src | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
LICENSE | ||
README.md |
doby
Secure symmetric encryption from the command line
Features
- Fast: written in rust, encrypts with AES-256-CTR or XChaCha20
- HMAC ciphertext authentication
- Password brute-force resistance with Argon2
- Encryption from STDIN/STDOUT or from files
- Adjustable performance & secuity parameters
Disclamer
doby is provided "as is", without any warranty of any kind. I'm not a professional cryptographer. This program didn't receive any security audit and therefore shouldn't be considered fully secure.
Usage
Encryption
doby my-super-secret-source-code.rs encrypted.doby
Decryption
doby encrypted.doby decrypted.rs
If you ommit file path or use -
, doby operates from stdin/stdout
# Read from stdin and write to stdout
cat my-super-secret-music.flac | doby > encrypted.doby
# Read from a file and output to stdout
doby encrypted.doby > decrypted.flac
# Read from stdin and save to a file
cat my-super-secret-logs-file.log | doby - logs.doby
Speicfy password from the command line
doby -p "A super very ultra strong passphrase" my-super-secret-document.pdf document.doby
Double encryption
doby -p "first password" my-super-secret-database.db | doby -f - double-encrypted.doby
Increase password brute-force resistance
echo "you-will-never-break-this" | doby --memory-cost 524288 --threads 16 --iterations 40 > my-super-secret-password.doby
Full Options
USAGE:
doby [FLAGS] [OPTIONS] [ARGS]
FLAGS:
-f, --force-encrypt Encrypt even if doby format is recognized
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
-p, --password <password> Password used to derive encryption keys
-b, --block-size <blocksize> Size of file chunk (in bytes) [default: 65536]
-c, --cipher <cipher> Encryption cipher to use [possible values: aes, xchacha20]
-m, --memory-cost <memory cost> Argon2 memory cost (in kilobytes) [default: 4096]
-t, --threads <threads> Argon2 parallelism (between 1 and 255) [default: 4]
-i, --iterations <iterations> Argon2 time cost [default: 10]
ARGS:
<INPUT> <PATH> | "-" or empty for stdin
<OUTPUT> <PATH> | "-" or empty for stdout
Build
You should verify commits before building the binary. You can download my PGP key from keyservers:
gpg --keyserver hkp://pool.sks-keyservers.net --recv-keys 007F84120107191E
Fingerprint: BD56 2147 9E7B 74D3 6A40 5BE8 007F 8412 0107 191E
Email: Hardcore Sushi <hardcore.sushi@disroot.org>
Once imported:
git clone --depth=1 https://forge.chapril.org/hardcoresushi/doby.git
cd doby
git verify-commit HEAD
cargo build --release #outputs to ./target/release/doby
Cryptographic details
Encryption
doby first derives your password with Argon2 (version 19) in Argon2id mode with a 64 bytes long random salt. A master_key
of 32 bytes is thus generated.
let master_key: [u8; 32] = argon2id(
password,
random_password_salt,
argon2_time_cost,
argon2_memory_cost,
argon2_parallelism,
);
Then, doby uses HKDF with a new random salt to compute the encryption_key
and the authentication_key
.
let hkdf = Hkdf::new(
random_hkdf_salt,
master_key, //ikm
blake3, //hash function
);
let encryption_key: [u8; 32] = hkdf.expand(b"doby_encryption_key");
let authentication_key: [u8; 32] = hkdf.expand(b"doby_authentication_key");
Next, doby initializes a BLAKE3 HMAC with authentication_key
and add all public encryption parameters to it.
let hmac = Hmac::new(
authentication_key,
blake3, //hash function
);
hmac.update(random_password_salt);
hmac.update(argon2_time_cost);
hmac.update(argon2_memory_cost);
hmac.update(argon2_parallelism);
hmac.update(random_hkdf_salt);
hmac.update(cipher); //1-byte representation of the symmetric cipher used to encrypt (either AES-CTR or XChaCha20)
hmac.update(random_nonce); //random nonce used for encryption (16 bytes for AES-CTR, 24 for XChaCha20)
All this parameters are also written in plain text in the header of the doby output.
Now, doby initializes a symmetric cipher with encryption_key
and random_nonce
(either AES-CTR or XChaCha20, based on the --cipher
option) and starts the actual encryption. It reads chunks from the plaintext (according to the --block-size
parameter), encrypts them with the cipher and updates the HMAC with the ciphertext.
let cipher = Aes256Ctr::new(encryption_key, random_nonce); //example with AES-CTR
let mut n = 1;
let mut chunk: [u8; block_size] = [0; block_size];
while n != 0 {
n = input.read(&mut chunk); //read plaintext
cipher.apply_keystream(&mut chunk[..n]); //encrypt
hmac.update(chunk[..n]);
output.write(chunk[..n]); //write ciphertext
}
Once the whole plaintext is encrypted, doby computes and appends the HMAC to the ciphertext.
output.write(hmac.digest());
Decryption
doby reads the public encryption values from the input header to get all parameters needed to re-derive the master_key
from the password with Argon2.
let master_key: [u8; 32] = argon2id(
password,
password_salt_read_from_input,
argon2_time_cost_read_from_input,
argon2_memory_cost_read_from_input,
argon2_parallelism_read_from_input,
);
encryption_key
and authentication_key
are computed from master_key
and the HKDF salt in the same way as during encryption. The HMAC is also initialized and updated with the values read from the header.
Then, doby starts decryption.
let cipher = XChaCha20::new(encryption_key, nonce_read_from_input); //example with XChaCha20
let mut n = 1;
let mut chunk: [u8; block_size] = [0; block_size];
while n != 0 {
n = input.read(&mut chunk); //read ciphertext
hmac.update(chunk[..n]);
cipher.apply_keystream(&mut chunk[..n]); //decrypt
output.write(chunk[..n]); //write plaintext
}
Once the whole ciphertext is decrypted, doby computes and verifies the HMAC.
hmac.digest() == last_32_bytes_read
If the verification success, the file is successfully decrypted and authenticated.
If you find any weakness or security issue is this protocol, please open an issue.