// Formatting library for C++ // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include "format.h" #include #include #include #include #include #include #include // for std::ptrdiff_t #include // for std::memmove #include #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) # include #endif #if FMT_USE_WINDOWS_H # if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN) # define WIN32_LEAN_AND_MEAN # endif # if defined(NOMINMAX) || defined(FMT_WIN_MINMAX) # include # else # define NOMINMAX # include # undef NOMINMAX # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable : 4127) // conditional expression is constant # pragma warning(disable : 4702) // unreachable code // Disable deprecation warning for strerror. The latter is not called but // MSVC fails to detect it. # pragma warning(disable : 4996) #endif // Dummy implementations of strerror_r and strerror_s called if corresponding // system functions are not available. inline fmt::internal::null<> strerror_r(int, char*, ...) { return fmt::internal::null<>(); } inline fmt::internal::null<> strerror_s(char*, std::size_t, ...) { return fmt::internal::null<>(); } FMT_BEGIN_NAMESPACE namespace internal { #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER using format_func = void (*)(internal::buffer&, int, string_view); // Portable thread-safe version of strerror. // Sets buffer to point to a string describing the error code. // This can be either a pointer to a string stored in buffer, // or a pointer to some static immutable string. // Returns one of the following values: // 0 - success // ERANGE - buffer is not large enough to store the error message // other - failure // Buffer should be at least of size 1. FMT_FUNC int safe_strerror(int error_code, char*& buffer, std::size_t buffer_size) FMT_NOEXCEPT { FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer"); class dispatcher { private: int error_code_; char*& buffer_; std::size_t buffer_size_; // A noop assignment operator to avoid bogus warnings. void operator=(const dispatcher&) {} // Handle the result of XSI-compliant version of strerror_r. int handle(int result) { // glibc versions before 2.13 return result in errno. return result == -1 ? errno : result; } // Handle the result of GNU-specific version of strerror_r. int handle(char* message) { // If the buffer is full then the message is probably truncated. if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) return ERANGE; buffer_ = message; return 0; } // Handle the case when strerror_r is not available. int handle(internal::null<>) { return fallback(strerror_s(buffer_, buffer_size_, error_code_)); } // Fallback to strerror_s when strerror_r is not available. int fallback(int result) { // If the buffer is full then the message is probably truncated. return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result; } #if !FMT_MSC_VER // Fallback to strerror if strerror_r and strerror_s are not available. int fallback(internal::null<>) { errno = 0; buffer_ = strerror(error_code_); return errno; } #endif public: dispatcher(int err_code, char*& buf, std::size_t buf_size) : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); } }; return dispatcher(error_code, buffer, buffer_size).run(); } FMT_FUNC void format_error_code(internal::buffer& out, int error_code, string_view message) FMT_NOEXCEPT { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; auto abs_value = static_cast>(error_code); if (internal::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += internal::to_unsigned(internal::count_digits(abs_value)); internal::writer w(out); if (message.size() <= inline_buffer_size - error_code_size) { w.write(message); w.write(SEP); } w.write(ERROR_STR); w.write(error_code); assert(out.size() <= inline_buffer_size); } // A wrapper around fwrite that throws on error. FMT_FUNC void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) { size_t written = std::fwrite(ptr, size, count, stream); if (written < count) { FMT_THROW(system_error(errno, "cannot write to file")); } } FMT_FUNC void report_error(format_func func, int error_code, string_view message) FMT_NOEXCEPT { memory_buffer full_message; func(full_message, error_code, message); // Don't use fwrite_fully because the latter may throw. (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } } // namespace internal #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) namespace internal { template locale_ref::locale_ref(const Locale& loc) : locale_(&loc) { static_assert(std::is_same::value, ""); } template Locale locale_ref::get() const { static_assert(std::is_same::value, ""); return locale_ ? *static_cast(locale_) : std::locale(); } template FMT_FUNC Char thousands_sep_impl(locale_ref loc) { return std::use_facet>(loc.get()) .thousands_sep(); } template FMT_FUNC Char decimal_point_impl(locale_ref loc) { return std::use_facet>(loc.get()) .decimal_point(); } } // namespace internal #else template FMT_FUNC Char internal::thousands_sep_impl(locale_ref) { return FMT_STATIC_THOUSANDS_SEPARATOR; } template FMT_FUNC Char internal::decimal_point_impl(locale_ref) { return '.'; } #endif FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT {} FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT {} FMT_FUNC void system_error::init(int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; format_system_error(buffer, err_code, vformat(format_str, args)); std::runtime_error& base = *this; base = std::runtime_error(to_string(buffer)); } namespace internal { template <> FMT_FUNC int count_digits<4>(internal::fallback_uintptr n) { // Assume little endian; pointer formatting is implementation-defined anyway. int i = static_cast(sizeof(void*)) - 1; while (i > 0 && n.value[i] == 0) --i; auto char_digits = std::numeric_limits::digits / 4; return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1; } template int format_float(char* buf, std::size_t size, const char* format, int precision, T value) { #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (precision > 100000) throw std::runtime_error( "fuzz mode - avoid large allocation inside snprintf"); #endif // Suppress the warning about nonliteral format string. auto snprintf_ptr = FMT_SNPRINTF; return precision < 0 ? snprintf_ptr(buf, size, format, value) : snprintf_ptr(buf, size, format, precision, value); } template const char basic_data::digits[] = "0001020304050607080910111213141516171819" "2021222324252627282930313233343536373839" "4041424344454647484950515253545556575859" "6061626364656667686970717273747576777879" "8081828384858687888990919293949596979899"; template const char basic_data::hex_digits[] = "0123456789abcdef"; #define FMT_POWERS_OF_10(factor) \ factor * 10, factor * 100, factor * 1000, factor * 10000, factor * 100000, \ factor * 1000000, factor * 10000000, factor * 100000000, \ factor * 1000000000 template const uint64_t basic_data::powers_of_10_64[] = { 1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull), 10000000000000000000ull}; template const uint32_t basic_data::zero_or_powers_of_10_32[] = {0, FMT_POWERS_OF_10(1)}; template const uint64_t basic_data::zero_or_powers_of_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull), 10000000000000000000ull}; // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. template const uint64_t basic_data::pow10_significands[] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, }; // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. template const int16_t basic_data::pow10_exponents[] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; template const char basic_data::foreground_color[] = "\x1b[38;2;"; template const char basic_data::background_color[] = "\x1b[48;2;"; template const char basic_data::reset_color[] = "\x1b[0m"; template const wchar_t basic_data::wreset_color[] = L"\x1b[0m"; template struct bits { static FMT_CONSTEXPR_DECL const int value = static_cast(sizeof(T) * std::numeric_limits::digits); }; // A handmade floating-point number f * pow(2, e). class fp { private: using significand_type = uint64_t; // All sizes are in bits. // Subtract 1 to account for an implicit most significant bit in the // normalized form. static FMT_CONSTEXPR_DECL const int double_significand_size = std::numeric_limits::digits - 1; static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = 1ull << double_significand_size; public: significand_type f; int e; static FMT_CONSTEXPR_DECL const int significand_size = bits::value; fp() : f(0), e(0) {} fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} // Constructs fp from an IEEE754 double. It is a template to prevent compile // errors on platforms where double is not IEEE754. template explicit fp(Double d) { // Assume double is in the format [sign][exponent][significand]. using limits = std::numeric_limits; const int exponent_size = bits::value - double_significand_size - 1; // -1 for sign const uint64_t significand_mask = implicit_bit - 1; const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask; const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; auto u = bit_cast(d); auto biased_e = (u & exponent_mask) >> double_significand_size; f = u & significand_mask; if (biased_e != 0) f += implicit_bit; else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). e = static_cast(biased_e - exponent_bias - double_significand_size); } // Normalizes the value converted from double and multiplied by (1 << SHIFT). template void normalize() { // Handle subnormals. auto shifted_implicit_bit = implicit_bit << SHIFT; while ((f & shifted_implicit_bit) == 0) { f <<= 1; --e; } // Subtract 1 to account for hidden bit. auto offset = significand_size - double_significand_size - SHIFT - 1; f <<= offset; e -= offset; } // Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where // a boundary is a value half way between the number and its predecessor // (lower) or successor (upper). The upper boundary is normalized and lower // has the same exponent but may be not normalized. void compute_boundaries(fp& lower, fp& upper) const { lower = f == implicit_bit ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1); upper = fp((f << 1) + 1, e - 1); upper.normalize<1>(); // 1 is to account for the exponent shift above. lower.f <<= lower.e - upper.e; lower.e = upper.e; } }; // Returns an fp number representing x - y. Result may not be normalized. inline fp operator-(fp x, fp y) { FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands"); return fp(x.f - y.f, x.e); } // Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest // with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be // normalized. FMT_FUNC fp operator*(fp x, fp y) { int exp = x.e + y.e + 64; #if FMT_USE_INT128 auto product = static_cast<__uint128_t>(x.f) * y.f; auto f = static_cast(product >> 64); if ((static_cast(product) & (1ULL << 63)) != 0) ++f; return fp(f, exp); #else // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = x.f >> 32, b = x.f & mask; uint64_t c = y.f >> 32, d = y.f & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), exp); #endif } // Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its // (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 28. FMT_FUNC fp get_cached_power(int min_exponent, int& pow10_exponent) { const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10) int index = static_cast( std::ceil((min_exponent + fp::significand_size - 1) * one_over_log2_10)); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between 2 consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return fp(data::pow10_significands[index], data::pow10_exponents[index]); } enum round_direction { unknown, up, down }; // Given the divisor (normally a power of 10), the remainder = v % divisor for // some number v and the error, returns whether v should be rounded up, down, or // whether the rounding direction can't be determined due to error. // error should be less than divisor / 2. inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder, uint64_t error) { FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow. FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow. FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow. // Round down if (remainder + error) * 2 <= divisor. if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) return down; // Round up if (remainder - error) * 2 >= divisor. if (remainder >= error && remainder - error >= divisor - (remainder - error)) { return up; } return unknown; } namespace digits { enum result { more, // Generate more digits. done, // Done generating digits. error // Digit generation cancelled due to an error. }; } // Generates output using the Grisu digit-gen algorithm. // error: the size of the region (lower, upper) outside of which numbers // definitely do not round to value (Delta in Grisu3). template digits::result grisu_gen_digits(fp value, uint64_t error, int& exp, Handler& handler) { fp one(1ull << -value.e, value.e); // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be // zero because it contains a product of two 64-bit numbers with MSB set (due // to normalization) - 1, shifted right by at most 60 bits. uint32_t integral = static_cast(value.f >> -one.e); FMT_ASSERT(integral != 0, ""); FMT_ASSERT(integral == value.f >> -one.e, ""); // The fractional part of scaled value (p2 in Grisu) c = value % one. uint64_t fractional = value.f & (one.f - 1); exp = count_digits(integral); // kappa in Grisu. // Divide by 10 to prevent overflow. auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e, value.f / 10, error * 10, exp); if (result != digits::more) return result; // Generate digits for the integral part. This can produce up to 10 digits. do { uint32_t digit = 0; // This optimization by miloyip reduces the number of integer divisions by // one per iteration. switch (exp) { case 10: digit = integral / 1000000000; integral %= 1000000000; break; case 9: digit = integral / 100000000; integral %= 100000000; break; case 8: digit = integral / 10000000; integral %= 10000000; break; case 7: digit = integral / 1000000; integral %= 1000000; break; case 6: digit = integral / 100000; integral %= 100000; break; case 5: digit = integral / 10000; integral %= 10000; break; case 4: digit = integral / 1000; integral %= 1000; break; case 3: digit = integral / 100; integral %= 100; break; case 2: digit = integral / 10; integral %= 10; break; case 1: digit = integral; integral = 0; break; default: FMT_ASSERT(false, "invalid number of digits"); } --exp; uint64_t remainder = (static_cast(integral) << -one.e) + fractional; result = handler.on_digit(static_cast('0' + digit), data::powers_of_10_64[exp] << -one.e, remainder, error, exp, true); if (result != digits::more) return result; } while (exp > 0); // Generate digits for the fractional part. for (;;) { fractional *= 10; error *= 10; char digit = static_cast('0' + static_cast(fractional >> -one.e)); fractional &= one.f - 1; --exp; result = handler.on_digit(digit, one.f, fractional, error, exp, false); if (result != digits::more) return result; } } // The fixed precision digit handler. struct fixed_handler { char* buf; int size; int precision; int exp10; bool fixed; digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error, int& exp) { // Non-fixed formats require at least one digit and no precision adjustment. if (!fixed) return digits::more; // Adjust fixed precision by exponent because it is relative to decimal // point. precision += exp + exp10; // Check if precision is satisfied just by leading zeros, e.g. // format("{:.2f}", 0.001) gives "0.00" without generating any digits. if (precision > 0) return digits::more; if (precision < 0) return digits::done; auto dir = get_round_direction(divisor, remainder, error); if (dir == unknown) return digits::error; buf[size++] = dir == up ? '1' : '0'; return digits::done; } digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, int, bool integral) { FMT_ASSERT(remainder < divisor, ""); buf[size++] = digit; if (size < precision) return digits::more; if (!integral) { // Check if error * 2 < divisor with overflow prevention. // The check is not needed for the integral part because error = 1 // and divisor > (1 << 32) there. if (error >= divisor || error >= divisor - error) return digits::error; } else { FMT_ASSERT(error == 1 && divisor > 2, ""); } auto dir = get_round_direction(divisor, remainder, error); if (dir != up) return dir == down ? digits::done : digits::error; ++buf[size - 1]; for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] > '9') { buf[0] = '1'; buf[size++] = '0'; } return digits::done; } }; // The shortest representation digit handler. template struct grisu_shortest_handler { char* buf; int size; // Distance between scaled value and upper bound (wp_W in Grisu3). uint64_t diff; digits::result on_start(uint64_t, uint64_t, uint64_t, int&) { return digits::more; } // Decrement the generated number approaching value from above. void round(uint64_t d, uint64_t divisor, uint64_t& remainder, uint64_t error) { while ( remainder < d && error - remainder >= divisor && (remainder + divisor < d || d - remainder >= remainder + divisor - d)) { --buf[size - 1]; remainder += divisor; } } // Implements Grisu's round_weed. digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, int exp, bool integral) { buf[size++] = digit; if (remainder >= error) return digits::more; if (GRISU_VERSION != 3) { uint64_t d = integral ? diff : diff * data::powers_of_10_64[-exp]; round(d, divisor, remainder, error); return digits::done; } uint64_t unit = integral ? 1 : data::powers_of_10_64[-exp]; uint64_t up = (diff - 1) * unit; // wp_Wup round(up, divisor, remainder, error); uint64_t down = (diff + 1) * unit; // wp_Wdown if (remainder < down && error - remainder >= divisor && (remainder + divisor < down || down - remainder > remainder + divisor - down)) { return digits::error; } return 2 * unit <= remainder && remainder <= error - 4 * unit ? digits::done : digits::error; } }; template > FMT_API bool grisu_format(Double value, buffer& buf, int precision, unsigned options, int& exp) { FMT_ASSERT(value >= 0, "value is negative"); bool fixed = (options & grisu_options::fixed) != 0; if (value <= 0) { // <= instead of == to silence a warning. if (precision <= 0 || !fixed) { exp = 0; buf.push_back('0'); } else { exp = -precision; buf.resize(to_unsigned(precision)); std::uninitialized_fill_n(buf.data(), precision, '0'); } return true; } fp fp_value(value); const int min_exp = -60; // alpha in Grisu. int cached_exp10 = 0; // K in Grisu. if (precision != -1) { if (precision > 17) return false; fp_value.normalize(); auto cached_pow = get_cached_power( min_exp - (fp_value.e + fp::significand_size), cached_exp10); fp_value = fp_value * cached_pow; fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; if (grisu_gen_digits(fp_value, 1, exp, handler) == digits::error) return false; buf.resize(to_unsigned(handler.size)); } else { fp lower, upper; // w^- and w^+ in the Grisu paper. fp_value.compute_boundaries(lower, upper); // Find a cached power of 10 such that multiplying upper by it will bring // the exponent in the range [min_exp, -32]. auto cached_pow = get_cached_power( // \tilde{c}_{-k} in Grisu. min_exp - (upper.e + fp::significand_size), cached_exp10); fp_value.normalize(); fp_value = fp_value * cached_pow; lower = lower * cached_pow; // \tilde{M}^- in Grisu. upper = upper * cached_pow; // \tilde{M}^+ in Grisu. assert(min_exp <= upper.e && upper.e <= -32); auto result = digits::result(); int size = 0; if ((options & grisu_options::grisu3) != 0) { --lower.f; // \tilde{M}^- - 1 ulp -> M^-_{\downarrow}. ++upper.f; // \tilde{M}^+ + 1 ulp -> M^+_{\uparrow}. // Numbers outside of (lower, upper) definitely do not round to value. grisu_shortest_handler<3> handler{buf.data(), 0, (upper - fp_value).f}; result = grisu_gen_digits(upper, upper.f - lower.f, exp, handler); size = handler.size; } else { ++lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}. --upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}. grisu_shortest_handler<2> handler{buf.data(), 0, (upper - fp_value).f}; result = grisu_gen_digits(upper, upper.f - lower.f, exp, handler); size = handler.size; } if (result == digits::error) return false; buf.resize(to_unsigned(size)); } exp -= cached_exp10; return true; } template char* sprintf_format(Double value, internal::buffer& buf, sprintf_specs specs) { // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. FMT_ASSERT(buf.capacity() != 0, "empty buffer"); // Build format string. enum { max_format_size = 10 }; // longest format: %#-*.*Lg char format[max_format_size]; char* format_ptr = format; *format_ptr++ = '%'; if (specs.alt || !specs.type) *format_ptr++ = '#'; if (specs.precision >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (std::is_same::value) *format_ptr++ = 'L'; char type = specs.type; if (type == '%') type = 'f'; else if (type == 0 || type == 'n') type = 'g'; #if FMT_MSC_VER if (type == 'F') { // MSVC's printf doesn't support 'F'. type = 'f'; } #endif *format_ptr++ = type; *format_ptr = '\0'; // Format using snprintf. char* start = nullptr; char* decimal_point_pos = nullptr; for (;;) { std::size_t buffer_size = buf.capacity(); start = &buf[0]; int result = format_float(start, buffer_size, format, specs.precision, value); if (result >= 0) { unsigned n = internal::to_unsigned(result); if (n < buf.capacity()) { // Find the decimal point. auto p = buf.data(), end = p + n; if (*p == '+' || *p == '-') ++p; if (specs.type != 'a' && specs.type != 'A') { while (p < end && *p >= '0' && *p <= '9') ++p; if (p < end && *p != 'e' && *p != 'E') { decimal_point_pos = p; if (!specs.type) { // Keep only one trailing zero after the decimal point. ++p; if (*p == '0') ++p; while (p != end && *p >= '1' && *p <= '9') ++p; char* where = p; while (p != end && *p == '0') ++p; if (p == end || *p < '0' || *p > '9') { if (p != end) std::memmove(where, p, to_unsigned(end - p)); n -= static_cast(p - where); } } } } buf.resize(n); break; // The buffer is large enough - continue with formatting. } buf.reserve(n + 1); } else { // If result is negative we ask to increase the capacity by at least 1, // but as std::vector, the buffer grows exponentially. buf.reserve(buf.capacity() + 1); } } return decimal_point_pos; } } // namespace internal #if FMT_USE_WINDOWS_H FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) { static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16"; if (s.size() > INT_MAX) FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG)); int s_size = static_cast(s.size()); if (s_size == 0) { // MultiByteToWideChar does not support zero length, handle separately. buffer_.resize(1); buffer_[0] = 0; return; } int length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, nullptr, 0); if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); buffer_.resize(length + 1); length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length); if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); buffer_[length] = 0; } FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) { if (int error_code = convert(s)) { FMT_THROW(windows_error(error_code, "cannot convert string from UTF-16 to UTF-8")); } } FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) { if (s.size() > INT_MAX) return ERROR_INVALID_PARAMETER; int s_size = static_cast(s.size()); if (s_size == 0) { // WideCharToMultiByte does not support zero length, handle separately. buffer_.resize(1); buffer_[0] = 0; return 0; } int length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, nullptr, 0, nullptr, nullptr); if (length == 0) return GetLastError(); buffer_.resize(length + 1); length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, nullptr, nullptr); if (length == 0) return GetLastError(); buffer_[length] = 0; return 0; } FMT_FUNC void windows_error::init(int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; internal::format_windows_error(buffer, err_code, vformat(format_str, args)); std::runtime_error& base = *this; base = std::runtime_error(to_string(buffer)); } FMT_FUNC void internal::format_windows_error(internal::buffer& out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { wmemory_buffer buf; buf.resize(inline_buffer_size); for (;;) { wchar_t* system_message = &buf[0]; int result = FormatMessageW( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message, static_cast(buf.size()), nullptr); if (result != 0) { utf16_to_utf8 utf8_message; if (utf8_message.convert(system_message) == ERROR_SUCCESS) { internal::writer w(out); w.write(message); w.write(": "); w.write(utf8_message); return; } break; } if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } #endif // FMT_USE_WINDOWS_H FMT_FUNC void format_system_error(internal::buffer& out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { memory_buffer buf; buf.resize(inline_buffer_size); for (;;) { char* system_message = &buf[0]; int result = internal::safe_strerror(error_code, system_message, buf.size()); if (result == 0) { internal::writer w(out); w.write(message); w.write(": "); w.write(system_message); return; } if (result != ERANGE) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } FMT_FUNC void internal::error_handler::on_error(const char* message) { FMT_THROW(format_error(message)); } FMT_FUNC void report_system_error(int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(format_system_error, error_code, message); } #if FMT_USE_WINDOWS_H FMT_FUNC void report_windows_error(int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(internal::format_windows_error, error_code, message); } #endif FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; internal::vformat_to(buffer, format_str, basic_format_args>(args)); internal::fwrite_fully(buffer.data(), 1, buffer.size(), f); } FMT_FUNC void vprint(std::FILE* f, wstring_view format_str, wformat_args args) { wmemory_buffer buffer; internal::vformat_to(buffer, format_str, args); buffer.push_back(L'\0'); if (std::fputws(buffer.data(), f) == -1) { FMT_THROW(system_error(errno, "cannot write to file")); } } FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } FMT_FUNC void vprint(wstring_view format_str, wformat_args args) { vprint(stdout, format_str, args); } FMT_END_NAMESPACE #ifdef _MSC_VER # pragma warning(pop) #endif #endif // FMT_FORMAT_INL_H_