forked from pradana.aumars/videocr
auto download tesseract data file
This commit is contained in:
parent
bccdcc02fc
commit
fba35f0108
@ -1,9 +1,25 @@
|
|||||||
|
from urllib.request import urlopen
|
||||||
|
import pathlib
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
from . import constants
|
||||||
from .video import Video
|
from .video import Video
|
||||||
|
|
||||||
|
|
||||||
def get_subtitles(video_path: str, lang='eng',
|
def get_subtitles(video_path: str, lang='eng',
|
||||||
time_start='0:00', time_end='', use_fullframe=False) -> str:
|
time_start='0:00', time_end='', use_fullframe=False) -> str:
|
||||||
|
# download tesseract data file to ./tessdata/ if necessary
|
||||||
|
fpath = pathlib.Path('tessdata/{}.traineddata'.format(lang))
|
||||||
|
if not fpath.is_file():
|
||||||
|
if lang == 'eng':
|
||||||
|
url = constants.ENG_URL
|
||||||
|
else:
|
||||||
|
url = constants.TESSDATA_URL.format(lang)
|
||||||
|
os.makedirs('tessdata', exist_ok=True)
|
||||||
|
with urlopen(url) as res, open(fpath, 'w+b') as f:
|
||||||
|
shutil.copyfileobj(res, f)
|
||||||
|
|
||||||
v = Video(video_path)
|
v = Video(video_path)
|
||||||
v.run_ocr(lang, time_start, time_end, use_fullframe)
|
v.run_ocr(lang, time_start, time_end, use_fullframe)
|
||||||
return v.get_subtitles()
|
return v.get_subtitles()
|
||||||
|
3
videocr/constants.py
Normal file
3
videocr/constants.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
ENG_URL = 'https://github.com/tesseract-ocr/tessdata_fast/raw/master/eng.traineddata'
|
||||||
|
|
||||||
|
TESSDATA_URL = 'https://github.com/tesseract-ocr/tessdata_best/raw/master/script/{}.traineddata'
|
@ -4,10 +4,6 @@ from dataclasses import dataclass
|
|||||||
from fuzzywuzzy import fuzz
|
from fuzzywuzzy import fuzz
|
||||||
|
|
||||||
|
|
||||||
CONF_THRESHOLD = 60
|
|
||||||
# word predictions with lower confidence will be filtered out
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class PredictedWord:
|
class PredictedWord:
|
||||||
__slots__ = 'confidence', 'text'
|
__slots__ = 'confidence', 'text'
|
||||||
@ -21,7 +17,7 @@ class PredictedFrame:
|
|||||||
confidence: int # total confidence of all words
|
confidence: int # total confidence of all words
|
||||||
text: str
|
text: str
|
||||||
|
|
||||||
def __init__(self, index, pred_data: str):
|
def __init__(self, index: int, pred_data: str, conf_threshold=70):
|
||||||
self.index = index
|
self.index = index
|
||||||
self.words = []
|
self.words = []
|
||||||
|
|
||||||
@ -41,7 +37,8 @@ class PredictedFrame:
|
|||||||
if self.words and self.words[-1].text != '\n':
|
if self.words and self.words[-1].text != '\n':
|
||||||
self.words.append(PredictedWord(0, '\n'))
|
self.words.append(PredictedWord(0, '\n'))
|
||||||
|
|
||||||
if conf >= CONF_THRESHOLD:
|
# word predictions with low confidence will be filtered out
|
||||||
|
if conf >= conf_threshold:
|
||||||
self.words.append(PredictedWord(conf, text))
|
self.words.append(PredictedWord(conf, text))
|
||||||
|
|
||||||
self.confidence = sum(word.confidence for word in self.words)
|
self.confidence = sum(word.confidence for word in self.words)
|
||||||
|
@ -71,7 +71,8 @@ class Video:
|
|||||||
if not self.use_fullframe:
|
if not self.use_fullframe:
|
||||||
# only use bottom half of the frame by default
|
# only use bottom half of the frame by default
|
||||||
img = img[img.shape[0] // 2:, :]
|
img = img[img.shape[0] // 2:, :]
|
||||||
return pytesseract.image_to_data(img, lang=self.lang)
|
config = r'--tessdata-dir "tessdata"'
|
||||||
|
return pytesseract.image_to_data(img, lang=self.lang, config=config)
|
||||||
|
|
||||||
def get_subtitles(self) -> str:
|
def get_subtitles(self) -> str:
|
||||||
self._generate_subtitles()
|
self._generate_subtitles()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user