Generalized Key to FixedSizeData

This commit is contained in:
Sebastian Messmer 2015-04-09 20:07:03 +02:00
parent 86f8ca6dc4
commit 990ca6ca26
8 changed files with 168 additions and 123 deletions

View File

@ -0,0 +1,14 @@
#include "EncryptionKey.h"
namespace blockstore {
namespace encrypted {
EncryptionKey::EncryptionKey() {
}
EncryptionKey::~EncryptionKey() {
}
}
}

View File

@ -0,0 +1,19 @@
#pragma once
#ifndef MESSMER_BLOCKSTORE_IMPLEMENTATIONS_ENCRYPTED_ENCRYPTIONKEY_H_
#define MESSMER_BLOCKSTORE_IMPLEMENTATIONS_ENCRYPTED_ENCRYPTIONKEY_H_
namespace blockstore {
namespace encrypted {
class EncryptionKey {
public:
EncryptionKey();
static EncryptionKey
private:
byte key[32];
};
}
}
#endif

View File

@ -14,7 +14,7 @@ unique_ptr<Block> BlockStoreWithRandomKeys::create(size_t size) {
} }
unique_ptr<Block> BlockStoreWithRandomKeys::tryCreate(size_t size) { unique_ptr<Block> BlockStoreWithRandomKeys::tryCreate(size_t size) {
Key key = Key::CreateRandomKey(); Key key = Key::CreateRandom();
return create(key, size); return create(key, size);
} }

View File

@ -30,7 +30,7 @@ public:
class BlockMock: public Block { class BlockMock: public Block {
public: public:
BlockMock(): Block(Key::CreateRandomKey()) {} BlockMock(): Block(Key::CreateRandom()) {}
MOCK_CONST_METHOD0(data, const void*()); MOCK_CONST_METHOD0(data, const void*());
MOCK_METHOD3(write, void(const void*, uint64_t, uint64_t)); MOCK_METHOD3(write, void(const void*, uint64_t, uint64_t));
MOCK_METHOD0(flush, void()); MOCK_METHOD0(flush, void());
@ -62,7 +62,7 @@ TEST_F(BlockStoreWithRandomKeysTest, SizeIsPassedThrough1024) {
TEST_F(BlockStoreWithRandomKeysTest, KeyHasCorrectSize) { TEST_F(BlockStoreWithRandomKeysTest, KeyHasCorrectSize) {
EXPECT_CALL(blockStoreMock, do_create(_, _)).WillOnce(Invoke([](const Key &key, size_t) { EXPECT_CALL(blockStoreMock, do_create(_, _)).WillOnce(Invoke([](const Key &key, size_t) {
EXPECT_EQ(Key::KEYLENGTH_STRING, key.ToString().size()); EXPECT_EQ(Key::STRING_LENGTH, key.ToString().size());
return new BlockMock; return new BlockMock;
})); }));

View File

@ -20,7 +20,7 @@ public:
const DataBlockFixture KEY3_AS_BINARY; const DataBlockFixture KEY3_AS_BINARY;
const DataBlockFixture KEY4_AS_BINARY; const DataBlockFixture KEY4_AS_BINARY;
KeyTest() : KEY3_AS_BINARY(Key::KEYLENGTH_BINARY, 1), KEY4_AS_BINARY(Key::KEYLENGTH_BINARY, 2) {} KeyTest() : KEY3_AS_BINARY(Key::BINARY_LENGTH, 1), KEY4_AS_BINARY(Key::BINARY_LENGTH, 2) {}
void EXPECT_DATA_EQ(const DataBlockFixture &expected, const Data &actual) { void EXPECT_DATA_EQ(const DataBlockFixture &expected, const Data &actual) {
EXPECT_EQ(expected.size(), actual.size()); EXPECT_EQ(expected.size(), actual.size());
@ -29,12 +29,12 @@ public:
}; };
TEST_F(KeyTest, CanGenerateRandomKeysWithoutCrashing) { TEST_F(KeyTest, CanGenerateRandomKeysWithoutCrashing) {
Key result = Key::CreateRandomKey(); Key result = Key::CreateRandom();
} }
TEST_F(KeyTest, CreatedRandomKeysHaveCorrectLength) { TEST_F(KeyTest, CreatedRandomKeysHaveCorrectLength) {
Key key = Key::CreateRandomKey(); Key key = Key::CreateRandom();
EXPECT_EQ(Key::KEYLENGTH_STRING, key.ToString().size()); EXPECT_EQ(Key::STRING_LENGTH, key.ToString().size());
} }
TEST_F(KeyTest, EqualsTrue) { TEST_F(KeyTest, EqualsTrue) {
@ -88,20 +88,20 @@ public:
static const DataBlockFixture VALUE1; static const DataBlockFixture VALUE1;
static const DataBlockFixture VALUE2; static const DataBlockFixture VALUE2;
}; };
const DataBlockFixture KeyTestWithBinaryKeyParam::VALUE1(Key::KEYLENGTH_BINARY, 3); const DataBlockFixture KeyTestWithBinaryKeyParam::VALUE1(Key::BINARY_LENGTH, 3);
const DataBlockFixture KeyTestWithBinaryKeyParam::VALUE2(Key::KEYLENGTH_BINARY, 4); const DataBlockFixture KeyTestWithBinaryKeyParam::VALUE2(Key::BINARY_LENGTH, 4);
INSTANTIATE_TEST_CASE_P(KeyTestWithBinaryKeyParam, KeyTestWithBinaryKeyParam, Values(&KeyTestWithBinaryKeyParam::VALUE1, &KeyTestWithBinaryKeyParam::VALUE2)); INSTANTIATE_TEST_CASE_P(KeyTestWithBinaryKeyParam, KeyTestWithBinaryKeyParam, Values(&KeyTestWithBinaryKeyParam::VALUE1, &KeyTestWithBinaryKeyParam::VALUE2));
TEST_P(KeyTestWithBinaryKeyParam, FromAndToBinary) { TEST_P(KeyTestWithBinaryKeyParam, FromAndToBinary) {
Key key = Key::FromBinary((uint8_t*)GetParam()->data()); Key key = Key::FromBinary((uint8_t*)GetParam()->data());
Data keydata(Key::KEYLENGTH_BINARY); Data keydata(Key::BINARY_LENGTH);
key.ToBinary(keydata.data()); key.ToBinary(keydata.data());
EXPECT_DATA_EQ(*GetParam(), keydata); EXPECT_DATA_EQ(*GetParam(), keydata);
} }
TEST_P(KeyTestWithBinaryKeyParam, ToAndFromBinary) { TEST_P(KeyTestWithBinaryKeyParam, ToAndFromBinary) {
Key key = Key::FromBinary((uint8_t*)GetParam()->data()); Key key = Key::FromBinary((uint8_t*)GetParam()->data());
Data stored(Key::KEYLENGTH_BINARY); Data stored(Key::BINARY_LENGTH);
key.ToBinary(stored.data()); key.ToBinary(stored.data());
Key loaded = Key::FromBinary(stored.data()); Key loaded = Key::FromBinary(stored.data());
EXPECT_EQ(key, loaded); EXPECT_EQ(key, loaded);
@ -138,5 +138,5 @@ TEST_F(KeyTest, AssignmentDoesntChangeSource) {
// This tests that a Key object is very lightweight // This tests that a Key object is very lightweight
// (we will often pass keys around) // (we will often pass keys around)
TEST_F(KeyTest, KeyIsLightweightObject) { TEST_F(KeyTest, KeyIsLightweightObject) {
EXPECT_EQ(Key::KEYLENGTH_BINARY, sizeof(Key)); EXPECT_EQ(Key::BINARY_LENGTH, sizeof(Key));
} }

121
utils/FixedSizeData.h Normal file
View File

@ -0,0 +1,121 @@
#pragma once
#ifndef BLOCKSTORE_UTILS_data_H_
#define BLOCKSTORE_UTILS_data_H_
#include <cryptopp/cryptopp/hex.h>
#include <cryptopp/cryptopp/osrng.h>
#include <string>
#include <cstring>
namespace blockstore {
template<int SIZE>
class FixedSizeData {
public:
//Non-virtual destructor because we want objects to be small
~FixedSizeData() {}
static constexpr unsigned int BINARY_LENGTH = SIZE;
static constexpr unsigned int STRING_LENGTH = 2 * BINARY_LENGTH; // Hex encoding
static FixedSizeData<SIZE> CreateRandom();
static FixedSizeData<SIZE> FromString(const std::string &data);
std::string ToString() const;
static FixedSizeData<SIZE> FromBinary(const void *source);
void ToBinary(void *target) const;
const unsigned char *data() const;
private:
FixedSizeData() {}
static CryptoPP::AutoSeededRandomPool &RandomPool();
unsigned char _data[BINARY_LENGTH];
};
template<int SIZE> bool operator==(const FixedSizeData<SIZE> &lhs, const FixedSizeData<SIZE> &rhs);
template<int SIZE> bool operator!=(const FixedSizeData<SIZE> &lhs, const FixedSizeData<SIZE> &rhs);
//operator< is defined, so that FixedSizeData objects can be used in std::map and std::set
template<int SIZE> bool operator<(const FixedSizeData<SIZE> &lhs, const FixedSizeData<SIZE> &rhs);
// ----- Implementation -----
template<int SIZE> constexpr unsigned int FixedSizeData<SIZE>::BINARY_LENGTH;
template<int SIZE> constexpr unsigned int FixedSizeData<SIZE>::STRING_LENGTH;
template<int SIZE>
CryptoPP::AutoSeededRandomPool &FixedSizeData<SIZE>::RandomPool() {
static CryptoPP::AutoSeededRandomPool singleton;
return singleton;
}
template<int SIZE>
FixedSizeData<SIZE> FixedSizeData<SIZE>::CreateRandom() {
FixedSizeData<SIZE> result;
RandomPool().GenerateBlock(result._data, BINARY_LENGTH);
return result;
}
template<int SIZE>
FixedSizeData<SIZE> FixedSizeData<SIZE>::FromString(const std::string &data) {
assert(data.size() == STRING_LENGTH);
FixedSizeData<SIZE> result;
CryptoPP::StringSource(data, true,
new CryptoPP::HexDecoder(
new CryptoPP::ArraySink(result._data, BINARY_LENGTH)
)
);
return result;
}
template<int SIZE>
std::string FixedSizeData<SIZE>::ToString() const {
std::string result;
CryptoPP::ArraySource(_data, BINARY_LENGTH, true,
new CryptoPP::HexEncoder(
new CryptoPP::StringSink(result)
)
);
assert(result.size() == STRING_LENGTH);
return result;
}
template<int SIZE>
const unsigned char *FixedSizeData<SIZE>::data() const {
return _data;
}
template<int SIZE>
void FixedSizeData<SIZE>::ToBinary(void *target) const {
std::memcpy(target, _data, BINARY_LENGTH);
}
template<int SIZE>
FixedSizeData<SIZE> FixedSizeData<SIZE>::FromBinary(const void *source) {
FixedSizeData<SIZE> result;
std::memcpy(result._data, source, BINARY_LENGTH);
return result;
}
template<int SIZE>
bool operator==(const FixedSizeData<SIZE> &lhs, const FixedSizeData<SIZE> &rhs) {
return 0 == std::memcmp(lhs.data(), rhs.data(), FixedSizeData<SIZE>::BINARY_LENGTH);
}
template<int SIZE>
bool operator!=(const FixedSizeData<SIZE> &lhs, const FixedSizeData<SIZE> &rhs) {
return !operator==(lhs, rhs);
}
template<int SIZE>
bool operator<(const FixedSizeData<SIZE> &lhs, const FixedSizeData<SIZE> &rhs) {
return 0 > std::memcmp(lhs.data(), rhs.data(), FixedSizeData<SIZE>::BINARY_LENGTH);
}
}
#endif

View File

@ -1,83 +1 @@
#include <cryptopp/cryptopp/hex.h>
#include <cryptopp/cryptopp/osrng.h>
#include "Key.h" #include "Key.h"
#include <cstring>
using CryptoPP::ArraySource;
using CryptoPP::ArraySink;
using CryptoPP::StringSink;
using CryptoPP::StringSource;
using CryptoPP::HexEncoder;
using CryptoPP::HexDecoder;
using CryptoPP::AutoSeededRandomPool;
using std::string;
namespace blockstore {
constexpr unsigned int Key::KEYLENGTH_BINARY;
constexpr unsigned int Key::KEYLENGTH_STRING;
Key::Key() {
}
Key::~Key() {
}
AutoSeededRandomPool &RandomPool() {
static AutoSeededRandomPool singleton;
return singleton;
}
Key Key::CreateRandomKey() {
Key result;
RandomPool().GenerateBlock(result._key, KEYLENGTH_BINARY);
return result;
}
Key Key::FromString(const std::string &key) {
assert(key.size() == KEYLENGTH_STRING);
Key result;
StringSource(key, true,
new HexDecoder(new ArraySink(result._key, KEYLENGTH_BINARY))
);
return result;
}
string Key::ToString() const {
string result;
ArraySource(_key, KEYLENGTH_BINARY, true,
new HexEncoder(new StringSink(result))
);
assert(result.size() == KEYLENGTH_STRING);
return result;
}
const unsigned char *Key::data() const {
return _key;
}
bool operator==(const Key &lhs, const Key &rhs) {
return 0 == std::memcmp(lhs.data(), rhs.data(), Key::KEYLENGTH_BINARY);
}
bool operator!=(const Key &lhs, const Key &rhs) {
return !operator==(lhs, rhs);
}
bool operator<(const Key &lhs, const Key &rhs) {
return 0 > std::memcmp(lhs.data(), rhs.data(), Key::KEYLENGTH_BINARY);
}
void Key::ToBinary(void *target) const {
std::memcpy(target, _key, KEYLENGTH_BINARY);
}
Key Key::FromBinary(const void *source) {
Key result;
std::memcpy(result._key, source, KEYLENGTH_BINARY);
return result;
}
}

View File

@ -3,39 +3,12 @@
#define BLOCKSTORE_UTILS_KEY_H_ #define BLOCKSTORE_UTILS_KEY_H_
#include <string> #include <string>
#include "FixedSizeData.h"
namespace blockstore { namespace blockstore {
// A key here is NOT a key for encryption, but a key as used in key->value mappings ("access handle for a block"). // A key here is NOT a key for encryption, but a key as used in key->value mappings ("access handle for a block").
class Key { using Key = FixedSizeData<16>;
public:
//Non-virtual destructor because we want Key objects to be small
~Key();
static constexpr unsigned int KEYLENGTH_BINARY = 16;
static constexpr unsigned int KEYLENGTH_STRING = 2 * KEYLENGTH_BINARY; // Hex encoding
static Key CreateRandomKey();
static Key FromString(const std::string &key);
std::string ToString() const;
static Key FromBinary(const void *source);
void ToBinary(void *target) const;
const unsigned char *data() const;
private:
Key();
unsigned char _key[KEYLENGTH_BINARY];
};
bool operator==(const Key &lhs, const Key &rhs);
bool operator!=(const Key &lhs, const Key &rhs);
//operator< is defined, so that Key objects can be used in std::map and std::set
bool operator<(const Key &lhs, const Key &rhs);
} }