Cache has better parallelity - we can push()/pop() while it is flushing and flushing is actually parallel

This commit is contained in:
Sebastian Messmer 2015-10-01 13:51:01 +02:00
parent c8c13517e0
commit 84330b1100
3 changed files with 136 additions and 60 deletions

View File

@ -6,11 +6,10 @@
#include "QueueMap.h" #include "QueueMap.h"
#include "PeriodicTask.h" #include "PeriodicTask.h"
#include <memory> #include <memory>
//TODO Replace with C++14 once std::shared_mutex is supported
#include <boost/thread/shared_mutex.hpp>
#include <boost/optional.hpp> #include <boost/optional.hpp>
#include <future> #include <future>
#include <messmer/cpp-utils/assert/assert.h> #include <messmer/cpp-utils/assert/assert.h>
#include <messmer/cpp-utils/lock/LockPool.h>
namespace blockstore { namespace blockstore {
namespace caching { namespace caching {
@ -31,12 +30,14 @@ public:
boost::optional<Value> pop(const Key &key); boost::optional<Value> pop(const Key &key);
private: private:
void _popOldEntriesParallel(); void _makeSpaceForEntry(std::unique_lock<std::mutex> *lock);
void _popOldEntries(); void _deleteEntry(std::unique_lock<std::mutex> *lock);
boost::optional<Value> _popOldEntry(boost::upgrade_lock<boost::shared_mutex> *lock); void _deleteOldEntriesParallel();
static void _destructElementsInParallel(std::vector<CacheEntry<Key, Value>> *list); void _deleteOldEntries();
bool _deleteOldEntry();
mutable boost::shared_mutex _mutex; mutable std::mutex _mutex;
cpputils::LockPool<Key> _currentlyFlushingEntries;
QueueMap<Key, CacheEntry<Key, Value>> _cachedBlocks; QueueMap<Key, CacheEntry<Key, Value>> _cachedBlocks;
std::unique_ptr<PeriodicTask> _timeoutFlusher; std::unique_ptr<PeriodicTask> _timeoutFlusher;
}; };
@ -50,7 +51,7 @@ template<class Key, class Value>
Cache<Key, Value>::Cache(): _cachedBlocks(), _timeoutFlusher(nullptr) { Cache<Key, Value>::Cache(): _cachedBlocks(), _timeoutFlusher(nullptr) {
//Don't initialize timeoutFlusher in the initializer list, //Don't initialize timeoutFlusher in the initializer list,
//because it then might already call Cache::popOldEntries() before Cache is done constructing. //because it then might already call Cache::popOldEntries() before Cache is done constructing.
_timeoutFlusher = std::make_unique<PeriodicTask>(std::bind(&Cache::_popOldEntriesParallel, this), PURGE_INTERVAL); _timeoutFlusher = std::make_unique<PeriodicTask>(std::bind(&Cache::_deleteOldEntriesParallel, this), PURGE_INTERVAL);
} }
template<class Key, class Value> template<class Key, class Value>
@ -59,32 +60,59 @@ Cache<Key, Value>::~Cache() {
template<class Key, class Value> template<class Key, class Value>
boost::optional<Value> Cache<Key, Value>::pop(const Key &key) { boost::optional<Value> Cache<Key, Value>::pop(const Key &key) {
boost::unique_lock<boost::shared_mutex> lock(_mutex); std::unique_lock<std::mutex> lock(_mutex);
_currentlyFlushingEntries.lock(key, &lock);
auto found = _cachedBlocks.pop(key); auto found = _cachedBlocks.pop(key);
if (!found) { if (!found) {
return boost::none; return boost::none;
} }
_currentlyFlushingEntries.release(key);
return found->releaseValue(); return found->releaseValue();
} }
template<class Key, class Value> template<class Key, class Value>
void Cache<Key, Value>::push(const Key &key, Value value) { void Cache<Key, Value>::push(const Key &key, Value value) {
boost::unique_lock<boost::shared_mutex> lock(_mutex); std::unique_lock<std::mutex> lock(_mutex);
ASSERT(_cachedBlocks.size() <= MAX_ENTRIES, "Cache too full"); ASSERT(_cachedBlocks.size() <= MAX_ENTRIES, "Cache too full");
if (_cachedBlocks.size() == MAX_ENTRIES) { _makeSpaceForEntry(&lock);
_cachedBlocks.pop();
ASSERT(_cachedBlocks.size() == MAX_ENTRIES-1, "Removing entry from cache didn't work");
}
_cachedBlocks.push(key, CacheEntry<Key, Value>(std::move(value))); _cachedBlocks.push(key, CacheEntry<Key, Value>(std::move(value)));
} }
template<class Key, class Value> template<class Key, class Value>
void Cache<Key, Value>::_popOldEntriesParallel() { void Cache<Key, Value>::_makeSpaceForEntry(std::unique_lock<std::mutex> *lock) {
// _deleteEntry releases the lock while the Value destructor is running.
// So we can destruct multiple entries in parallel and also call pop() or push() while doing so.
// However, if another thread calls push() before we get the lock back, the cache is full again.
// That's why we need the while() loop here.
while (_cachedBlocks.size() == MAX_ENTRIES) {
_deleteEntry(lock);
}
ASSERT(_cachedBlocks.size() < MAX_ENTRIES, "Removing entry from cache didn't work");
};
template<class Key, class Value>
void Cache<Key, Value>::_deleteEntry(std::unique_lock<std::mutex> *lock) {
auto key = _cachedBlocks.peekKey();
ASSERT(key != boost::none, "There was no entry to delete");
_currentlyFlushingEntries.lock(*key);
auto value = _cachedBlocks.pop();
// Call destructor outside of the unique_lock,
// i.e. pop() and push() can be called here, except for pop() on the element in _currentlyFlushingEntries
lock->unlock();
value = boost::none; // Call destructor
lock->lock();
_currentlyFlushingEntries.release(*key);
};
template<class Key, class Value>
void Cache<Key, Value>::_deleteOldEntriesParallel() {
unsigned int numThreads = std::max(1u, std::thread::hardware_concurrency()); unsigned int numThreads = std::max(1u, std::thread::hardware_concurrency());
std::vector<std::future<void>> waitHandles; std::vector<std::future<void>> waitHandles;
for (unsigned int i = 0; i < numThreads; ++i) { for (unsigned int i = 0; i < numThreads; ++i) {
waitHandles.push_back(std::async(std::launch::async, [this] { waitHandles.push_back(std::async(std::launch::async, [this] {
_popOldEntries(); _deleteOldEntries();
})); }));
} }
for (auto & waitHandle : waitHandles) { for (auto & waitHandle : waitHandles) {
@ -93,40 +121,20 @@ void Cache<Key, Value>::_popOldEntriesParallel() {
}; };
template<class Key, class Value> template<class Key, class Value>
void Cache<Key, Value>::_popOldEntries() { void Cache<Key, Value>::_deleteOldEntries() {
// This function can be called in parallel by multiple threads and will then cause the Value destructors while (_deleteOldEntry()) {}
// to be called in parallel. The call to _popOldEntry() is synchronized to avoid race conditions,
// but the Value destructor is called in this function which is not synchronized.
// The shared upgrade_lock in here takes care that no push() or pop() operation is running while an old entry is deleted.
// This would cause race conditions because pop() could return none before the destructor of the deleted element
// has finished running. Since the destructor of a cached newly created block creates it in the base block store,
// there would be a state where the block can neither be found by a pop() in the cache, nor in the base store.
// so CachingBlockStore would return that the block doesn't exist.
// The shared lock is then upgraded to a unique lock in _popOldEntry, so that only one thread can work on the
// _cachedBlocks vector at the same time.
// There is a regression test case for this: CacheTest_RaceCondition:PopBlocksWhileRequestedElementIsThrownOut.
while (true) {
//TODO Since there are 4 threads running this, there will always be one having one of the shared locks.
// That is, while purging is running, no thread has a chance of calling pop() or push() and purging has priority.
// Fix this, use something like priority locks for pop() and push()?
// http://stackoverflow.com/questions/11666610/how-to-give-priority-to-privileged-thread-in-mutex-locking
boost::upgrade_lock<boost::shared_mutex> lock(_mutex);
boost::optional<Value> oldEntry = _popOldEntry(&lock);
if (oldEntry == boost::none) {
break;
}
oldEntry = boost::none; // Call destructor (inside shared lock)
}
} }
template<class Key, class Value> template<class Key, class Value>
boost::optional<Value> Cache<Key, Value>::_popOldEntry(boost::upgrade_lock<boost::shared_mutex> *lock) { bool Cache<Key, Value>::_deleteOldEntry() {
boost::upgrade_to_unique_lock<boost::shared_mutex> exclusiveLock(*lock); // This function can be called in parallel by multiple threads and will then cause the Value destructors
// to be called in parallel. The call to _deleteEntry() releases the lock while the Value destructor is running.
std::unique_lock<std::mutex> lock(_mutex);
if (_cachedBlocks.size() > 0 && _cachedBlocks.peek()->ageSeconds() > PURGE_LIFETIME_SEC) { if (_cachedBlocks.size() > 0 && _cachedBlocks.peek()->ageSeconds() > PURGE_LIFETIME_SEC) {
return _cachedBlocks.pop()->releaseValue(); _deleteEntry(&lock);
return true;
} else { } else {
return boost::none; return false;
} }
}; };

View File

@ -52,6 +52,13 @@ public:
return pop(*_sentinel.next->key); return pop(*_sentinel.next->key);
} }
boost::optional<const Key &> peekKey() {
if(_sentinel.next == &_sentinel) {
return boost::none;
}
return *_sentinel.next->key;
}
boost::optional<const Value &> peek() { boost::optional<const Value &> peek() {
if(_sentinel.next == &_sentinel) { if(_sentinel.next == &_sentinel) {
return boost::none; return boost::none;

View File

@ -1,15 +1,22 @@
#include "testutils/CacheTest.h" #include "testutils/CacheTest.h"
#include <chrono> #include <chrono>
#include <thread> #include <thread>
#include <messmer/cpp-utils/pointer/unique_ref.h> #include <memory>
#include <future>
#include <messmer/cpp-utils/lock/ConditionBarrier.h> #include <messmer/cpp-utils/lock/ConditionBarrier.h>
using namespace std::chrono_literals; using namespace std::chrono_literals;
using namespace blockstore::caching; using namespace blockstore::caching;
using std::string; using std::string;
using cpputils::unique_ref;
using cpputils::make_unique_ref;
using cpputils::ConditionBarrier; using cpputils::ConditionBarrier;
using std::unique_ptr;
using std::make_unique;
using std::future;
// Regression tests for a race condition.
// An element could be in the process of being thrown out of the cache and while the destructor is running, another
// thread calls pop() for the element and gets none returned. But since the destructor isn't finished yet, the data from
// the cache element also isn't completely written back yet and an application loading it runs into a race condition.
class ObjectWithLongDestructor { class ObjectWithLongDestructor {
public: public:
@ -25,20 +32,74 @@ private:
bool *_destructorFinished; bool *_destructorFinished;
}; };
// Regression test for a race condition. class CacheTest_RaceCondition: public ::testing::Test {
// An element could be in the process of being thrown out of the cache and while the destructor is running, another public:
// thread calls pop() for the element and gets none returned. But since the destructor isn't finished yet, the data from CacheTest_RaceCondition(): cache(), destructorStarted(), destructorFinished(false) {}
// the cache element also isn't completely written back yet and an application loading it runs into a race condition.
TEST(CacheTest_RaceCondition, PopBlocksWhileRequestedElementIsThrownOut) { Cache<int, unique_ptr<ObjectWithLongDestructor>> cache;
ConditionBarrier destructorStarted; ConditionBarrier destructorStarted;
bool destructorFinished; bool destructorFinished;
auto obj = make_unique_ref<ObjectWithLongDestructor>(&destructorStarted, &destructorFinished); int pushObjectWithLongDestructor() {
Cache<int, unique_ref<ObjectWithLongDestructor>> cache; cache.push(2, make_unique<ObjectWithLongDestructor>(&destructorStarted, &destructorFinished));
cache.push(2, std::move(obj)); return 2;
}
int pushDummyObject() {
cache.push(3, nullptr);
return 3;
}
future<void> causeCacheOverflowInOtherThread() {
//Add maximum+1 element in another thread (this causes the cache to flush the first element in another thread)
return std::async(std::launch::async, [this] {
for(unsigned int i = 0; i < cache.MAX_ENTRIES+1; ++i) {
cache.push(cache.MAX_ENTRIES+i, nullptr);
}
});
}
void EXPECT_POP_BLOCKS_UNTIL_DESTRUCTOR_FINISHED(int key) {
EXPECT_FALSE(destructorFinished);
cache.pop(key);
EXPECT_TRUE(destructorFinished);
}
void EXPECT_POP_DOESNT_BLOCK_UNTIL_DESTRUCTOR_FINISHED(int key) {
EXPECT_FALSE(destructorFinished);
cache.pop(key);
EXPECT_FALSE(destructorFinished);
}
};
TEST_F(CacheTest_RaceCondition, PopBlocksWhileRequestedElementIsThrownOut_ByAge) {
auto id = pushObjectWithLongDestructor();
destructorStarted.wait(); destructorStarted.wait();
EXPECT_FALSE(destructorFinished); EXPECT_POP_BLOCKS_UNTIL_DESTRUCTOR_FINISHED(id);
cache.pop(2); }
EXPECT_TRUE(destructorFinished);
} TEST_F(CacheTest_RaceCondition, PopDoesntBlockWhileOtherElementIsThrownOut_ByAge) {
pushObjectWithLongDestructor();
auto id = pushDummyObject();
destructorStarted.wait();
EXPECT_POP_DOESNT_BLOCK_UNTIL_DESTRUCTOR_FINISHED(id);
}
TEST_F(CacheTest_RaceCondition, PopBlocksWhileRequestedElementIsThrownOut_ByPush) {
auto id = pushObjectWithLongDestructor();
auto future = causeCacheOverflowInOtherThread();
destructorStarted.wait();
EXPECT_POP_BLOCKS_UNTIL_DESTRUCTOR_FINISHED(id);
}
TEST_F(CacheTest_RaceCondition, PopDoesntBlockWhileOtherElementIsThrownOut_ByPush) {
pushObjectWithLongDestructor();
auto id = pushDummyObject();
auto future = causeCacheOverflowInOtherThread();
destructorStarted.wait();
EXPECT_POP_DOESNT_BLOCK_UNTIL_DESTRUCTOR_FINISHED(id);
}