libcryfs/vendor/cryptopp/vendor_cryptopp/cpu.h

1086 lines
38 KiB
C

// cpu.h - originally written and placed in the public domain by Wei Dai
// updated for ARM and PowerPC by Jeffrey Walton.
// updated to split CPU_Query() and CPU_Probe() by Jeffrey Walton.
/// \file cpu.h
/// \brief Functions for CPU features and intrinsics
/// \details The CPU functions are used in IA-32, ARM and PowerPC code paths. The
/// functions provide cpu specific feature testing on IA-32, ARM and PowerPC machines.
/// \details Feature detection uses CPUID on IA-32, like Intel and AMD. On other platforms
/// a two-part strategy is used. First, the library attempts to *Query* the OS for a feature,
/// like using Linux getauxval() or android_getCpuFeatures(). If that fails, then *Probe*
/// the cpu executing an instruction and an observe a SIGILL if unsupported. The general
/// pattern used by the library is:
/// <pre>
/// g_hasCRC32 = CPU_QueryCRC32() || CPU_ProbeCRC32();
/// g_hasPMULL = CPU_QueryPMULL() || CPU_ProbePMULL();
/// g_hasAES = CPU_QueryAES() || CPU_ProbeAES();
/// </pre>
/// \details Generally speaking, CPU_Query() is in the source file <tt>cpu.cpp</tt> because it
/// does not require special architectural flags. CPU_Probe() is in a source file that receives
/// architectural flags, like <tt>sse_simd.cpp</tt>, <tt>neon_simd.cpp</tt> and
/// <tt>ppc_simd.cpp</tt>. For example, compiling <tt>neon_simd.cpp</tt> on an ARM64 machine will
/// have <tt>-march=armv8-a</tt> applied during a compile to make the instruction set architecture
/// (ISA) available.
/// \details The cpu probes are expensive when compared to a standard OS feature query. The library
/// also avoids probes on Apple platforms because Apple's signal handling for SIGILLs appears to
/// corrupt memory. CPU_Probe() will unconditionally return false for Apple platforms. OpenSSL
/// experienced the same problem and moved away from SIGILL probes on Apple.
#ifndef CRYPTOPP_CPU_H
#define CRYPTOPP_CPU_H
#include "config.h"
// Issue 340
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
// Applies to both X86/X32/X64 and ARM32/ARM64
#if defined(CRYPTOPP_LLVM_CLANG_VERSION) || defined(CRYPTOPP_APPLE_CLANG_VERSION)
#define NEW_LINE "\n"
#define INTEL_PREFIX ".intel_syntax;"
#define INTEL_NOPREFIX ".intel_syntax;"
#define ATT_PREFIX ".att_syntax;"
#define ATT_NOPREFIX ".att_syntax;"
#elif defined(__GNUC__)
#define NEW_LINE
#define INTEL_PREFIX ".intel_syntax prefix;"
#define INTEL_NOPREFIX ".intel_syntax noprefix;"
#define ATT_PREFIX ".att_syntax prefix;"
#define ATT_NOPREFIX ".att_syntax noprefix;"
#else
#define NEW_LINE
#define INTEL_PREFIX
#define INTEL_NOPREFIX
#define ATT_PREFIX
#define ATT_NOPREFIX
#endif
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define CRYPTOPP_X86_ASM_AVAILABLE
#define CRYPTOPP_BOOL_X64 1
#define CRYPTOPP_SSE2_ASM_AVAILABLE 1
#define NAMESPACE_END
#else
NAMESPACE_BEGIN(CryptoPP)
// ***************************** IA-32 ***************************** //
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 || CRYPTOPP_DOXYGEN_PROCESSING
#define CRYPTOPP_CPUID_AVAILABLE 1
// Hide from Doxygen
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
// These should not be used directly
extern CRYPTOPP_DLL bool g_x86DetectionDone;
extern CRYPTOPP_DLL bool g_hasSSE2;
extern CRYPTOPP_DLL bool g_hasSSSE3;
extern CRYPTOPP_DLL bool g_hasSSE41;
extern CRYPTOPP_DLL bool g_hasSSE42;
extern CRYPTOPP_DLL bool g_hasMOVBE;
extern CRYPTOPP_DLL bool g_hasAESNI;
extern CRYPTOPP_DLL bool g_hasCLMUL;
extern CRYPTOPP_DLL bool g_hasAVX;
extern CRYPTOPP_DLL bool g_hasAVX2;
extern CRYPTOPP_DLL bool g_hasSHA;
extern CRYPTOPP_DLL bool g_hasADX;
extern CRYPTOPP_DLL bool g_isP4;
extern CRYPTOPP_DLL bool g_hasRDRAND;
extern CRYPTOPP_DLL bool g_hasRDSEED;
extern CRYPTOPP_DLL bool g_hasPadlockRNG;
extern CRYPTOPP_DLL bool g_hasPadlockACE;
extern CRYPTOPP_DLL bool g_hasPadlockACE2;
extern CRYPTOPP_DLL bool g_hasPadlockPHE;
extern CRYPTOPP_DLL bool g_hasPadlockPMM;
extern CRYPTOPP_DLL word32 g_cacheLineSize;
CRYPTOPP_DLL void CRYPTOPP_API DetectX86Features();
CRYPTOPP_DLL bool CRYPTOPP_API CpuId(word32 func, word32 subfunc, word32 output[4]);
#endif // CRYPTOPP_DOXYGEN_PROCESSING
/// \name IA-32 CPU FEATURES
//@{
/// \brief Determine SSE2 availability
/// \return true if SSE2 is determined to be available, false otherwise
/// \details MMX, SSE and SSE2 are core processor features for x86_64, and
/// the function return value is based on OSXSAVE. On i386 both
/// SSE2 and OSXSAVE are used for the return value.
/// \note This function is only available on Intel IA-32 platforms
inline bool HasSSE2()
{
#if (CRYPTOPP_SSE2_ASM_AVAILABLE || CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasSSE2;
#else
return false;
#endif
}
/// \brief Determine SSSE3 availability
/// \return true if SSSE3 is determined to be available, false otherwise
/// \details HasSSSE3() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasSSSE3()
{
#if CRYPTOPP_SSSE3_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasSSSE3;
#else
return false;
#endif
}
/// \brief Determine SSE4.1 availability
/// \return true if SSE4.1 is determined to be available, false otherwise
/// \details HasSSE41() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasSSE41()
{
#if CRYPTOPP_SSE41_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasSSE41;
#else
return false;
#endif
}
/// \brief Determine SSE4.2 availability
/// \return true if SSE4.2 is determined to be available, false otherwise
/// \details HasSSE42() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasSSE42()
{
#if CRYPTOPP_SSE42_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasSSE42;
#else
return false;
#endif
}
/// \brief Determine MOVBE availability
/// \return true if MOVBE is determined to be available, false otherwise
/// \details HasMOVBE() is a runtime check performed using CPUID
/// \since Crypto++ 8.3
/// \note This function is only available on Intel IA-32 platforms
inline bool HasMOVBE()
{
#if CRYPTOPP_SSE42_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasMOVBE;
#else
return false;
#endif
}
/// \brief Determine AES-NI availability
/// \return true if AES-NI is determined to be available, false otherwise
/// \details HasAESNI() is a runtime check performed using CPUID
/// \since Crypto++ 5.6.1
/// \note This function is only available on Intel IA-32 platforms
inline bool HasAESNI()
{
#if CRYPTOPP_AESNI_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasAESNI;
#else
return false;
#endif
}
/// \brief Determine Carryless Multiply availability
/// \return true if pclmulqdq is determined to be available, false otherwise
/// \details HasCLMUL() is a runtime check performed using CPUID
/// \since Crypto++ 5.6.1
/// \note This function is only available on Intel IA-32 platforms
inline bool HasCLMUL()
{
#if CRYPTOPP_CLMUL_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasCLMUL;
#else
return false;
#endif
}
/// \brief Determine SHA availability
/// \return true if SHA is determined to be available, false otherwise
/// \details HasSHA() is a runtime check performed using CPUID
/// \since Crypto++ 6.0
/// \note This function is only available on Intel IA-32 platforms
inline bool HasSHA()
{
#if CRYPTOPP_SHANI_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasSHA;
#else
return false;
#endif
}
/// \brief Determine ADX availability
/// \return true if ADX is determined to be available, false otherwise
/// \details HasADX() is a runtime check performed using CPUID
/// \since Crypto++ 7.0
/// \note This function is only available on Intel IA-32 platforms
inline bool HasADX()
{
#if CRYPTOPP_ADX_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasADX;
#else
return false;
#endif
}
/// \brief Determine AVX availability
/// \return true if AVX is determined to be available, false otherwise
/// \details HasAVX() is a runtime check performed using CPUID
/// \since Crypto++ 8.0
/// \note This function is only available on Intel IA-32 platforms
inline bool HasAVX()
{
#if CRYPTOPP_AVX_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasAVX;
#else
return false;
#endif
}
/// \brief Determine AVX2 availability
/// \return true if AVX2 is determined to be available, false otherwise
/// \details HasAVX2() is a runtime check performed using CPUID
/// \since Crypto++ 8.0
/// \note This function is only available on Intel IA-32 platforms
inline bool HasAVX2()
{
#if CRYPTOPP_AVX2_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasAVX2;
#else
return false;
#endif
}
/// \brief Determine RDRAND availability
/// \return true if RDRAND is determined to be available, false otherwise
/// \details HasRDRAND() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasRDRAND()
{
#if CRYPTOPP_RDRAND_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasRDRAND;
#else
return false;
#endif
}
/// \brief Determine RDSEED availability
/// \return true if RDSEED is determined to be available, false otherwise
/// \details HasRDSEED() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasRDSEED()
{
#if CRYPTOPP_RDSEED_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasRDSEED;
#else
return false;
#endif
}
/// \brief Determine Padlock RNG availability
/// \return true if VIA Padlock RNG is determined to be available, false otherwise
/// \details HasPadlockRNG() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasPadlockRNG()
{
#if CRYPTOPP_PADLOCK_RNG_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasPadlockRNG;
#else
return false;
#endif
}
/// \brief Determine Padlock ACE availability
/// \return true if VIA Padlock ACE is determined to be available, false otherwise
/// \details HasPadlockACE() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasPadlockACE()
{
#if CRYPTOPP_PADLOCK_ACE_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasPadlockACE;
#else
return false;
#endif
}
/// \brief Determine Padlock ACE2 availability
/// \return true if VIA Padlock ACE2 is determined to be available, false otherwise
/// \details HasPadlockACE2() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasPadlockACE2()
{
#if CRYPTOPP_PADLOCK_ACE2_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasPadlockACE2;
#else
return false;
#endif
}
/// \brief Determine Padlock PHE availability
/// \return true if VIA Padlock PHE is determined to be available, false otherwise
/// \details HasPadlockPHE() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasPadlockPHE()
{
#if CRYPTOPP_PADLOCK_PHE_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasPadlockPHE;
#else
return false;
#endif
}
/// \brief Determine Padlock PMM availability
/// \return true if VIA Padlock PMM is determined to be available, false otherwise
/// \details HasPadlockPMM() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool HasPadlockPMM()
{
#if CRYPTOPP_PADLOCK_PMM_AVAILABLE
if (!g_x86DetectionDone)
DetectX86Features();
return g_hasPadlockPMM;
#else
return false;
#endif
}
/// \brief Determine if the CPU is an Intel P4
/// \return true if the CPU is a P4, false otherwise
/// \details IsP4() is a runtime check performed using CPUID
/// \note This function is only available on Intel IA-32 platforms
inline bool IsP4()
{
if (!g_x86DetectionDone)
DetectX86Features();
return g_isP4;
}
/// \brief Provides the cache line size
/// \return lower bound on the size of a cache line in bytes, if available
/// \details GetCacheLineSize() returns the lower bound on the size of a cache line, if it
/// is available. If the value is not available at runtime, then 32 is returned for a 32-bit
/// processor and 64 is returned for a 64-bit processor.
/// \details x86/x32/x64 uses CPUID to determine the value and it is usually accurate. PowerPC
/// and AIX also makes the value available to user space and it is also usually accurate. The
/// ARM processor equivalent is a privileged instruction, so a compile time value is returned.
inline int GetCacheLineSize()
{
if (!g_x86DetectionDone)
DetectX86Features();
return g_cacheLineSize;
}
//@}
#endif // CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
// ***************************** ARM-32, Aarch32 and Aarch64 ***************************** //
#if CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8 || CRYPTOPP_DOXYGEN_PROCESSING
// Hide from Doxygen
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
extern bool g_ArmDetectionDone;
extern bool g_hasARMv7;
extern bool g_hasNEON;
extern bool g_hasPMULL;
extern bool g_hasCRC32;
extern bool g_hasAES;
extern bool g_hasSHA1;
extern bool g_hasSHA2;
extern bool g_hasSHA512;
extern bool g_hasSHA3;
extern bool g_hasSM3;
extern bool g_hasSM4;
void CRYPTOPP_API DetectArmFeatures();
#endif // CRYPTOPP_DOXYGEN_PROCESSING
/// \name ARM A-32, Aarch32 and AArch64 CPU FEATURES
//@{
/// \brief Determine if an ARM processor is ARMv7 or above
/// \return true if the hardware is ARMv7 or above, false otherwise.
/// \details Some AES code requires ARMv7 or above
/// \since Crypto++ 8.0
/// \note This function is only available on ARM-32, Aarch32 and Aarch64 platforms
inline bool HasARMv7()
{
// ASIMD is a core feature on Aarch32 and Aarch64 like SSE2 is a core feature on x86_64
#if defined(__aarch32__) || defined(__aarch64__)
return true;
#else
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasARMv7;
#endif
}
/// \brief Determine if an ARM processor has Advanced SIMD available
/// \return true if the hardware is capable of Advanced SIMD at runtime, false otherwise.
/// \details Advanced SIMD instructions are available under most ARMv7, Aarch32 and Aarch64.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mfpu=neon</tt> (32-bit) or <tt>-march=armv8-a</tt>
/// (64-bit). Also see ARM's <tt>__ARM_NEON</tt> preprocessor macro.
/// \since Crypto++ 5.6.4
/// \note This function is only available on ARM-32, Aarch32 and Aarch64 platforms
inline bool HasNEON()
{
// ASIMD is a core feature on Aarch32 and Aarch64 like SSE2 is a core feature on x86_64
#if defined(CRYPTOPP_ARM_ASIMD_AVAILABLE)
return true;
#elif defined(CRYPTOPP_ARM_NEON_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasNEON;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has CRC32 available
/// \return true if the hardware is capable of CRC32 at runtime, false otherwise.
/// \details CRC32 instructions provide access to the processor's CRC-32 and CRC-32C
/// instructions. They are provided by ARM C Language Extensions 2.0 (ACLE 2.0) and
/// available under Aarch32 and Aarch64.
/// \details Runtime support requires compile time support. When compiling with GCC,
/// you may need to compile with <tt>-march=armv8-a+crc</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRC32</tt> preprocessor macro.
/// \since Crypto++ 5.6.4
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasCRC32()
{
#if defined(CRYPTOPP_ARM_CRC32_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasCRC32;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has AES available
/// \return true if the hardware is capable of AES at runtime, false otherwise.
/// \details AES is part of the optional Crypto extensions on Aarch32 and Aarch64. They are
/// accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-march=armv8-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 5.6.4
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasAES()
{
#if defined(CRYPTOPP_ARM_AES_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasAES;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor provides Polynomial Multiplication
/// \return true if the hardware is capable of polynomial multiplications at runtime,
/// false otherwise.
/// \details The multiplication instructions are available under Aarch32 and Aarch64.
/// \details Runtime support requires compile time support. When compiling with GCC,
/// you may need to compile with <tt>-march=armv8-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 5.6.4
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasPMULL()
{
#if defined(CRYPTOPP_ARM_PMULL_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasPMULL;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has SHA1 available
/// \return true if the hardware is capable of SHA1 at runtime, false otherwise.
/// \details SHA1 is part of the optional Crypto extensions on Aarch32 and Aarch64. They are
/// accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-march=armv8-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 5.6.4
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasSHA1()
{
#if defined(CRYPTOPP_ARM_SHA1_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasSHA1;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has SHA256 available
/// \return true if the hardware is capable of SHA256 at runtime, false otherwise.
/// \details SHA256 is part of the optional Crypto extensions on Aarch32 and Aarch64. They are
/// accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-march=armv8-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 5.6.4
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasSHA2()
{
#if defined(CRYPTOPP_ARM_SHA2_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasSHA2;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has SHA3 available
/// \return true if the hardware is capable of SHA3 at runtime, false otherwise.
/// \details SHA3 is part of the ARMv8.2 Crypto extensions on Aarch32 and Aarch64. They
/// are accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you
/// may need to compile with <tt>-march=armv8.2-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 8.0
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasSHA3()
{
#if defined(CRYPTOPP_ARM_SHA3_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasSHA3;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has SHA512 available
/// \return true if the hardware is capable of SHA512 at runtime, false otherwise.
/// \details SHA512 is part of the ARMv8.2 Crypto extensions on Aarch32 and Aarch64. They
/// are accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you
/// may need to compile with <tt>-march=armv8.2-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 8.0
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasSHA512()
{
#if defined(CRYPTOPP_ARM_SHA512_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasSHA512;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has SM3 available
/// \return true if the hardware is capable of SM3 at runtime, false otherwise.
/// \details SM3 is part of the ARMv8.2 Crypto extensions on Aarch32 and Aarch64. They
/// are accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you
/// may need to compile with <tt>-march=armv8.2-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 8.0
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasSM3()
{
#if defined(CRYPTOPP_ARM_SM3_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasSM3;
#else
return false;
#endif
}
/// \brief Determine if an ARM processor has SM4 available
/// \return true if the hardware is capable of SM4 at runtime, false otherwise.
/// \details SM4 is part of the ARMv8.2 Crypto extensions on Aarch32 and Aarch64. They
/// are accessed using ARM C Language Extensions 2.0 (ACLE 2.0).
/// \details Runtime support requires compile time support. When compiling with GCC, you
/// may need to compile with <tt>-march=armv8.2-a+crypto</tt>; while Apple requires
/// <tt>-arch arm64</tt>. Also see ARM's <tt>__ARM_FEATURE_CRYPTO</tt> preprocessor macro.
/// \since Crypto++ 8.0
/// \note This function is only available on Aarch32 and Aarch64 platforms
inline bool HasSM4()
{
#if defined(CRYPTOPP_ARM_SM4_AVAILABLE)
if (!g_ArmDetectionDone)
DetectArmFeatures();
return g_hasSM4;
#else
return false;
#endif
}
//@}
#endif // CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8
// ***************************** PowerPC ***************************** //
#if CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64 || CRYPTOPP_DOXYGEN_PROCESSING
// Hide from Doxygen
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
extern bool g_PowerpcDetectionDone;
extern bool g_hasAltivec;
extern bool g_hasPower7;
extern bool g_hasPower8;
extern bool g_hasPower9;
extern bool g_hasAES;
extern bool g_hasPMULL;
extern bool g_hasSHA256;
extern bool g_hasSHA512;
extern bool g_hasDARN;
extern word32 g_cacheLineSize;
void CRYPTOPP_API DetectPowerpcFeatures();
#endif // CRYPTOPP_DOXYGEN_PROCESSING
/// \name POWERPC CPU FEATURES
//@{
/// \brief Determine if a PowerPC processor has Altivec available
/// \return true if the hardware is capable of Altivec at runtime, false otherwise.
/// \details Altivec instructions are available on modern PowerPCs.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power4</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr6 -qaltivec</tt>. Also see PowerPC's <tt>_ALTIVEC_</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasAltivec()
{
#if CRYPTOPP_ALTIVEC_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasAltivec;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has Power7 available
/// \return true if the hardware is capable of Power7 at runtime, false otherwise.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power7</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr7 -qaltivec</tt>. Also see PowerPC's <tt>_ALTIVEC_</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasPower7()
{
#if CRYPTOPP_POWER7_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasPower7;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has Power8 available
/// \return true if the hardware is capable of Power8 at runtime, false otherwise.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power8</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr8 -qaltivec</tt>. Also see PowerPC's <tt>_ALTIVEC_</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasPower8()
{
#if CRYPTOPP_POWER8_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasPower8;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has Power9 available
/// \return true if the hardware is capable of Power9 at runtime, false otherwise.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power9</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr9 -qaltivec</tt>. Also see PowerPC's <tt>_ALTIVEC_</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasPower9()
{
#if CRYPTOPP_POWER9_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasPower9;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has AES available
/// \return true if the hardware is capable of AES at runtime, false otherwise.
/// \details AES is part of the in-crypto extensions on Power8 and Power9.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power8</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr8 -qaltivec</tt>. Also see PowerPC's <tt>__CRYPTO</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasAES()
{
#if CRYPTOPP_POWER8_AES_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasAES;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has Polynomial Multiply available
/// \return true if the hardware is capable of PMULL at runtime, false otherwise.
/// \details PMULL is part of the in-crypto extensions on Power8 and Power9.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power8</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr8 -qaltivec</tt>. Also see PowerPC's <tt>__CRYPTO</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasPMULL()
{
#if CRYPTOPP_POWER8_VMULL_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasPMULL;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has SHA256 available
/// \return true if the hardware is capable of SHA256 at runtime, false otherwise.
/// \details SHA is part of the in-crypto extensions on Power8 and Power9.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power8</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr8 -qaltivec</tt>. Also see PowerPC's <tt>__CRYPTO</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasSHA256()
{
#if CRYPTOPP_POWER8_SHA_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasSHA256;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has SHA512 available
/// \return true if the hardware is capable of SHA512 at runtime, false otherwise.
/// \details SHA is part of the in-crypto extensions on Power8 and Power9.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power8</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr8 -qaltivec</tt>. Also see PowerPC's <tt>__CRYPTO</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasSHA512()
{
#if CRYPTOPP_POWER8_SHA_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_hasSHA512;
#else
return false;
#endif
}
/// \brief Determine if a PowerPC processor has DARN available
/// \return true if the hardware is capable of DARN at runtime, false otherwise.
/// \details Runtime support requires compile time support. When compiling with GCC, you may
/// need to compile with <tt>-mcpu=power9</tt>; while IBM XL C/C++ compilers require
/// <tt>-qarch=pwr9 -qaltivec</tt>. Also see PowerPC's <tt>_ALTIVEC_</tt> preprocessor macro.
/// \note This function is only available on PowerPC and PowerPC-64 platforms
inline bool HasDARN()
{
#if CRYPTOPP_POWER9_AVAILABLE
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
// see comments in cpu.cpp
# if defined(__ibmxl__) && defined(__linux__)
return false;
# else
return g_hasDARN;
# endif
#else
return false;
#endif
}
/// \brief Provides the cache line size
/// \return lower bound on the size of a cache line in bytes, if available
/// \details GetCacheLineSize() returns the lower bound on the size of a cache line, if it
/// is available. If the value is not available at runtime, then 32 is returned for a 32-bit
/// processor and 64 is returned for a 64-bit processor.
/// \details x86/x32/x64 uses CPUID to determine the value and it is usually accurate. PowerPC
/// and AIX also makes the value available to user space and it is also usually accurate. The
/// ARM processor equivalent is a privileged instruction, so a compile time value is returned.
inline int GetCacheLineSize()
{
if (!g_PowerpcDetectionDone)
DetectPowerpcFeatures();
return g_cacheLineSize;
}
//@}
#endif // CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64
// ***************************** L1 cache line ***************************** //
// Non-Intel systems
#if !(CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64)
/// \brief Provides the cache line size
/// \return lower bound on the size of a cache line in bytes, if available
/// \details GetCacheLineSize() returns the lower bound on the size of a cache line, if it
/// is available. If the value is not available at runtime, then 32 is returned for a 32-bit
/// processor and 64 is returned for a 64-bit processor.
/// \details x86/x32/x64 uses CPUID to determine the value and it is usually accurate. PowerPC
/// and AIX also makes the value available to user space and it is also usually accurate. The
/// ARM processor equivalent is a privileged instruction, so a compile time value is returned.
inline int GetCacheLineSize()
{
return CRYPTOPP_L1_CACHE_LINE_SIZE;
}
#endif // Non-Intel systems
#endif // CRYPTOPP_GENERATE_X64_MASM
// ***************************** Inline ASM Helper ***************************** //
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define AS1(x) x*newline*
#define AS2(x, y) x, y*newline*
#define AS3(x, y, z) x, y, z*newline*
#define ASS(x, y, a, b, c, d) x, y, a*64+b*16+c*4+d*newline*
#define ASL(x) label##x:*newline*
#define ASJ(x, y, z) x label##y*newline*
#define ASC(x, y) x label##y*newline*
#define AS_HEX(y) 0##y##h
#elif defined(_MSC_VER) || defined(__BORLANDC__)
#define AS1(x) __asm {x}
#define AS2(x, y) __asm {x, y}
#define AS3(x, y, z) __asm {x, y, z}
#define ASS(x, y, a, b, c, d) __asm {x, y, (a)*64+(b)*16+(c)*4+(d)}
#define ASL(x) __asm {label##x:}
#define ASJ(x, y, z) __asm {x label##y}
#define ASC(x, y) __asm {x label##y}
#define CRYPTOPP_NAKED __declspec(naked)
#define AS_HEX(y) 0x##y
#else
// define these in two steps to allow arguments to be expanded
#define GNU_AS1(x) #x ";" NEW_LINE
#define GNU_AS2(x, y) #x ", " #y ";" NEW_LINE
#define GNU_AS3(x, y, z) #x ", " #y ", " #z ";" NEW_LINE
#define GNU_ASL(x) "\n" #x ":" NEW_LINE
// clang 5.0.0 and apple clang 9.0.0 don't support numerical backward jumps
#if (CRYPTOPP_LLVM_CLANG_VERSION >= 50000) || (CRYPTOPP_APPLE_CLANG_VERSION >= 90000)
#define GNU_ASJ(x, y, z) ATT_PREFIX ";" NEW_LINE #x " " #y #z ";" NEW_LINE INTEL_PREFIX ";" NEW_LINE
#else
#define GNU_ASJ(x, y, z) #x " " #y #z ";" NEW_LINE
#endif
#define AS1(x) GNU_AS1(x)
#define AS2(x, y) GNU_AS2(x, y)
#define AS3(x, y, z) GNU_AS3(x, y, z)
#define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";"
#define ASL(x) GNU_ASL(x)
#define ASJ(x, y, z) GNU_ASJ(x, y, z)
#define ASC(x, y) #x " " #y ";"
#define CRYPTOPP_NAKED
#define AS_HEX(y) 0x##y
#endif
#define IF0(y)
#define IF1(y) y
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define ASM_MOD(x, y) ((x) MOD (y))
#define XMMWORD_PTR XMMWORD PTR
#else
// GNU assembler doesn't seem to have mod operator
#define ASM_MOD(x, y) ((x)-((x)/(y))*(y))
// GAS 2.15 doesn't support XMMWORD PTR. it seems necessary only for MASM
#define XMMWORD_PTR
#endif
#if CRYPTOPP_BOOL_X86
#define AS_REG_1 ecx
#define AS_REG_2 edx
#define AS_REG_3 esi
#define AS_REG_4 edi
#define AS_REG_5 eax
#define AS_REG_6 ebx
#define AS_REG_7 ebp
#define AS_REG_1d ecx
#define AS_REG_2d edx
#define AS_REG_3d esi
#define AS_REG_4d edi
#define AS_REG_5d eax
#define AS_REG_6d ebx
#define AS_REG_7d ebp
#define WORD_SZ 4
#define WORD_REG(x) e##x
#define WORD_PTR DWORD PTR
#define AS_PUSH_IF86(x) AS1(push e##x)
#define AS_POP_IF86(x) AS1(pop e##x)
#define AS_JCXZ jecxz
#elif CRYPTOPP_BOOL_X32
#define AS_REG_1 ecx
#define AS_REG_2 edx
#define AS_REG_3 r8d
#define AS_REG_4 r9d
#define AS_REG_5 eax
#define AS_REG_6 r10d
#define AS_REG_7 r11d
#define AS_REG_1d ecx
#define AS_REG_2d edx
#define AS_REG_3d r8d
#define AS_REG_4d r9d
#define AS_REG_5d eax
#define AS_REG_6d r10d
#define AS_REG_7d r11d
#define WORD_SZ 4
#define WORD_REG(x) e##x
#define WORD_PTR DWORD PTR
#define AS_PUSH_IF86(x) AS1(push r##x)
#define AS_POP_IF86(x) AS1(pop r##x)
#define AS_JCXZ jecxz
#elif CRYPTOPP_BOOL_X64
#ifdef CRYPTOPP_GENERATE_X64_MASM
#define AS_REG_1 rcx
#define AS_REG_2 rdx
#define AS_REG_3 r8
#define AS_REG_4 r9
#define AS_REG_5 rax
#define AS_REG_6 r10
#define AS_REG_7 r11
#define AS_REG_1d ecx
#define AS_REG_2d edx
#define AS_REG_3d r8d
#define AS_REG_4d r9d
#define AS_REG_5d eax
#define AS_REG_6d r10d
#define AS_REG_7d r11d
#else
#define AS_REG_1 rdi
#define AS_REG_2 rsi
#define AS_REG_3 rdx
#define AS_REG_4 rcx
#define AS_REG_5 r8
#define AS_REG_6 r9
#define AS_REG_7 r10
#define AS_REG_1d edi
#define AS_REG_2d esi
#define AS_REG_3d edx
#define AS_REG_4d ecx
#define AS_REG_5d r8d
#define AS_REG_6d r9d
#define AS_REG_7d r10d
#endif
#define WORD_SZ 8
#define WORD_REG(x) r##x
#define WORD_PTR QWORD PTR
#define AS_PUSH_IF86(x)
#define AS_POP_IF86(x)
#define AS_JCXZ jrcxz
#endif
// helper macro for stream cipher output
#define AS_XMM_OUTPUT4(labelPrefix, inputPtr, outputPtr, x0, x1, x2, x3, t, p0, p1, p2, p3, increment)\
AS2( test inputPtr, inputPtr)\
ASC( jz, labelPrefix##3)\
AS2( test inputPtr, 15)\
ASC( jnz, labelPrefix##7)\
AS2( pxor xmm##x0, [inputPtr+p0*16])\
AS2( pxor xmm##x1, [inputPtr+p1*16])\
AS2( pxor xmm##x2, [inputPtr+p2*16])\
AS2( pxor xmm##x3, [inputPtr+p3*16])\
AS2( add inputPtr, increment*16)\
ASC( jmp, labelPrefix##3)\
ASL(labelPrefix##7)\
AS2( movdqu xmm##t, [inputPtr+p0*16])\
AS2( pxor xmm##x0, xmm##t)\
AS2( movdqu xmm##t, [inputPtr+p1*16])\
AS2( pxor xmm##x1, xmm##t)\
AS2( movdqu xmm##t, [inputPtr+p2*16])\
AS2( pxor xmm##x2, xmm##t)\
AS2( movdqu xmm##t, [inputPtr+p3*16])\
AS2( pxor xmm##x3, xmm##t)\
AS2( add inputPtr, increment*16)\
ASL(labelPrefix##3)\
AS2( test outputPtr, 15)\
ASC( jnz, labelPrefix##8)\
AS2( movdqa [outputPtr+p0*16], xmm##x0)\
AS2( movdqa [outputPtr+p1*16], xmm##x1)\
AS2( movdqa [outputPtr+p2*16], xmm##x2)\
AS2( movdqa [outputPtr+p3*16], xmm##x3)\
ASC( jmp, labelPrefix##9)\
ASL(labelPrefix##8)\
AS2( movdqu [outputPtr+p0*16], xmm##x0)\
AS2( movdqu [outputPtr+p1*16], xmm##x1)\
AS2( movdqu [outputPtr+p2*16], xmm##x2)\
AS2( movdqu [outputPtr+p3*16], xmm##x3)\
ASL(labelPrefix##9)\
AS2( add outputPtr, increment*16)
#endif // CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
#endif // Not CRYPTOPP_DOXYGEN_PROCESSING
NAMESPACE_END
// Issue 340
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif
#endif // CRYPTOPP_CPU_H