2020-07-17 22:12:20 +02:00

171 lines
4.0 KiB
Go

// Copyright 2012 Aaron Jacobs. All Rights Reserved.
// Author: aaronjjacobs@gmail.com (Aaron Jacobs)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cmac
import (
"crypto/aes"
"crypto/cipher"
"fmt"
"hash"
"unsafe"
"../common"
)
type cmacHash struct {
// An AES cipher configured with the original key.
ciph cipher.Block
// Generated sub-keys.
k1 []byte
k2 []byte
// Data that has been seen by Write but not yet incorporated into x, due to
// us not being sure if it is the final block or not.
//
// INVARIANT: len(data) <= blockSize
data []byte
// The current value of X, as defined in the AES-CMAC algorithm in RFC 4493.
// Initially this is a 128-bit zero, and it is updated with the current block
// when we're sure it's not the last one.
x []byte
}
func (h *cmacHash) Write(p []byte) (n int, err error) {
n = len(p)
// First step: consume enough data to expand h.data to a full block, if
// possible.
{
toConsume := blockSize - len(h.data)
if toConsume > len(p) {
toConsume = len(p)
}
h.data = append(h.data, p[:toConsume]...)
p = p[toConsume:]
}
// If there's no data left in p, it means h.data might not be a full block.
// Even if it is, we're not sure it's the final block, which we must treat
// specially. So we must stop here.
if len(p) == 0 {
return
}
// h.data is a full block and is not the last; process it.
h.writeBlocks(h.data)
h.data = h.data[:0]
// Consume any further full blocks in p that we're sure aren't the last. Note
// that we're sure that len(p) is greater than zero here.
blocksToProcess := (len(p) - 1) / blockSize
bytesToProcess := blocksToProcess * blockSize
h.writeBlocks(p[:bytesToProcess])
p = p[bytesToProcess:]
// Store the rest for later.
h.data = append(h.data, p...)
return
}
// Process block-aligned data that we're sure does not contain the final block.
//
// REQUIRES: len(p) % blockSize == 0
func (h *cmacHash) writeBlocks(p []byte) {
y := make([]byte, blockSize)
for off := 0; off < len(p); off += blockSize {
block := p[off : off+blockSize]
xorBlock(
unsafe.Pointer(&y[0]),
unsafe.Pointer(&h.x[0]),
unsafe.Pointer(&block[0]))
h.ciph.Encrypt(h.x, y)
}
return
}
func (h *cmacHash) Sum(b []byte) []byte {
dataLen := len(h.data)
// We should have at most one block left.
if dataLen > blockSize {
panic(fmt.Sprintf("Unexpected data: %x", h.data))
}
// Calculate M_last.
mLast := make([]byte, blockSize)
if dataLen == blockSize {
common.Xor(mLast, h.data, h.k1)
} else {
// TODO(jacobsa): Accept a destination buffer in common.PadBlock and
// simplify this code.
common.Xor(mLast, common.PadBlock(h.data), h.k2)
}
y := make([]byte, blockSize)
common.Xor(y, mLast, h.x)
result := make([]byte, blockSize)
h.ciph.Encrypt(result, y)
b = append(b, result...)
return b
}
func (h *cmacHash) Reset() {
h.data = h.data[:0]
h.x = make([]byte, blockSize)
}
func (h *cmacHash) Size() int {
return h.ciph.BlockSize()
}
func (h *cmacHash) BlockSize() int {
return h.ciph.BlockSize()
}
// New returns an AES-CMAC hash using the supplied key. The key must be 16, 24,
// or 32 bytes long.
func New(key []byte) (hash.Hash, error) {
switch len(key) {
case 16, 24, 32:
default:
return nil, fmt.Errorf("AES-CMAC requires a 16-, 24-, or 32-byte key.")
}
// Create a cipher.
ciph, err := aes.NewCipher(key)
if err != nil {
return nil, fmt.Errorf("aes.NewCipher: %v", err)
}
// Set up the hash object.
h := &cmacHash{ciph: ciph}
h.k1, h.k2 = generateSubkeys(ciph)
h.Reset()
return h, nil
}