808</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>3119.000000</td>\n",
" <td>2.021031e+13</td>\n",
" <td>0.621566</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>4678.500000</td>\n",
" <td>2.021031e+13</td>\n",
" <td>0.789861</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>6238.000000</td>\n",
" <td>2.021031e+13</td>\n",
" <td>0.999820</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 date probability\n",
"count 6239.000000 6.239000e+03 6239.000000\n",
"mean 3119.000000 2.021030e+13 0.632259\n",
"std 1801.188497 1.239403e+06 0.196005\n",
"min 0.000000 2.021030e+13 0.217052\n",
"25% 1559.500000 2.021030e+13 0.479808\n",
"50% 3119.000000 2.021031e+13 0.621566\n",
"75% 4678.500000 2.021031e+13 0.789861\n",
"max 6238.000000 2.021031e+13 0.999820"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "attractive-endorsement",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"data = {'species': [], 'n_appearence': []}\n",
"for i, sighting in df.iterrows():\n",
" # print(sighting)\n",
" species = sighting['predicted_species']\n",
" if species in data['species']:\n",
" data['n_appearence'][data['species'].index(species)] += 1\n",
" else:\n",
" data['species'].append(species)\n",
" data['n_appearence'].append(1)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "fitted-pittsburgh",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'species': ['pasdom',\n",
" 'erirub',\n",
" 'parmaj',\n",
" 'caycae',\n",
" 'felcat',\n",
" 'fricoe',\n",
" 'prumod'],\n",
" 'n_appearence': [4374, 453, 988, 292, 104, 5, 23]}"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "smooth-galaxy",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgIklEQVR4nO3dd7geVbn38e+PBAhSUkjkkBAICooUBY0UUURAqgrniAoqRUEsKPAqCpYjSFE4FpRXxYOAQUQRFSECihEIKEoJUkPRCJGElkBCKIKvwP3+se5NJk/Ws3v23sHf57pyMbPWzJp76j2zZp6NIgIzM7NWKwx2AGZmNjQ5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVnVv02CkBSSNhigZU3K5Q0fiOX1lqQ3Sbq7k/p1JT0padhAxtUSw4GS/jBYy+8JSWMkXS9pmyEQy/aS5g52HF2RNEXSCf3c5qAfty8Wg5YgJM2WNE/Sqo2ygyVNH6yYlhVJ0yVtP9hxtIqI30fEKzvGc5/s1Ki/LyJWi4jnBifC5UtELADeBnxF0sTBjmewLesklTdhT2UyuF/SNyQNqx23knaRdLWkJyTNl3SVpHcsq9j6g6T35bo9KelpSc83xp8ciBgG+wliGHD4IMewlKF+598f/h3WcTBExLyI2D4i5gx2LP8mXhMRqwE7Au8FPtQ6gaS9gZ8BPwTWAdYCvgi8fQDjXIqKttfgiDg3E91qwG7AAx3jWdZsa5k8LQ12gvgqcKSkUbVKSW+QdIOkRfnfNzTqpks6QdIfM6P+StKaks6V9HhOP6mlyd0l3SPpEUlf7dg52Y1xjaRTJD0KHCtpZUlfk3SfpIclfU/SKm3iHJbTPiLpHmCPdissaUtJf5L0mKQHJX1b0kqN+pB0WBdxfju3yV2SdmzM+wFJd+Zd0j2SPtyo217SXElHSXoI+EHzDk/SOcC6wK9ye35GLV1lksZLmippgaRZkj7UaP9YSedL+mEuf6akyY36o/Iu7wlJdzfjbtk+a+YyHpd0PfDylvqNJE3LGO6W9O5G3e6S7shl3C/pyE72wwdzWy2UdJmk9bJceRzMyxhuk7Rp1k3J42BaLuOqjvkqsf1F0j6NulUkfV3S33Pf/aHjeJK0dR7Hj0m6RY2nzdzn9+Ty7pX0vjbrs0rGt1DSHcDrW+rHS/qFyt3zvZIOa5Q/LWlMY9ot8thbUdLLJV0h6dEsO1eN81XlqfNISbfmev1U0giVnoFfA+O1+K53fLv90WjvbZJuzm3xR0mv7moegIi4C/g9sGnzuJUk4BvA8RFxRkQsiojnI+KqiPhQLrM76/jpXMenJJ0paS1Jv8798jtJoxvTd7Y/p0s6UdI1wD+Al6mT87aT7TRF0mmSLpX0FPAWSXtIuimP2zmSjm1M37FNDpH0gMq1p+350dywg/IPmA3sBFwAnJBlBwPTc3gMsBDYDxgO7Jvja2b9dGAW5QIyErgD+Eu2OZxyt/CDxvICuDLbXTenPTjrDgSeBT6R864CnAJMzelXB34FfKXNunwEuAuYmNNfmcsbXpn2dcDWuZxJwJ3AET2M8/8AKwLvARYBY7J+j9weAt5MOQBfm3Xb57wnAyvnOm4PzG3dJ43xSc31AK4GvguMADYH5gM7ZN2xwDPA7pQnw68A12bdK4E5wPhGuy9vsy3PA84HVgU2Be4H/pB1q2Y7H8jttwXwCLBx1j8IvCmHR3ese2UZe1KOnVdlO18A/ph1uwA3AqNyO74KWDvrpgBPANvlNvxWJbaDs83XAQuAzbL+O5RjdkJunzdkGxOAR3O7rQC8NcfHZZuPA6/MNtYGNmmzTidRLpBjKMfh7R37Ntu9kXLXvBLwMuAeYJesvwL4UKOtrwLfy+ENMqaVM6argW+2HDPXA+Nz2XcCH2kcc3Nr8Tbmn8Li838LYB6wVW6jA7L9ldvMG8AGObwx8BBwEI3jFtgoh9fvJIburOO1lCePCRnjnzPeEbn9jslp2+7PxnXrPmCTjG9FOjlvGzEssS1zuy0Cts3ljMhpNsvxVwMPA3u1nMs/oRxXm1HO35063T9DIEFsmis6jiUTxH7A9S3z/Ak4sLGhP9+o+zrw68b424GbWw6mXRvjHwMub1x472vUCXiKxkUM2Aa4t826XEGeFDm+M20SRGXeI4Bf9iDOBwA16q8H9mvT9oXA4Y0D7P8BIzo56GbTJkFQLjrPAas36r8CTMnhY4HfNeo2Bp5unIDzcn+v2Mm2GAb8C9ioUfZlFl+E3wP8vmWe/2XxyXkf8GFgjS62+a+BgxrjK1BOyvWAHShJeWtghZb5pgDnNcZXy20yMWO7pmX603O7rAA8TekOaY3lKOCclrLLKBfHVYHHgHcCq3SxTve0HDeHsDhBbEXj+M6yz5I3UJTz7orGsT8H2K7NcvYCbmo5Zt7fGP8fFieXJY6vNu1NYXGCOI1yp9+svxt4c5t5g5JAFwJ/A07IbT2Jxcfttjk8orM4urGO72uM/wI4rTH+CeDCrvZnDk8Hjuti+ReS520n5+oU4IddtPNN4JRY8lxunlv/A5zZWRuD3cVERNwOXAwc3VI1Hvh7S9nfKRm6w8ON4acr40v001EO/GZb49vUjQNeAtyYj4mPAb/J8prxlbarJL1C0sWSHpL0OOUCOLYHcd4fuXdb6yXtJuna7OJ4jHIX02x7fkQ80y62LowHFkTEEy3Lbu6PhxrD/wBGSBoeEbMoifBYYJ6k89p0N4yjnNTttuV6wFYd+yTX8X3Af2T9Oynr/HeV7p92XxOtB3yr0cYCyoVxQkRcAXybcsc/T9LpktZozPtCbBHxZM47PtvcVKXb7y5JdwG7Up5kxlLu8P7WJpZ3tazTGylPLU9REs9HgAclXSJpozbr1NkxuB6lq6e5jM9R7oihXPC2kbQ25enoecrTCNmVcp5Kl93jwI9Y+nht3e+t5113rQd8qiXOiSx5/Ld6bUSMjoiXR8QXIuL5lvpH879rt2ugm+vY3WtN2/3ZmH6J91PdOG/baW1nK0lXqnQjLqIcNz25tixl0BNEOobycql5sXmAsrGb1qV0OfRW88uSdXMZHZoX3UcoO32TiBiV/0ZGy4uhhgcrbbdzGqU7asOIWINyoqoHcU7IftUl6iWtTDnRvwasFRGjgEtb2m6uY01n9Q8AYySt3rLsbu2PiPhxRLyRsk+D0tXVaj6lG6zdtpwDXNXYJ6OivLD7aC7jhojYE3gp5S7s/DbhzAE+3NLOKhHxx2zn1Ih4HeUp6BXApxvzvhCbpNUo3SoPZJszImKjxr91I+JwyvH0DC3vUxqxnNMSy6oRcVLGcllEvJVygbkL+H6bdersGJxDefptLmP1iNg9l7EQ+C0lGb2X8pTUcSx8mbK/Nsvj9f0sfby209Xx1moOcGJLnC+JiJ/0sJ2mu7Pdd3YyTV/WsVWn+zO9sF26ed6207p9f0zpFp8YESOB71Xa6ezaspQhkSDyDvOnwGGN4kuBV0h6b75seg/lhL24D4v6tKTRKp8gHp7LrMXzPOVEPEXSSwEkTZC0S5t2zwcOk7ROvqxqfRpqWp3yWPxk3g1+tIdxvjSXtaKkd1H6yC+l9C2vTF5kJe1G6erqiYcp/dNLifJVzh8pn3COUHl5eBDlbqtTkl4paYc8GZ6hJN/WOz2ifJZ4AeUjgZdI2pjS1dLhYsoxsV+u/4qSXi/pVZJWUvkscGRE/IuyjZdaRvoe8FlJm2R8I3Nbku1tJWlFSjfjMy3t7C7pjSofFhxPec8yJ2PbUOWl8krN2PJ4Ogv4hspL4WGStsnt8SPg7SqfYQ7Lbbt9HktrSdpT5YXvP4EnO1mn83OdRktah9Lt0eF64AmVDwVWyeVsKqn5IvvHwP7A3jncYfVc7iJJE1gyWXblYWBNSSO7Of33gY/k9pekVVVevK7e5ZxtZKL7JPDfKi+D15C0Qu7D03Oyvqxjq7b7s830/XHedlid8pT/jKQtKcm+1X/nubUJ5V1e9RrYYUgkiHQcpc8VgIh4lPJN+acoj4mfAd4WEY/0YRkXUV7W3QxcApzZybRHUV5kXpuPnb+jvGyt+T6ln/EWysurCzpp90jKjnsi56vtoM7ivA7YkHJXeiKwd0Q8ml0/h1EuFAtzGVM7iaPmK8AX8tG49oXDvpS+zAeAX1L6/n/XjXZXprxEfYTSHfFSSh94zccpj+sPUfpZf9BRkeu4M7BPxvAQi1+6Q3lvNTv310co3U9LiYhf5nzn5bS3Uz4jBFiDsl8WUh7BH6W8tO3wY8oT7wLKi+j3N2J7K/AuylNVa2xHArcBN+S8J1PeccyhvDT/HOUiMYdygVoh/30y13UB5QVm7YYC4EsZ772Up4FzGuv7HOVc2jzrHwHOoHzc0WEq5bh6KCJuaWn3tZT3hJfQ+bG9hChfFv0EuCePqU67MyJiBqUn4duU7T+L8t6tTyLi55Snow9StuXDlPcVF+UkvV7HyrI625+16fvjvO3wMeA4SU9QPkioPUFfRdmulwNfi4jfdtagluzOtsEmKSjdT7MqdQdSvmh644AHZkiaQnlR+IXBjsWsJ1Q++b+X8pHIs92dbyg9QZiZ2RDiBGFmZlXuYjIzsyo/QZiZWdWQ/oNtY8eOjUmTJg12GGZmy5Ubb7zxkYho98PebhvSCWLSpEnMmDFjsMMwM1uuSGr71xx6wl1MZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlY1pH9J3VeTjr5ksEN4weyT9hjsEMzMesRPEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVtXtBCFpmKSbJF2c4+tLuk7SLEk/lbRSlq+c47OyflKjjc9m+d2Sdun3tTEzs37TkyeIw4E7G+MnA6dExAbAQuCgLD8IWJjlp+R0SNoY2AfYBNgV+K6kYX0L38zMlpVuJQhJ6wB7AGfkuIAdgJ/nJGcDe+XwnjlO1u+Y0+8JnBcR/4yIe4FZwJb9sA5mZrYMdPcJ4pvAZ4Dnc3xN4LGIeDbH5wITcngCMAcg6xfl9C+UV+Z5gaRDJM2QNGP+/PndXxMzM+tXXSYISW8D5kXEjQMQDxFxekRMjojJ48aNG4hFmplZRXf+l6PbAu+QtDswAlgD+BYwStLwfEpYB7g/p78fmAjMlTQcGAk82ijv0JzHzMyGmC6fICLisxGxTkRMorxkviIi3gdcCeydkx0AXJTDU3OcrL8iIiLL98mvnNYHNgSu77c1MTOzftWdJ4h2jgLOk3QCcBNwZpafCZwjaRawgJJUiIiZks4H7gCeBQ6NiOf6sHwzM1uGepQgImI6MD2H76HyFVJEPAO8q838JwIn9jRIMzMbeP4ltZmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVdZkgJI2QdL2kWyTNlPSlLF9f0nWSZkn6qaSVsnzlHJ+V9ZMabX02y++WtMsyWyszM+uz7jxB/BPYISJeA2wO7Cppa+Bk4JSI2ABYCByU0x8ELMzyU3I6JG0M7ANsAuwKfFfSsH5cFzMz60ddJogonszRFfNfADsAP8/ys4G9cnjPHCfrd5SkLD8vIv4ZEfcCs4At+2MlzMys/3XrHYSkYZJuBuYB04C/AY9FxLM5yVxgQg5PAOYAZP0iYM1meWWe5rIOkTRD0oz58+f3eIXMzKx/dCtBRMRzEbE5sA7lrn+jZRVQRJweEZMjYvK4ceOW1WLMzKwLPfqKKSIeA64EtgFGSRqeVesA9+fw/cBEgKwfCTzaLK/MY2ZmQ0x3vmIaJ2lUDq8CvBW4k5Io9s7JDgAuyuGpOU7WXxERkeX75FdO6wMbAtf303qYmVk/G971JKwNnJ1fHK0AnB8RF0u6AzhP0gnATcCZOf2ZwDmSZgELKF8uEREzJZ0P3AE8CxwaEc/17+qYmVl/6TJBRMStwBaV8nuofIUUEc8A72rT1onAiT0P08zMBpp/SW1mZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVtVlgpA0UdKVku6QNFPS4Vk+RtI0SX/N/47Ockk6VdIsSbdKem2jrQNy+r9KOmDZrZaZmfVVd54gngU+FREbA1sDh0raGDgauDwiNgQuz3GA3YAN898hwGlQEgpwDLAVsCVwTEdSMTOzoafLBBERD0bEn3P4CeBOYAKwJ3B2TnY2sFcO7wn8MIprgVGS1gZ2AaZFxIKIWAhMA3btz5UxM7P+06N3EJImAVsA1wFrRcSDWfUQsFYOTwDmNGabm2XtyluXcYikGZJmzJ8/vyfhmZlZP+p2gpC0GvAL4IiIeLxZFxEBRH8EFBGnR8TkiJg8bty4/mjSzMx6oVsJQtKKlORwbkRckMUPZ9cR+d95WX4/MLEx+zpZ1q7czMyGoO58xSTgTODOiPhGo2oq0PEl0gHARY3y/fNrpq2BRdkVdRmws6TR+XJ65ywzM7MhaHg3ptkW2A+4TdLNWfY54CTgfEkHAX8H3p11lwK7A7OAfwAfAIiIBZKOB27I6Y6LiAX9sRJmZtb/ukwQEfEHQG2qd6xMH8Chbdo6CzirJwGamdng8C+pzcysygnCzMyqnCDMzKzKCcLMzKqcIMzMrMoJwszMqpwgzMysygnCzMyqnCDMzKzKCcLMzKqcIMzMrMoJwszMqpwgzMysygnCzMyqnCDMzKzKCcLMzKqcIMzMrMoJwszMqpwgzMysygnCzMyqnCDMzKzKCcLMzKqcIMzMrMoJwszMqpwgzMysygnCzMyqnCDMzKzKCcLMzKqcIMzMrMoJwszMqpwgzMysygnCzMyqnCDMzKzKCcLMzKqcIMzMrMoJwszMqpwgzMysygnCzMyqukwQks6SNE/S7Y2yMZKmSfpr/nd0lkvSqZJmSbpV0msb8xyQ0/9V0gHLZnXMzKy/dOcJYgqwa0vZ0cDlEbEhcHmOA+wGbJj/DgFOg5JQgGOArYAtgWM6koqZmQ1NXSaIiLgaWNBSvCdwdg6fDezVKP9hFNcCoyStDewCTIuIBRGxEJjG0knHzMyGkN6+g1grIh7M4YeAtXJ4AjCnMd3cLGtXvhRJh0iaIWnG/PnzexmemZn11fC+NhARISn6I5hs73TgdIDJkyf3W7u2bEw6+pLBDmEJs0/aY7BDMHvR6O0TxMPZdUT+d16W3w9MbEy3Tpa1KzczsyGqtwliKtDxJdIBwEWN8v3za6atgUXZFXUZsLOk0flyeucsMzOzIarLLiZJPwG2B8ZKmkv5Gukk4HxJBwF/B96dk18K7A7MAv4BfAAgIhZIOh64Iac7LiJaX3ybmdkQ0mWCiIh921TtWJk2gEPbtHMWcFaPojMzs0HjX1KbmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVU5QZiZWZUThJmZVTlBmJlZlROEmZlVOUGYmVmVE4SZmVUNH+wAbLFJR18y2CEsYfZJewx2CGY2iPwEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlVOEGZmVuUEYWZmVf4dhP3b8e9NzLrHTxBmZlblBGFmZlVOEGZmVuUEYWZmVU4QZmZW5QRhZmZVThBmZlblBGFmZlX+oZzZcmAo/bjPP+z79+EnCDMzqxrwBCFpV0l3S5ol6eiBXr6ZmXXPgCYIScOA7wC7ARsD+0raeCBjMDOz7hnodxBbArMi4h4ASecBewJ3DHAcZmZLGErveWBovOtRRAzcwqS9gV0j4uAc3w/YKiI+3pjmEOCQHH0lcPeABVg3FnhkkGPoKcc8MJa3mJe3eMEx99Z6ETGur40Mua+YIuJ04PTBjqODpBkRMXmw4+gJxzwwlreYl7d4wTEPtoF+SX0/MLExvk6WmZnZEDPQCeIGYENJ60taCdgHmDrAMZiZWTcMaBdTRDwr6ePAZcAw4KyImDmQMfTCkOnu6gHHPDCWt5iXt3jBMQ+qAX1JbWZmyw//ktrMzKqcIMzMrMoJogckzZY0drDjaCXpjJ7+Il3SsZKOXFYxDSRJl0oaNdhxDDRJh0m6U9K5beq3l3RxL9s+QtJL+hbhUm1W45U0WdKp/bms5Z2kSZJuH+w4htzvIKxnJA3r+OFhm7rnBjqmnpA0PCKe7UsbEbF7f8WznPkYsFNEzF0GbR8B/Aj4Rz+2uVS8uf9nADP6cTnLzPJwTvWnF+0TRGbguySdm3ctP5f0EklflHSDpNslnS5JOf1hku6QdGv+CRAkrSnpt5JmSjoDUKP9T2Ybt0s6omWZUyT9JZe9k6RrJP1V0pa9WI/3S7pe0s2S/lfSMElPSvq6pFuAbSRNlzQ5p2+te+GpJ+/Upjeaf42kP2VsH+rdlu7Vtp4u6ZuSZgCH5/gpkmbk/K+XdEHGdUJjORdKujH3xyGN8l492UnaP/f3LZLOkfR2SddJuknS7yStJWmFjGNczrOCyh+aHJf1v8z5b5H0hi7i3Dm3958l/UzSan3Y5t8DXgb8WtLnJZ2Vx8lNkvasTL+apB9Iui3X+Z1Zflpu95mSvpRlhwHjgSslXdnbGDuJd1Fu72uAc9R40ukkzn2z7HZJJzfa7c9t2u44ni3pZEl/Bt7Vcr6NlTQ7hw/MfT8t5/m4ynXiJknXShqT022e47fm8TM6y1/XcSwBh/Z2PfpVRLwo/wGTgAC2zfGzgCOBMY1pzgHensMPACvn8Kj876nAF3N4j2xvLPA64DZgVWA1YCawRS7zWWAzSvK9MZcryt+curCH6/Aq4FfAijn+XWD/jOPdjemmA5NzuLVuNjA2hycD03P4WOAWYJVcpznA+AHa1tOB77bEf3IOH577Ym1gZWAusGbWjcn/rgLc3ih/YR17EPMmwF8a22YMMJrFX/YdDHw9h48BjsjhnYFf5PBPG+XDgJHt4sxtfDWwatYd1XFs9eEYn53tfhl4f8exm+u1KrA9cHGWnwx8szHv6JZYh+V+eHVvt2kP4j2Wcm6skuWdxklJVvcB4yi9HlcAe/X3NqX9cTwb+Eyb820sMDuHDwRmAatnrIuAj2TdKY1j5VbgzTl8XMf6Zvl2OfxV4Pb+3P69+fdi72KaExHX5PCPgMOAeyV9BngJ5aIwk3IRvhU4V9KFwIU5z3bAfwFExCWSFmb5G4FfRsRTAJIuAN5E+dHfvRFxW5bPBC6PiJB0G+UA7IkdKcnohrz5XgWYBzwH/KLNPJ3VtbooIp4Gns47xS1ZvO491ZNtDeXi2tTxg8nbgJkR8SCApHsov75/FDhM0n/mdBOBDbO8N3YAfhYRjwBExAJJmwE/lbQ2sBJwb057FnAR8E3gg8APGm3sn/M/R7kg0CbOsZS/YHxN7suVgD/1MvZWOwPv0OJ3SiOAdVum2Ynyw1Qy3o5j+d35lDOckpQ3ppwLy9rUPPZaLRWnpO0oNzbzAVTeYWxHuRnr721aO45h6eO1nSsj4gngCUmLWHy83wa8WtJIyg3oVVl+NvAzlXdooyLi6iw/h/JXrwfViz1BtP7IIyh34ZMjYo6kYyknE5QnhO2AtwOfz4tFb/yzMfx8Y/x5er69BZwdEZ9dolA6Mtr3gz7TUvcsi7sSR7RMW9s+vdWTbQ3wVMv0ze3Uug2HS9qecvHYJiL+odJV1ro+ffV/gW9ExNRc3rEAGf/DknagJNH3tWugkzgFTIuIffs5ZrLtd0bEEn/YUtJanc4krU+5Q359Xoin0P/btJ3W/d8by2KbtjsnmvF2dk715/k/6F607yDSupK2yeH3An/I4Ueyr3JvKP3KwMSIuJLymDqS0nV0dc6HpN0oj7sAvwf2yv7JVYH/zLL+djmwt6SXZgxjJK3XwzZmU55CAN7ZUrenpBGS1qQ85t/Qh1i7ta37YCSwMC+6GwFb97G9Kyj9yWtC2ba5jI6/DXZAy/RnUO4of9ZIwJcDH835h+XdYbs4rwW2lbRBTr+qpFf0cR06XAZ8QnrhHc8WlWmm0ejXzn7vNSgXvkWZTJp3rE9QukoGWi3O64E3Z3//MGBf4CqWzTZtdxw3zWbxOdWj4zoiFgELJb0pi/YDroqIx4DHJL0xy9vehAykF3uCuBs4VNKdlIv7acD3Kf3Cl7H4gjgM+FF2A90EnJo77EvAdtlV9F+UflAi4s/AFMqBex1wRkTc1N/BR8QdwBeA30q6lXLyrN3DZr4EfEvlhXDrU8etwJWUE+34iHigD+F2d1v31m8oTxJ3AidRYm7q0dNPlD/xciJwVb4U/AblieFnkm5k6T/XPJVy0/CDRtnhwFvyuLmR0t1RjTO7Rw4EfpL78k/ARj2JuRPHAysCt+axenxlmhOA0SoveW8B3hIRt1CO97uAHwPXNKY/HfiN+ukldQ/U4nwQOJpyrN4C3BgRFy2jbVo7jlt9DfiopJsoXYc9dQDw1Yx5c8p7CIAPAN+RdDOND2IG04v2T21ImkR58bXpYMfyYjeY2zrvKOcB/xER/1qGy5kMnBIRb+pyYlsu+ZqxtOWuT8ysxUzKE9yyTA5HU7qShsRjv9lAedE+QZiZWd+82N9BmJlZLzlBmJlZlROEmZlVOUGYmVmVE4SZmVX9f2wTYfH3FK+8AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"plt.bar(data['species'], height=data['n_appearence'])\n",
"plt.title(\"Nombre d'apparitions des espèces devant le PiCameraTrap\")\n",
"plt.savefig(\"../img/n_appearences_species.png\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "informed-truth",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "tb-venv",
"language": "python",
"name": "tb-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}