Written data tree leaf traversal and some test cases

This commit is contained in:
Sebastian Messmer 2015-02-25 01:31:16 +01:00
parent 9d9c090148
commit 97cf6a6e40
4 changed files with 248 additions and 0 deletions

View File

@ -11,6 +11,8 @@ namespace blobstore {
namespace onblocks {
namespace datanodestore {
constexpr uint32_t DataLeafNode::MAX_STORED_BYTES;
DataLeafNode::DataLeafNode(DataNodeView view)
: DataNode(std::move(view)) {
assert(*node().Depth() == 0);

View File

@ -7,6 +7,7 @@
#include "impl/algorithms.h"
#include "messmer/cpp-utils/pointer.h"
#include <cmath>
using blockstore::Key;
using blobstore::onblocks::datanodestore::DataNodeStore;
@ -102,6 +103,57 @@ unique_ptr<DataNode> DataTree::releaseRootNode() {
return std::move(_rootNode);
}
void DataTree::traverseLeaves(uint32_t beginIndex, uint32_t endIndex, function<void (DataLeafNode*, uint32_t)> func) {
assert(beginIndex <= endIndex);
//TODO assert(beginIndex <= numLeaves());
//TODO assert(endIndex <= numLeaves());
traverseLeaves(_rootNode.get(), 0, beginIndex, endIndex, func);
}
//TODO Put intPow, ceilDivision, maxZeroSubtraction into utils and write test cases
uint32_t intPow(uint32_t base, uint32_t exponent) {
uint32_t result = 1;
for(int i = 0; i < exponent; ++i) {
result *= base;
}
return result;
}
uint32_t ceilDivision(uint32_t dividend, uint32_t divisor) {
return (dividend + divisor - 1)/divisor;
}
uint32_t maxZeroSubtraction(uint32_t minuend, uint32_t subtrahend) {
if (minuend < subtrahend) {
return 0u;
}
return minuend-subtrahend;
}
void DataTree::traverseLeaves(DataNode *root, uint32_t leafOffset, uint32_t beginIndex, uint32_t endIndex, function<void (DataLeafNode*, uint32_t)> func) {
DataLeafNode *leaf = dynamic_cast<DataLeafNode*>(root);
if (leaf != nullptr) {
assert(beginIndex <= 1 && endIndex <= 1);
if (beginIndex == 0 && endIndex == 1) {
func(leaf, leafOffset);
}
return;
}
DataInnerNode *inner = dynamic_cast<DataInnerNode*>(root);
uint32_t leavesPerChild = intPow(DataInnerNode::MAX_STORED_CHILDREN, root->depth()-1);
uint32_t beginChild = beginIndex/leavesPerChild;
uint32_t endChild = ceilDivision(endIndex, leavesPerChild);
for (uint32_t childIndex = beginChild; childIndex < endChild; ++childIndex) {
uint32_t childOffset = childIndex * leavesPerChild;
uint32_t localBeginIndex = maxZeroSubtraction(beginIndex, childOffset);
uint32_t localEndIndex = std::min(leavesPerChild, endIndex - childOffset);
auto child = _nodeStore->load(inner->getChild(childIndex)->key());
traverseLeaves(child.get(), leafOffset + childOffset, localBeginIndex, localEndIndex, func);
}
}
}
}

View File

@ -31,6 +31,8 @@ public:
void flush() const;
void traverseLeaves(uint32_t beginIndex, uint32_t endIndex, std::function<void (datanodestore::DataLeafNode*, uint32_t)> func);
private:
datanodestore::DataNodeStore *_nodeStore;
std::unique_ptr<datanodestore::DataNode> _rootNode;
@ -45,6 +47,8 @@ private:
void deleteLastChildSubtree(datanodestore::DataInnerNode *node);
void ifRootHasOnlyOneChildReplaceRootWithItsChild();
void traverseLeaves(datanodestore::DataNode *root, uint32_t leafOffset, uint32_t beginIndex, uint32_t endIndex, std::function<void (datanodestore::DataLeafNode*, uint32_t)> func);
DISALLOW_COPY_AND_ASSIGN(DataTree);
};

View File

@ -0,0 +1,190 @@
#include "../testutils/DataTreeTest.h"
#include <google/gmock/gmock.h>
using ::testing::_;
using blobstore::onblocks::datanodestore::DataLeafNode;
using blobstore::onblocks::datanodestore::DataInnerNode;
using blobstore::onblocks::datanodestore::DataNode;
using blobstore::onblocks::datatreestore::DataTree;
using blockstore::Key;
class TraversorMock {
public:
MOCK_METHOD2(called, void(DataLeafNode*, uint32_t));
};
MATCHER_P(KeyEq, expected, "node key equals") {
return arg->key() == expected;
}
class DataTreeTest_TraverseLeaves: public DataTreeTest {
public:
void TraverseLeaves(DataNode *root, uint32_t beginIndex, uint32_t endIndex) {
root->flush();
auto tree = treeStore.load(root->key());
tree->traverseLeaves(beginIndex, endIndex, [this] (DataLeafNode *leaf, uint32_t nodeIndex) {
traversor.called(leaf, nodeIndex);
});
}
TraversorMock traversor;
};
TEST_F(DataTreeTest_TraverseLeaves, TraverseSingleLeafTree) {
auto root = CreateLeaf();
EXPECT_CALL(traversor, called(KeyEq(root->key()), 0)).Times(1);
TraverseLeaves(root.get(), 0, 1);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseNothingInSingleLeafTree1) {
auto root = CreateLeaf();
EXPECT_CALL(traversor, called(_, _)).Times(0);
TraverseLeaves(root.get(), 0, 0);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseNothingInSingleLeafTree2) {
auto root = CreateLeaf();
EXPECT_CALL(traversor, called(_, _)).Times(0);
TraverseLeaves(root.get(), 1, 1);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseFirstLeafOfFullTwolevelTree) {
auto root = CreateFullTwoLevel();
auto firstleafkey = root->getChild(0)->key();
EXPECT_CALL(traversor, called(KeyEq(firstleafkey), 0)).Times(1);
TraverseLeaves(root.get(), 0, 1);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseMiddleLeafOfFullTwolevelTree) {
auto root = CreateFullTwoLevel();
auto leafkey = root->getChild(5)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), 5)).Times(1);
TraverseLeaves(root.get(), 5, 6);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseLastLeafOfFullTwolevelTree) {
auto root = CreateFullTwoLevel();
auto leafkey = root->getChild(DataInnerNode::MAX_STORED_CHILDREN-1)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), DataInnerNode::MAX_STORED_CHILDREN-1)).Times(1);
TraverseLeaves(root.get(), DataInnerNode::MAX_STORED_CHILDREN-1, DataInnerNode::MAX_STORED_CHILDREN);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseNothingInFullTwolevelTree1) {
auto root = CreateFullTwoLevel();
EXPECT_CALL(traversor, called(_, _)).Times(0);
TraverseLeaves(root.get(), 0, 0);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseNothingInFullTwolevelTree2) {
auto root = CreateFullTwoLevel();
EXPECT_CALL(traversor,called(_, _)).Times(0);
TraverseLeaves(root.get(), DataInnerNode::MAX_STORED_CHILDREN, DataInnerNode::MAX_STORED_CHILDREN);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseFirstLeafOfThreeLevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto firstleafkey = LoadInnerNode(root->getChild(0)->key())->getChild(0)->key();
EXPECT_CALL(traversor, called(KeyEq(firstleafkey), 0)).Times(1);
TraverseLeaves(root.get(), 0, 1);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseMiddleLeafOfThreeLevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto leafkey = LoadInnerNode(root->getChild(0)->key())->getChild(5)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), 5)).Times(1);
TraverseLeaves(root.get(), 5, 6);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseLastLeafOfThreeLevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto leafkey = LoadInnerNode(root->getChild(1)->key())->getChild(0)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), DataInnerNode::MAX_STORED_CHILDREN)).Times(1);
TraverseLeaves(root.get(), DataInnerNode::MAX_STORED_CHILDREN, DataInnerNode::MAX_STORED_CHILDREN+1);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseAllLeavesOfFullTwolevelTree) {
auto root = CreateFullTwoLevel();
for (int i = 0; i < DataInnerNode::MAX_STORED_CHILDREN; ++i) {
auto leafkey = root->getChild(i)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), i)).Times(1);
}
TraverseLeaves(root.get(), 0, DataInnerNode::MAX_STORED_CHILDREN);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseAllLeavesOfThreelevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto node = LoadInnerNode(root->getChild(0)->key());
for (int i = 0; i < DataInnerNode::MAX_STORED_CHILDREN; ++i) {
auto leafkey = node->getChild(i)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), i)).Times(1);
}
Key lastleafkey = LoadInnerNode(root->getChild(1)->key())->getChild(0)->key();
EXPECT_CALL(traversor, called(KeyEq(lastleafkey), DataInnerNode::MAX_STORED_CHILDREN)).Times(1);
TraverseLeaves(root.get(), 0, DataInnerNode::MAX_STORED_CHILDREN+1);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseFirstChildOfThreelevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto node = LoadInnerNode(root->getChild(0)->key());
for (int i = 0; i < DataInnerNode::MAX_STORED_CHILDREN; ++i) {
auto leafkey = node->getChild(i)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), i)).Times(1);
}
TraverseLeaves(root.get(), 0, DataInnerNode::MAX_STORED_CHILDREN);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseFirstPartOfThreelevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto node = LoadInnerNode(root->getChild(0)->key());
for (int i = 0; i < 5; ++i) {
auto leafkey = node->getChild(i)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), i)).Times(1);
}
TraverseLeaves(root.get(), 0, 5);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseInnerPartOfThreelevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto node = LoadInnerNode(root->getChild(0)->key());
for (int i = 5; i < 10; ++i) {
auto leafkey = node->getChild(i)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), i)).Times(1);
}
TraverseLeaves(root.get(), 5, 10);
}
TEST_F(DataTreeTest_TraverseLeaves, TraverseLastPartOfThreelevelMinDataTree) {
auto root = CreateThreeLevelMinData();
auto node = LoadInnerNode(root->getChild(0)->key());
for (int i = 5; i < DataInnerNode::MAX_STORED_CHILDREN; ++i) {
auto leafkey = node->getChild(i)->key();
EXPECT_CALL(traversor, called(KeyEq(leafkey), i)).Times(1);
}
Key lastleafkey = LoadInnerNode(root->getChild(1)->key())->getChild(0)->key();
EXPECT_CALL(traversor, called(KeyEq(lastleafkey), DataInnerNode::MAX_STORED_CHILDREN)).Times(1);
TraverseLeaves(root.get(), 5, DataInnerNode::MAX_STORED_CHILDREN+1);
}
//TODO First/Inner/LastPart of FullTwoLevelTree
//TODO Test cases with a larger threelevel tree (say 5 children being full twolevel trees)
//TODO Some few testcases with full threelevel tree
//TODO Some few testcases with fourlevel mindata tree
//TODO ...more test cases?