libcryfs/vendor/cryptopp/vendor_cryptopp/donna_64.cpp

1816 lines
65 KiB
C++

// donna_64.cpp - written and placed in public domain by Jeffrey Walton
// Crypto++ specific implementation wrapped around Andrew
// Moon's public domain curve25519-donna and ed25519-donna,
// https://github.com/floodyberry/curve25519-donna and
// https://github.com/floodyberry/ed25519-donna.
// The curve25519 and ed25519 source files multiplex different repos and
// architectures using namespaces. The repos are Andrew Moon's
// curve25519-donna and ed25519-donna. The architectures are 32-bit, 64-bit
// and SSE. For example, 32-bit x25519 uses symbols from Donna::X25519 and
// Donna::Arch32.
// A fair amount of duplication happens below, but we could not directly
// use curve25519 for both x25519 and ed25519. A close examination reveals
// slight differences in the implementation. For example, look at the
// two curve25519_sub functions.
// If needed, see Moon's commit "Go back to ignoring 256th bit [sic]",
// https://github.com/floodyberry/curve25519-donna/commit/57a683d18721a658
#include "pch.h"
#include "config.h"
#include "donna.h"
#include "secblock.h"
#include "sha.h"
#include "misc.h"
#include "cpu.h"
#include <istream>
#include <sstream>
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic ignored "-Wunused-function"
#endif
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4244)
#endif
// Squash MS LNK4221 and libtool warnings
extern const char DONNA64_FNAME[] = __FILE__;
ANONYMOUS_NAMESPACE_BEGIN
// Can't use GetAlignmentOf<word64>() because of C++11 and constexpr
// Can use 'const unsigned int' because of MSVC 2013
#if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64)
# define ALIGN_SPEC 16
#else
# define ALIGN_SPEC 8
#endif
ANONYMOUS_NAMESPACE_END
#if defined(CRYPTOPP_CURVE25519_64BIT)
#include "donna_64.h"
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word64;
using CryptoPP::GetWord;
using CryptoPP::PutWord;
using CryptoPP::LITTLE_ENDIAN_ORDER;
inline word64 U8TO64_LE(const byte* p)
{
return GetWord<word64>(false, LITTLE_ENDIAN_ORDER, p);
}
inline void U64TO8_LE(byte* p, word64 w)
{
PutWord(false, LITTLE_ENDIAN_ORDER, p, w);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Donna)
NAMESPACE_BEGIN(X25519)
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::sword32;
using CryptoPP::word64;
using CryptoPP::sword64;
using CryptoPP::GetBlock;
using CryptoPP::LittleEndian;
// Bring in all the symbols from the 64-bit header
using namespace CryptoPP::Donna::Arch64;
/* out = in */
inline void
curve25519_copy(bignum25519 out, const bignum25519 in) {
out[0] = in[0]; out[1] = in[1];
out[2] = in[2]; out[3] = in[3];
out[4] = in[4];
}
/* out = a + b */
inline void
curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
}
/* out = a - b */
inline void
curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) {
out[0] = a[0] + two54m152 - b[0];
out[1] = a[1] + two54m8 - b[1];
out[2] = a[2] + two54m8 - b[2];
out[3] = a[3] + two54m8 - b[3];
out[4] = a[4] + two54m8 - b[4];
}
/* out = (in * scalar) */
inline void
curve25519_scalar_product(bignum25519 out, const bignum25519 in, const word64 scalar) {
word128 a;
word64 c;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
a = ((word128) in[0]) * scalar; out[0] = (word64)a & reduce_mask_51; c = (word64)(a >> 51);
a = ((word128) in[1]) * scalar + c; out[1] = (word64)a & reduce_mask_51; c = (word64)(a >> 51);
a = ((word128) in[2]) * scalar + c; out[2] = (word64)a & reduce_mask_51; c = (word64)(a >> 51);
a = ((word128) in[3]) * scalar + c; out[3] = (word64)a & reduce_mask_51; c = (word64)(a >> 51);
a = ((word128) in[4]) * scalar + c; out[4] = (word64)a & reduce_mask_51; c = (word64)(a >> 51);
out[0] += c * 19;
#else
mul64x64_128(a, in[0], scalar) out[0] = lo128(a) & reduce_mask_51; shr128(c, a, 51);
mul64x64_128(a, in[1], scalar) add128_64(a, c) out[1] = lo128(a) & reduce_mask_51; shr128(c, a, 51);
mul64x64_128(a, in[2], scalar) add128_64(a, c) out[2] = lo128(a) & reduce_mask_51; shr128(c, a, 51);
mul64x64_128(a, in[3], scalar) add128_64(a, c) out[3] = lo128(a) & reduce_mask_51; shr128(c, a, 51);
mul64x64_128(a, in[4], scalar) add128_64(a, c) out[4] = lo128(a) & reduce_mask_51; shr128(c, a, 51);
out[0] += c * 19;
#endif
}
/* out = a * b */
inline void
curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) {
#if !defined(CRYPTOPP_WORD128_AVAILABLE)
word128 mul;
#endif
word128 t[5];
word64 r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = b[0]; r1 = b[1]; r2 = b[2]; r3 = b[3]; r4 = b[4];
s0 = a[0]; s1 = a[1]; s2 = a[2]; s3 = a[3]; s4 = a[4];
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] = ((word128) r0) * s0;
t[1] = ((word128) r0) * s1 + ((word128) r1) * s0;
t[2] = ((word128) r0) * s2 + ((word128) r2) * s0 + ((word128) r1) * s1;
t[3] = ((word128) r0) * s3 + ((word128) r3) * s0 + ((word128) r1) * s2 + ((word128) r2) * s1;
t[4] = ((word128) r0) * s4 + ((word128) r4) * s0 + ((word128) r3) * s1 + ((word128) r1) * s3 + ((word128) r2) * s2;
#else
mul64x64_128(t[0], r0, s0)
mul64x64_128(t[1], r0, s1) mul64x64_128(mul, r1, s0) add128(t[1], mul)
mul64x64_128(t[2], r0, s2) mul64x64_128(mul, r2, s0) add128(t[2], mul) mul64x64_128(mul, r1, s1) add128(t[2], mul)
mul64x64_128(t[3], r0, s3) mul64x64_128(mul, r3, s0) add128(t[3], mul) mul64x64_128(mul, r1, s2) add128(t[3], mul) mul64x64_128(mul, r2, s1) add128(t[3], mul)
mul64x64_128(t[4], r0, s4) mul64x64_128(mul, r4, s0) add128(t[4], mul) mul64x64_128(mul, r3, s1) add128(t[4], mul) mul64x64_128(mul, r1, s3) add128(t[4], mul) mul64x64_128(mul, r2, s2) add128(t[4], mul)
#endif
r1 *= 19; r2 *= 19; r3 *= 19; r4 *= 19;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] += ((word128) r4) * s1 + ((word128) r1) * s4 + ((word128) r2) * s3 + ((word128) r3) * s2;
t[1] += ((word128) r4) * s2 + ((word128) r2) * s4 + ((word128) r3) * s3;
t[2] += ((word128) r4) * s3 + ((word128) r3) * s4;
t[3] += ((word128) r4) * s4;
#else
mul64x64_128(mul, r4, s1) add128(t[0], mul) mul64x64_128(mul, r1, s4) add128(t[0], mul) mul64x64_128(mul, r2, s3) add128(t[0], mul) mul64x64_128(mul, r3, s2) add128(t[0], mul)
mul64x64_128(mul, r4, s2) add128(t[1], mul) mul64x64_128(mul, r2, s4) add128(t[1], mul) mul64x64_128(mul, r3, s3) add128(t[1], mul)
mul64x64_128(mul, r4, s3) add128(t[2], mul) mul64x64_128(mul, r3, s4) add128(t[2], mul)
mul64x64_128(mul, r4, s4) add128(t[3], mul)
#endif
r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51);
add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51);
add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51);
add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51);
add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51;
r1 += c;
out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4;
}
/* out = in^(2 * count) */
inline void
curve25519_square_times(bignum25519 out, const bignum25519 in, word64 count) {
#if !defined(CRYPTOPP_WORD128_AVAILABLE)
word128 mul;
#endif
word128 t[5];
word64 r0,r1,r2,r3,r4,c;
word64 d0,d1,d2,d4,d419;
r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4];
do {
d0 = r0 * 2; d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19; d4 = d419 * 2;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 ));
t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19));
t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 ));
t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 ));
t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 ));
#else
mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul)
mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul)
mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul)
mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul)
mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul)
#endif
r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51);
add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51);
add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51);
add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51);
add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51;
r1 += c;
} while(--count);
out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4;
}
inline void
curve25519_square(bignum25519 out, const bignum25519 in) {
#if !defined(CRYPTOPP_WORD128_AVAILABLE)
word128 mul;
#endif
word128 t[5];
word64 r0,r1,r2,r3,r4,c;
word64 d0,d1,d2,d4,d419;
r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4];
d0 = r0 * 2; d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19; d4 = d419 * 2;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 ));
t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19));
t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 ));
t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 ));
t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 ));
#else
mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul)
mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul)
mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul)
mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul)
mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul)
#endif
r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51);
add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51);
add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51);
add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51);
add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51;
r1 += c;
out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4;
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
inline void
curve25519_expand(bignum25519 out, const byte *in) {
word64 x0,x1,x2,x3;
GetBlock<word64, LittleEndian> block(in);
block(x0)(x1)(x2)(x3);
out[0] = x0 & reduce_mask_51; x0 = (x0 >> 51) | (x1 << 13);
out[1] = x0 & reduce_mask_51; x1 = (x1 >> 38) | (x2 << 26);
out[2] = x1 & reduce_mask_51; x2 = (x2 >> 25) | (x3 << 39);
out[3] = x2 & reduce_mask_51; x3 = (x3 >> 12);
out[4] = x3 & reduce_mask_51; /* ignore the top bit */
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
inline void
curve25519_contract(byte *out, const bignum25519 input) {
word64 t[5];
word64 f, i;
t[0] = input[0];
t[1] = input[1];
t[2] = input[2];
t[3] = input[3];
t[4] = input[4];
#define curve25519_contract_carry() \
t[1] += t[0] >> 51; t[0] &= reduce_mask_51; \
t[2] += t[1] >> 51; t[1] &= reduce_mask_51; \
t[3] += t[2] >> 51; t[2] &= reduce_mask_51; \
t[4] += t[3] >> 51; t[3] &= reduce_mask_51;
#define curve25519_contract_carry_full() curve25519_contract_carry() \
t[0] += 19 * (t[4] >> 51); t[4] &= reduce_mask_51;
#define curve25519_contract_carry_final() curve25519_contract_carry() \
t[4] &= reduce_mask_51;
curve25519_contract_carry_full()
curve25519_contract_carry_full()
/* now t is between 0 and 2^255-1, properly carried. */
/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
t[0] += 19;
curve25519_contract_carry_full()
/* now between 19 and 2^255-1 in both cases, and offset by 19. */
t[0] += 0x8000000000000 - 19;
t[1] += 0x8000000000000 - 1;
t[2] += 0x8000000000000 - 1;
t[3] += 0x8000000000000 - 1;
t[4] += 0x8000000000000 - 1;
/* now between 2^255 and 2^256-20, and offset by 2^255. */
curve25519_contract_carry_final()
#define write51full(n,shift) \
f = ((t[n] >> shift) | (t[n+1] << (51 - shift))); \
for (i = 0; i < 8; i++, f >>= 8) *out++ = (byte)f;
#define write51(n) write51full(n,13*n)
write51(0)
write51(1)
write51(2)
write51(3)
#undef curve25519_contract_carry
#undef curve25519_contract_carry_full
#undef curve25519_contract_carry_final
#undef write51full
#undef write51
}
/*
* Swap the contents of [qx] and [qpx] iff @swap is non-zero
*/
inline void
curve25519_swap_conditional(bignum25519 x, bignum25519 qpx, word64 iswap) {
const word64 swap = (word64)(-(sword64)iswap);
word64 x0,x1,x2,x3,x4;
x0 = swap & (x[0] ^ qpx[0]); x[0] ^= x0; qpx[0] ^= x0;
x1 = swap & (x[1] ^ qpx[1]); x[1] ^= x1; qpx[1] ^= x1;
x2 = swap & (x[2] ^ qpx[2]); x[2] ^= x2; qpx[2] ^= x2;
x3 = swap & (x[3] ^ qpx[3]); x[3] ^= x3; qpx[3] ^= x3;
x4 = swap & (x[4] ^ qpx[4]); x[4] ^= x4; qpx[4] ^= x4;
}
/*
* In: b = 2^5 - 2^0
* Out: b = 2^250 - 2^0
*/
void
curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) {
ALIGN(ALIGN_SPEC) bignum25519 t0,c;
/* 2^5 - 2^0 */ /* b */
/* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5);
/* 2^10 - 2^0 */ curve25519_mul(b, t0, b);
/* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10);
/* 2^20 - 2^0 */ curve25519_mul(c, t0, b);
/* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20);
/* 2^40 - 2^0 */ curve25519_mul(t0, t0, c);
/* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10);
/* 2^50 - 2^0 */ curve25519_mul(b, t0, b);
/* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50);
/* 2^100 - 2^0 */ curve25519_mul(c, t0, b);
/* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100);
/* 2^200 - 2^0 */ curve25519_mul(t0, t0, c);
/* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50);
/* 2^250 - 2^0 */ curve25519_mul(b, t0, b);
}
/*
* z^(p - 2) = z(2^255 - 21)
*/
void
curve25519_recip(bignum25519 out, const bignum25519 z) {
ALIGN(ALIGN_SPEC) bignum25519 a, t0, b;
/* 2 */ curve25519_square(a, z); /* a = 2 */
/* 8 */ curve25519_square_times(t0, a, 2);
/* 9 */ curve25519_mul(b, t0, z); /* b = 9 */
/* 11 */ curve25519_mul(a, b, a); /* a = 11 */
/* 22 */ curve25519_square(t0, a);
/* 2^5 - 2^0 = 31 */ curve25519_mul(b, t0, b);
/* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b);
/* 2^255 - 2^5 */ curve25519_square_times(b, b, 5);
/* 2^255 - 21 */ curve25519_mul(out, b, a);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_END // X25519
NAMESPACE_END // Donna
NAMESPACE_END // CryptoPP
//******************************* ed25519 *******************************//
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Donna)
NAMESPACE_BEGIN(Ed25519)
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::sword32;
using CryptoPP::word64;
using CryptoPP::sword64;
using CryptoPP::GetBlock;
using CryptoPP::LittleEndian;
using CryptoPP::SHA512;
// Bring in all the symbols from the 64-bit header
using namespace CryptoPP::Donna::Arch64;
/* out = in */
inline void
curve25519_copy(bignum25519 out, const bignum25519 in) {
out[0] = in[0]; out[1] = in[1];
out[2] = in[2]; out[3] = in[3];
out[4] = in[4];
}
/* out = a + b */
inline void
curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) {
out[0] = a[0] + b[0]; out[1] = a[1] + b[1];
out[2] = a[2] + b[2]; out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
}
/* out = a + b, where a and/or b are the result of a basic op (add,sub) */
inline void
curve25519_add_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) {
out[0] = a[0] + b[0]; out[1] = a[1] + b[1];
out[2] = a[2] + b[2]; out[3] = a[3] + b[3];
out[4] = a[4] + b[4];
}
inline void
curve25519_add_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) {
word64 c;
out[0] = a[0] + b[0] ; c = (out[0] >> 51); out[0] &= reduce_mask_51;
out[1] = a[1] + b[1] + c; c = (out[1] >> 51); out[1] &= reduce_mask_51;
out[2] = a[2] + b[2] + c; c = (out[2] >> 51); out[2] &= reduce_mask_51;
out[3] = a[3] + b[3] + c; c = (out[3] >> 51); out[3] &= reduce_mask_51;
out[4] = a[4] + b[4] + c; c = (out[4] >> 51); out[4] &= reduce_mask_51;
out[0] += c * 19;
}
/* out = a - b */
inline void
curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) {
out[0] = a[0] + twoP0 - b[0];
out[1] = a[1] + twoP1234 - b[1];
out[2] = a[2] + twoP1234 - b[2];
out[3] = a[3] + twoP1234 - b[3];
out[4] = a[4] + twoP1234 - b[4];
}
/* out = a - b, where a and/or b are the result of a basic op (add,sub) */
inline void
curve25519_sub_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) {
out[0] = a[0] + fourP0 - b[0];
out[1] = a[1] + fourP1234 - b[1];
out[2] = a[2] + fourP1234 - b[2];
out[3] = a[3] + fourP1234 - b[3];
out[4] = a[4] + fourP1234 - b[4];
}
inline void
curve25519_sub_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) {
word64 c;
out[0] = a[0] + fourP0 - b[0] ; c = (out[0] >> 51); out[0] &= reduce_mask_51;
out[1] = a[1] + fourP1234 - b[1] + c; c = (out[1] >> 51); out[1] &= reduce_mask_51;
out[2] = a[2] + fourP1234 - b[2] + c; c = (out[2] >> 51); out[2] &= reduce_mask_51;
out[3] = a[3] + fourP1234 - b[3] + c; c = (out[3] >> 51); out[3] &= reduce_mask_51;
out[4] = a[4] + fourP1234 - b[4] + c; c = (out[4] >> 51); out[4] &= reduce_mask_51;
out[0] += c * 19;
}
/* out = -a */
inline void
curve25519_neg(bignum25519 out, const bignum25519 a) {
word64 c;
out[0] = twoP0 - a[0] ; c = (out[0] >> 51); out[0] &= reduce_mask_51;
out[1] = twoP1234 - a[1] + c; c = (out[1] >> 51); out[1] &= reduce_mask_51;
out[2] = twoP1234 - a[2] + c; c = (out[2] >> 51); out[2] &= reduce_mask_51;
out[3] = twoP1234 - a[3] + c; c = (out[3] >> 51); out[3] &= reduce_mask_51;
out[4] = twoP1234 - a[4] + c; c = (out[4] >> 51); out[4] &= reduce_mask_51;
out[0] += c * 19;
}
/* out = a * b */
inline void
curve25519_mul(bignum25519 out, const bignum25519 in2, const bignum25519 in) {
#if !defined(CRYPTOPP_WORD128_AVAILABLE)
word128 mul;
#endif
word128 t[5];
word64 r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0]; r1 = in[1];
r2 = in[2]; r3 = in[3];
r4 = in[4];
s0 = in2[0]; s1 = in2[1];
s2 = in2[2]; s3 = in2[3];
s4 = in2[4];
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] = ((word128) r0) * s0;
t[1] = ((word128) r0) * s1 + ((word128) r1) * s0;
t[2] = ((word128) r0) * s2 + ((word128) r2) * s0 + ((word128) r1) * s1;
t[3] = ((word128) r0) * s3 + ((word128) r3) * s0 + ((word128) r1) * s2 + ((word128) r2) * s1;
t[4] = ((word128) r0) * s4 + ((word128) r4) * s0 + ((word128) r3) * s1 + ((word128) r1) * s3 + ((word128) r2) * s2;
#else
mul64x64_128(t[0], r0, s0)
mul64x64_128(t[1], r0, s1) mul64x64_128(mul, r1, s0) add128(t[1], mul)
mul64x64_128(t[2], r0, s2) mul64x64_128(mul, r2, s0) add128(t[2], mul) mul64x64_128(mul, r1, s1) add128(t[2], mul)
mul64x64_128(t[3], r0, s3) mul64x64_128(mul, r3, s0) add128(t[3], mul) mul64x64_128(mul, r1, s2) add128(t[3], mul) mul64x64_128(mul, r2, s1) add128(t[3], mul)
mul64x64_128(t[4], r0, s4) mul64x64_128(mul, r4, s0) add128(t[4], mul) mul64x64_128(mul, r3, s1) add128(t[4], mul) mul64x64_128(mul, r1, s3) add128(t[4], mul) mul64x64_128(mul, r2, s2) add128(t[4], mul)
#endif
r1 *= 19; r2 *= 19;
r3 *= 19; r4 *= 19;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] += ((word128) r4) * s1 + ((word128) r1) * s4 + ((word128) r2) * s3 + ((word128) r3) * s2;
t[1] += ((word128) r4) * s2 + ((word128) r2) * s4 + ((word128) r3) * s3;
t[2] += ((word128) r4) * s3 + ((word128) r3) * s4;
t[3] += ((word128) r4) * s4;
#else
mul64x64_128(mul, r4, s1) add128(t[0], mul) mul64x64_128(mul, r1, s4) add128(t[0], mul) mul64x64_128(mul, r2, s3) add128(t[0], mul) mul64x64_128(mul, r3, s2) add128(t[0], mul)
mul64x64_128(mul, r4, s2) add128(t[1], mul) mul64x64_128(mul, r2, s4) add128(t[1], mul) mul64x64_128(mul, r3, s3) add128(t[1], mul)
mul64x64_128(mul, r4, s3) add128(t[2], mul) mul64x64_128(mul, r3, s4) add128(t[2], mul)
mul64x64_128(mul, r4, s4) add128(t[3], mul)
#endif
r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51);
add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51);
add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51);
add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51);
add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51;
r1 += c;
out[0] = r0; out[1] = r1;
out[2] = r2; out[3] = r3;
out[4] = r4;
}
void
curve25519_mul_noinline(bignum25519 out, const bignum25519 in2, const bignum25519 in) {
curve25519_mul(out, in2, in);
}
/* out = in^(2 * count) */
void
curve25519_square_times(bignum25519 out, const bignum25519 in, word64 count) {
#if !defined(CRYPTOPP_WORD128_AVAILABLE)
word128 mul;
#endif
word128 t[5];
word64 r0,r1,r2,r3,r4,c;
word64 d0,d1,d2,d4,d419;
r0 = in[0]; r1 = in[1];
r2 = in[2]; r3 = in[3];
r4 = in[4];
do {
d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 ));
t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19));
t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 ));
t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 ));
t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 ));
#else
mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul)
mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul)
mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul)
mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul)
mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul)
#endif
r0 = lo128(t[0]) & reduce_mask_51;
r1 = lo128(t[1]) & reduce_mask_51; shl128(c, t[0], 13); r1 += c;
r2 = lo128(t[2]) & reduce_mask_51; shl128(c, t[1], 13); r2 += c;
r3 = lo128(t[3]) & reduce_mask_51; shl128(c, t[2], 13); r3 += c;
r4 = lo128(t[4]) & reduce_mask_51; shl128(c, t[3], 13); r4 += c;
shl128(c, t[4], 13); r0 += c * 19;
c = r0 >> 51; r0 &= reduce_mask_51;
r1 += c ; c = r1 >> 51; r1 &= reduce_mask_51;
r2 += c ; c = r2 >> 51; r2 &= reduce_mask_51;
r3 += c ; c = r3 >> 51; r3 &= reduce_mask_51;
r4 += c ; c = r4 >> 51; r4 &= reduce_mask_51;
r0 += c * 19;
} while(--count);
out[0] = r0; out[1] = r1;
out[2] = r2; out[3] = r3;
out[4] = r4;
}
inline void
curve25519_square(bignum25519 out, const bignum25519 in) {
#if !defined(CRYPTOPP_WORD128_AVAILABLE)
word128 mul;
#endif
word128 t[5];
word64 r0,r1,r2,r3,r4,c;
word64 d0,d1,d2,d4,d419;
r0 = in[0]; r1 = in[1];
r2 = in[2]; r3 = in[3];
r4 = in[4];
d0 = r0 * 2; d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 ));
t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19));
t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 ));
t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 ));
t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 ));
#else
mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul)
mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul)
mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul)
mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul)
mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul)
#endif
r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51);
add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51);
add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51);
add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51);
add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51;
r1 += c;
out[0] = r0; out[1] = r1;
out[2] = r2; out[3] = r3;
out[4] = r4;
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
inline void
curve25519_expand(bignum25519 out, const byte *in) {
word64 x0,x1,x2,x3;
GetBlock<word64, LittleEndian> block(in);
block(x0)(x1)(x2)(x3);
out[0] = x0 & reduce_mask_51; x0 = (x0 >> 51) | (x1 << 13);
out[1] = x0 & reduce_mask_51; x1 = (x1 >> 38) | (x2 << 26);
out[2] = x1 & reduce_mask_51; x2 = (x2 >> 25) | (x3 << 39);
out[3] = x2 & reduce_mask_51; x3 = (x3 >> 12);
out[4] = x3 & reduce_mask_51;
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
inline void
curve25519_contract(byte *out, const bignum25519 input) {
word64 t[5];
word64 f, i;
t[0] = input[0];
t[1] = input[1];
t[2] = input[2];
t[3] = input[3];
t[4] = input[4];
#define curve25519_contract_carry() \
t[1] += t[0] >> 51; t[0] &= reduce_mask_51; \
t[2] += t[1] >> 51; t[1] &= reduce_mask_51; \
t[3] += t[2] >> 51; t[2] &= reduce_mask_51; \
t[4] += t[3] >> 51; t[3] &= reduce_mask_51;
#define curve25519_contract_carry_full() curve25519_contract_carry() \
t[0] += 19 * (t[4] >> 51); t[4] &= reduce_mask_51;
#define curve25519_contract_carry_final() curve25519_contract_carry() \
t[4] &= reduce_mask_51;
curve25519_contract_carry_full()
curve25519_contract_carry_full()
/* now t is between 0 and 2^255-1, properly carried. */
/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
t[0] += 19;
curve25519_contract_carry_full()
/* now between 19 and 2^255-1 in both cases, and offset by 19. */
t[0] += (reduce_mask_51 + 1) - 19;
t[1] += (reduce_mask_51 + 1) - 1;
t[2] += (reduce_mask_51 + 1) - 1;
t[3] += (reduce_mask_51 + 1) - 1;
t[4] += (reduce_mask_51 + 1) - 1;
/* now between 2^255 and 2^256-20, and offset by 2^255. */
curve25519_contract_carry_final()
#define write51full(n,shift) \
f = ((t[n] >> shift) | (t[n+1] << (51 - shift))); \
for (i = 0; i < 8; i++, f >>= 8) *out++ = (byte)f;
#define write51(n) write51full(n,13*n)
write51(0)
write51(1)
write51(2)
write51(3)
}
#if !defined(ED25519_GCC_64BIT_CHOOSE)
/* out = (flag) ? in : out */
inline void
curve25519_move_conditional_bytes(byte out[96], const byte in[96], word64 flag)
{
// TODO: enable this code path once we can test and benchmark it.
// It is about 24 insns shorter, it avoids punning which may be UB,
// and it is guaranteed constant time.
#if defined(__GNUC__) && defined(__x86_64__) && 0
const word32 iter = 96/sizeof(word64);
word64* outq = reinterpret_cast<word64*>(out);
const word64* inq = reinterpret_cast<const word64*>(in);
word64 idx=0, val;
__asm__ __volatile__ (
".att_syntax ;\n"
"cmpq $0, %[flag] ;\n" // compare, set ZERO flag
"movq %[iter], %%rcx ;\n" // load iteration count
"1: ;\n"
" movq (%[idx],%[out]), %[val] ;\n" // val = out[idx]
" cmovnzq (%[idx],%[in]), %[val] ;\n" // copy in[idx] to val if NZ
" movq %[val], (%[idx],%[out]) ;\n" // out[idx] = val
" leaq 8(%[idx]), %[idx] ;\n" // increment index
" loopnz 1b ;\n" // does not affect flags
: [out] "+S" (outq), [in] "+D" (inq),
[idx] "+b" (idx), [val] "=r" (val)
: [flag] "g" (flag), [iter] "I" (iter)
: "rcx", "memory", "cc"
);
#else
const word64 nb = flag - 1, b = ~nb;
const word64 *inq = (const word64 *)(const void*)in;
word64 *outq = (word64 *)(void *)out;
outq[0] = (outq[0] & nb) | (inq[0] & b);
outq[1] = (outq[1] & nb) | (inq[1] & b);
outq[2] = (outq[2] & nb) | (inq[2] & b);
outq[3] = (outq[3] & nb) | (inq[3] & b);
outq[4] = (outq[4] & nb) | (inq[4] & b);
outq[5] = (outq[5] & nb) | (inq[5] & b);
outq[6] = (outq[6] & nb) | (inq[6] & b);
outq[7] = (outq[7] & nb) | (inq[7] & b);
outq[8] = (outq[8] & nb) | (inq[8] & b);
outq[9] = (outq[9] & nb) | (inq[9] & b);
outq[10] = (outq[10] & nb) | (inq[10] & b);
outq[11] = (outq[11] & nb) | (inq[11] & b);
#endif
}
/* if (iswap) swap(a, b) */
inline void
curve25519_swap_conditional(bignum25519 a, bignum25519 b, word64 iswap) {
const word64 swap = (word64)(-(sword64)iswap);
word64 x0,x1,x2,x3,x4;
x0 = swap & (a[0] ^ b[0]); a[0] ^= x0; b[0] ^= x0;
x1 = swap & (a[1] ^ b[1]); a[1] ^= x1; b[1] ^= x1;
x2 = swap & (a[2] ^ b[2]); a[2] ^= x2; b[2] ^= x2;
x3 = swap & (a[3] ^ b[3]); a[3] ^= x3; b[3] ^= x3;
x4 = swap & (a[4] ^ b[4]); a[4] ^= x4; b[4] ^= x4;
}
#endif /* ED25519_GCC_64BIT_CHOOSE */
// ************************************************************************************
inline void
ed25519_hash(byte *hash, const byte *in, size_t inlen) {
SHA512().CalculateDigest(hash, in, inlen);
}
inline void
ed25519_extsk(hash_512bits extsk, const byte sk[32]) {
ed25519_hash(extsk, sk, 32);
extsk[0] &= 248;
extsk[31] &= 127;
extsk[31] |= 64;
}
void
UpdateFromStream(HashTransformation& hash, std::istream& stream)
{
SecByteBlock block(4096);
while (stream.read((char*)block.begin(), block.size()))
hash.Update(block, block.size());
std::streamsize rem = stream.gcount();
if (rem)
hash.Update(block, rem);
block.SetMark(0);
}
void
ed25519_hram(hash_512bits hram, const byte RS[64], const byte pk[32], const byte *m, size_t mlen) {
SHA512 hash;
hash.Update(RS, 32);
hash.Update(pk, 32);
hash.Update(m, mlen);
hash.Final(hram);
}
void
ed25519_hram(hash_512bits hram, const byte RS[64], const byte pk[32], std::istream& stream) {
SHA512 hash;
hash.Update(RS, 32);
hash.Update(pk, 32);
UpdateFromStream(hash, stream);
hash.Final(hram);
}
bignum256modm_element_t
lt_modm(bignum256modm_element_t a, bignum256modm_element_t b) {
return (a - b) >> 63;
}
void
reduce256_modm(bignum256modm r) {
bignum256modm t;
bignum256modm_element_t b = 0, pb, mask;
/* t = r - m */
pb = 0;
pb += modm_m[0]; b = lt_modm(r[0], pb); t[0] = (r[0] - pb + (b << 56)); pb = b;
pb += modm_m[1]; b = lt_modm(r[1], pb); t[1] = (r[1] - pb + (b << 56)); pb = b;
pb += modm_m[2]; b = lt_modm(r[2], pb); t[2] = (r[2] - pb + (b << 56)); pb = b;
pb += modm_m[3]; b = lt_modm(r[3], pb); t[3] = (r[3] - pb + (b << 56)); pb = b;
pb += modm_m[4]; b = lt_modm(r[4], pb); t[4] = (r[4] - pb + (b << 32));
/* keep r if r was smaller than m */
mask = b - 1;
r[0] ^= mask & (r[0] ^ t[0]);
r[1] ^= mask & (r[1] ^ t[1]);
r[2] ^= mask & (r[2] ^ t[2]);
r[3] ^= mask & (r[3] ^ t[3]);
r[4] ^= mask & (r[4] ^ t[4]);
}
void
barrett_reduce256_modm(bignum256modm r, const bignum256modm q1, const bignum256modm r1) {
bignum256modm q3, r2;
word128 c, mul;
bignum256modm_element_t f, b, pb;
/* q1 = x >> 248 = 264 bits = 5 56 bit elements
q2 = mu * q1
q3 = (q2 / 256(32+1)) = q2 / (2^8)^(32+1) = q2 >> 264 */
mul64x64_128(c, modm_mu[0], q1[3]) mul64x64_128(mul, modm_mu[3], q1[0]) add128(c, mul) mul64x64_128(mul, modm_mu[1], q1[2]) add128(c, mul) mul64x64_128(mul, modm_mu[2], q1[1]) add128(c, mul) shr128(f, c, 56);
mul64x64_128(c, modm_mu[0], q1[4]) add128_64(c, f) mul64x64_128(mul, modm_mu[4], q1[0]) add128(c, mul) mul64x64_128(mul, modm_mu[3], q1[1]) add128(c, mul) mul64x64_128(mul, modm_mu[1], q1[3]) add128(c, mul) mul64x64_128(mul, modm_mu[2], q1[2]) add128(c, mul)
f = lo128(c); q3[0] = (f >> 40) & 0xffff; shr128(f, c, 56);
mul64x64_128(c, modm_mu[4], q1[1]) add128_64(c, f) mul64x64_128(mul, modm_mu[1], q1[4]) add128(c, mul) mul64x64_128(mul, modm_mu[2], q1[3]) add128(c, mul) mul64x64_128(mul, modm_mu[3], q1[2]) add128(c, mul)
f = lo128(c); q3[0] |= (f << 16) & 0xffffffffffffff; q3[1] = (f >> 40) & 0xffff; shr128(f, c, 56);
mul64x64_128(c, modm_mu[4], q1[2]) add128_64(c, f) mul64x64_128(mul, modm_mu[2], q1[4]) add128(c, mul) mul64x64_128(mul, modm_mu[3], q1[3]) add128(c, mul)
f = lo128(c); q3[1] |= (f << 16) & 0xffffffffffffff; q3[2] = (f >> 40) & 0xffff; shr128(f, c, 56);
mul64x64_128(c, modm_mu[4], q1[3]) add128_64(c, f) mul64x64_128(mul, modm_mu[3], q1[4]) add128(c, mul)
f = lo128(c); q3[2] |= (f << 16) & 0xffffffffffffff; q3[3] = (f >> 40) & 0xffff; shr128(f, c, 56);
mul64x64_128(c, modm_mu[4], q1[4]) add128_64(c, f)
f = lo128(c); q3[3] |= (f << 16) & 0xffffffffffffff; q3[4] = (f >> 40) & 0xffff; shr128(f, c, 56);
q3[4] |= (f << 16);
mul64x64_128(c, modm_m[0], q3[0])
r2[0] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, modm_m[0], q3[1]) add128_64(c, f) mul64x64_128(mul, modm_m[1], q3[0]) add128(c, mul)
r2[1] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, modm_m[0], q3[2]) add128_64(c, f) mul64x64_128(mul, modm_m[2], q3[0]) add128(c, mul) mul64x64_128(mul, modm_m[1], q3[1]) add128(c, mul)
r2[2] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, modm_m[0], q3[3]) add128_64(c, f) mul64x64_128(mul, modm_m[3], q3[0]) add128(c, mul) mul64x64_128(mul, modm_m[1], q3[2]) add128(c, mul) mul64x64_128(mul, modm_m[2], q3[1]) add128(c, mul)
r2[3] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, modm_m[0], q3[4]) add128_64(c, f) mul64x64_128(mul, modm_m[4], q3[0]) add128(c, mul) mul64x64_128(mul, modm_m[3], q3[1]) add128(c, mul) mul64x64_128(mul, modm_m[1], q3[3]) add128(c, mul) mul64x64_128(mul, modm_m[2], q3[2]) add128(c, mul)
r2[4] = lo128(c) & 0x0000ffffffffff;
pb = 0;
pb += r2[0]; b = lt_modm(r1[0], pb); r[0] = (r1[0] - pb + (b << 56)); pb = b;
pb += r2[1]; b = lt_modm(r1[1], pb); r[1] = (r1[1] - pb + (b << 56)); pb = b;
pb += r2[2]; b = lt_modm(r1[2], pb); r[2] = (r1[2] - pb + (b << 56)); pb = b;
pb += r2[3]; b = lt_modm(r1[3], pb); r[3] = (r1[3] - pb + (b << 56)); pb = b;
pb += r2[4]; b = lt_modm(r1[4], pb); r[4] = (r1[4] - pb + (b << 40));
reduce256_modm(r);
reduce256_modm(r);
}
void
add256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm_element_t c;
c = x[0] + y[0]; r[0] = c & 0xffffffffffffff; c >>= 56;
c += x[1] + y[1]; r[1] = c & 0xffffffffffffff; c >>= 56;
c += x[2] + y[2]; r[2] = c & 0xffffffffffffff; c >>= 56;
c += x[3] + y[3]; r[3] = c & 0xffffffffffffff; c >>= 56;
c += x[4] + y[4]; r[4] = c;
reduce256_modm(r);
}
void
mul256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm q1, r1;
word128 c, mul;
bignum256modm_element_t f;
mul64x64_128(c, x[0], y[0])
f = lo128(c); r1[0] = f & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, x[0], y[1]) add128_64(c, f) mul64x64_128(mul, x[1], y[0]) add128(c, mul)
f = lo128(c); r1[1] = f & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, x[0], y[2]) add128_64(c, f) mul64x64_128(mul, x[2], y[0]) add128(c, mul) mul64x64_128(mul, x[1], y[1]) add128(c, mul)
f = lo128(c); r1[2] = f & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, x[0], y[3]) add128_64(c, f) mul64x64_128(mul, x[3], y[0]) add128(c, mul) mul64x64_128(mul, x[1], y[2]) add128(c, mul) mul64x64_128(mul, x[2], y[1]) add128(c, mul)
f = lo128(c); r1[3] = f & 0xffffffffffffff; shr128(f, c, 56);
mul64x64_128(c, x[0], y[4]) add128_64(c, f) mul64x64_128(mul, x[4], y[0]) add128(c, mul) mul64x64_128(mul, x[3], y[1]) add128(c, mul) mul64x64_128(mul, x[1], y[3]) add128(c, mul) mul64x64_128(mul, x[2], y[2]) add128(c, mul)
f = lo128(c); r1[4] = f & 0x0000ffffffffff; q1[0] = (f >> 24) & 0xffffffff; shr128(f, c, 56);
mul64x64_128(c, x[4], y[1]) add128_64(c, f) mul64x64_128(mul, x[1], y[4]) add128(c, mul) mul64x64_128(mul, x[2], y[3]) add128(c, mul) mul64x64_128(mul, x[3], y[2]) add128(c, mul)
f = lo128(c); q1[0] |= (f << 32) & 0xffffffffffffff; q1[1] = (f >> 24) & 0xffffffff; shr128(f, c, 56);
mul64x64_128(c, x[4], y[2]) add128_64(c, f) mul64x64_128(mul, x[2], y[4]) add128(c, mul) mul64x64_128(mul, x[3], y[3]) add128(c, mul)
f = lo128(c); q1[1] |= (f << 32) & 0xffffffffffffff; q1[2] = (f >> 24) & 0xffffffff; shr128(f, c, 56);
mul64x64_128(c, x[4], y[3]) add128_64(c, f) mul64x64_128(mul, x[3], y[4]) add128(c, mul)
f = lo128(c); q1[2] |= (f << 32) & 0xffffffffffffff; q1[3] = (f >> 24) & 0xffffffff; shr128(f, c, 56);
mul64x64_128(c, x[4], y[4]) add128_64(c, f)
f = lo128(c); q1[3] |= (f << 32) & 0xffffffffffffff; q1[4] = (f >> 24) & 0xffffffff; shr128(f, c, 56);
q1[4] |= (f << 32);
barrett_reduce256_modm(r, q1, r1);
}
void
expand256_modm(bignum256modm out, const byte *in, size_t len) {
byte work[64] = {0};
bignum256modm_element_t x[16];
bignum256modm q1;
memcpy(work, in, len);
x[0] = U8TO64_LE(work + 0);
x[1] = U8TO64_LE(work + 8);
x[2] = U8TO64_LE(work + 16);
x[3] = U8TO64_LE(work + 24);
x[4] = U8TO64_LE(work + 32);
x[5] = U8TO64_LE(work + 40);
x[6] = U8TO64_LE(work + 48);
x[7] = U8TO64_LE(work + 56);
/* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1) */
out[0] = ( x[0]) & 0xffffffffffffff;
out[1] = ((x[ 0] >> 56) | (x[ 1] << 8)) & 0xffffffffffffff;
out[2] = ((x[ 1] >> 48) | (x[ 2] << 16)) & 0xffffffffffffff;
out[3] = ((x[ 2] >> 40) | (x[ 3] << 24)) & 0xffffffffffffff;
out[4] = ((x[ 3] >> 32) | (x[ 4] << 32)) & 0x0000ffffffffff;
/* under 252 bits, no need to reduce */
if (len < 32)
return;
/* q1 = x >> 248 = 264 bits */
q1[0] = ((x[ 3] >> 56) | (x[ 4] << 8)) & 0xffffffffffffff;
q1[1] = ((x[ 4] >> 48) | (x[ 5] << 16)) & 0xffffffffffffff;
q1[2] = ((x[ 5] >> 40) | (x[ 6] << 24)) & 0xffffffffffffff;
q1[3] = ((x[ 6] >> 32) | (x[ 7] << 32)) & 0xffffffffffffff;
q1[4] = ((x[ 7] >> 24) );
barrett_reduce256_modm(out, q1, out);
}
void
expand_raw256_modm(bignum256modm out, const byte in[32]) {
bignum256modm_element_t x[4];
x[0] = U8TO64_LE(in + 0);
x[1] = U8TO64_LE(in + 8);
x[2] = U8TO64_LE(in + 16);
x[3] = U8TO64_LE(in + 24);
out[0] = ( x[0]) & 0xffffffffffffff;
out[1] = ((x[ 0] >> 56) | (x[ 1] << 8)) & 0xffffffffffffff;
out[2] = ((x[ 1] >> 48) | (x[ 2] << 16)) & 0xffffffffffffff;
out[3] = ((x[ 2] >> 40) | (x[ 3] << 24)) & 0xffffffffffffff;
out[4] = ((x[ 3] >> 32) ) & 0x000000ffffffff;
}
void
contract256_modm(byte out[32], const bignum256modm in) {
U64TO8_LE(out + 0, (in[0] ) | (in[1] << 56));
U64TO8_LE(out + 8, (in[1] >> 8) | (in[2] << 48));
U64TO8_LE(out + 16, (in[2] >> 16) | (in[3] << 40));
U64TO8_LE(out + 24, (in[3] >> 24) | (in[4] << 32));
}
void
contract256_window4_modm(signed char r[64], const bignum256modm in) {
char carry;
signed char *quads = r;
bignum256modm_element_t i, j, v, m;
for (i = 0; i < 5; i++) {
v = in[i];
m = (i == 4) ? 8 : 14;
for (j = 0; j < m; j++) {
*quads++ = (v & 15);
v >>= 4;
}
}
/* making it signed */
carry = 0;
for(i = 0; i < 63; i++) {
r[i] += carry;
r[i+1] += (r[i] >> 4);
r[i] &= 15;
carry = (r[i] >> 3);
r[i] -= (carry << 4);
}
r[63] += carry;
}
void
contract256_slidingwindow_modm(signed char r[256], const bignum256modm s, int windowsize) {
int i,j,k,b;
int m = (1 << (windowsize - 1)) - 1, soplen = 256;
signed char *bits = r;
bignum256modm_element_t v;
/* first put the binary expansion into r */
for (i = 0; i < 4; i++) {
v = s[i];
for (j = 0; j < 56; j++, v >>= 1)
*bits++ = (v & 1);
}
v = s[4];
for (j = 0; j < 32; j++, v >>= 1)
*bits++ = (v & 1);
/* Making it sliding window */
for (j = 0; j < soplen; j++) {
if (!r[j])
continue;
for (b = 1; (b < (soplen - j)) && (b <= 6); b++) {
if ((r[j] + (r[j + b] << b)) <= m) {
r[j] += r[j + b] << b;
r[j + b] = 0;
} else if ((r[j] - (r[j + b] << b)) >= -m) {
r[j] -= r[j + b] << b;
for (k = j + b; k < soplen; k++) {
if (!r[k]) {
r[k] = 1;
break;
}
r[k] = 0;
}
} else if (r[j + b]) {
break;
}
}
}
}
/*
* In: b = 2^5 - 2^0
* Out: b = 2^250 - 2^0
*/
void
curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) {
ALIGN(ALIGN_SPEC) bignum25519 t0,c;
/* 2^5 - 2^0 */ /* b */
/* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5);
/* 2^10 - 2^0 */ curve25519_mul_noinline(b, t0, b);
/* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10);
/* 2^20 - 2^0 */ curve25519_mul_noinline(c, t0, b);
/* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20);
/* 2^40 - 2^0 */ curve25519_mul_noinline(t0, t0, c);
/* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10);
/* 2^50 - 2^0 */ curve25519_mul_noinline(b, t0, b);
/* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50);
/* 2^100 - 2^0 */ curve25519_mul_noinline(c, t0, b);
/* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100);
/* 2^200 - 2^0 */ curve25519_mul_noinline(t0, t0, c);
/* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50);
/* 2^250 - 2^0 */ curve25519_mul_noinline(b, t0, b);
}
/*
* z^(p - 2) = z(2^255 - 21)
*/
void
curve25519_recip(bignum25519 out, const bignum25519 z) {
ALIGN(ALIGN_SPEC) bignum25519 a,t0,b;
/* 2 */ curve25519_square_times(a, z, 1); /* a = 2 */
/* 8 */ curve25519_square_times(t0, a, 2);
/* 9 */ curve25519_mul_noinline(b, t0, z); /* b = 9 */
/* 11 */ curve25519_mul_noinline(a, b, a); /* a = 11 */
/* 22 */ curve25519_square_times(t0, a, 1);
/* 2^5 - 2^0 = 31 */ curve25519_mul_noinline(b, t0, b);
/* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b);
/* 2^255 - 2^5 */ curve25519_square_times(b, b, 5);
/* 2^255 - 21 */ curve25519_mul_noinline(out, b, a);
}
/*
* z^((p-5)/8) = z^(2^252 - 3)
*/
void
curve25519_pow_two252m3(bignum25519 two252m3, const bignum25519 z) {
ALIGN(ALIGN_SPEC) bignum25519 b,c,t0;
/* 2 */ curve25519_square_times(c, z, 1); /* c = 2 */
/* 8 */ curve25519_square_times(t0, c, 2); /* t0 = 8 */
/* 9 */ curve25519_mul_noinline(b, t0, z); /* b = 9 */
/* 11 */ curve25519_mul_noinline(c, b, c); /* c = 11 */
/* 22 */ curve25519_square_times(t0, c, 1);
/* 2^5 - 2^0 = 31 */ curve25519_mul_noinline(b, t0, b);
/* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b);
/* 2^252 - 2^2 */ curve25519_square_times(b, b, 2);
/* 2^252 - 3 */ curve25519_mul_noinline(two252m3, b, z);
}
inline void
ge25519_p1p1_to_partial(ge25519 *r, const ge25519_p1p1 *p) {
curve25519_mul(r->x, p->x, p->t);
curve25519_mul(r->y, p->y, p->z);
curve25519_mul(r->z, p->z, p->t);
}
inline void
ge25519_p1p1_to_full(ge25519 *r, const ge25519_p1p1 *p) {
curve25519_mul(r->x, p->x, p->t);
curve25519_mul(r->y, p->y, p->z);
curve25519_mul(r->z, p->z, p->t);
curve25519_mul(r->t, p->x, p->y);
}
void
ge25519_full_to_pniels(ge25519_pniels *p, const ge25519 *r) {
curve25519_sub(p->ysubx, r->y, r->x);
curve25519_add(p->xaddy, r->y, r->x);
curve25519_copy(p->z, r->z);
curve25519_mul(p->t2d, r->t, ge25519_ec2d);
}
void
ge25519_add_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519 *q) {
bignum25519 a,b,c,d,t,u;
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
curve25519_sub(t, q->y, q->x);
curve25519_add(u, q->y, q->x);
curve25519_mul(a, a, t);
curve25519_mul(b, b, u);
curve25519_mul(c, p->t, q->t);
curve25519_mul(c, c, ge25519_ec2d);
curve25519_mul(d, p->z, q->z);
curve25519_add(d, d, d);
curve25519_sub(r->x, b, a);
curve25519_add(r->y, b, a);
curve25519_add_after_basic(r->z, d, c);
curve25519_sub_after_basic(r->t, d, c);
}
void
ge25519_double_p1p1(ge25519_p1p1 *r, const ge25519 *p) {
bignum25519 a,b,c;
curve25519_square(a, p->x);
curve25519_square(b, p->y);
curve25519_square(c, p->z);
curve25519_add_reduce(c, c, c);
curve25519_add(r->x, p->x, p->y);
curve25519_square(r->x, r->x);
curve25519_add(r->y, b, a);
curve25519_sub(r->z, b, a);
curve25519_sub_after_basic(r->x, r->x, r->y);
curve25519_sub_after_basic(r->t, c, r->z);
}
void
ge25519_nielsadd2_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_niels *q, byte signbit) {
const bignum25519 *qb = (const bignum25519 *)q;
bignum25519 *rb = (bignum25519 *)r;
bignum25519 a,b,c;
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
curve25519_mul(a, a, qb[signbit]); /* x for +, y for - */
curve25519_mul(r->x, b, qb[signbit^1]); /* y for +, x for - */
curve25519_add(r->y, r->x, a);
curve25519_sub(r->x, r->x, a);
curve25519_mul(c, p->t, q->t2d);
curve25519_add_reduce(r->t, p->z, p->z);
curve25519_copy(r->z, r->t);
curve25519_add(rb[2+signbit], rb[2+signbit], c); /* z for +, t for - */
curve25519_sub(rb[2+(signbit^1)], rb[2+(signbit^1)], c); /* t for +, z for - */
}
void
ge25519_pnielsadd_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_pniels *q, byte signbit) {
const bignum25519 *qb = (const bignum25519 *)q;
bignum25519 *rb = (bignum25519 *)r;
bignum25519 a,b,c;
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
curve25519_mul(a, a, qb[signbit]); /* ysubx for +, xaddy for - */
curve25519_mul(r->x, b, qb[signbit^1]); /* xaddy for +, ysubx for - */
curve25519_add(r->y, r->x, a);
curve25519_sub(r->x, r->x, a);
curve25519_mul(c, p->t, q->t2d);
curve25519_mul(r->t, p->z, q->z);
curve25519_add_reduce(r->t, r->t, r->t);
curve25519_copy(r->z, r->t);
curve25519_add(rb[2+signbit], rb[2+signbit], c); /* z for +, t for - */
curve25519_sub(rb[2+(signbit^1)], rb[2+(signbit^1)], c); /* t for +, z for - */
}
void
ge25519_double_partial(ge25519 *r, const ge25519 *p) {
ge25519_p1p1 t;
ge25519_double_p1p1(&t, p);
ge25519_p1p1_to_partial(r, &t);
}
void
ge25519_double(ge25519 *r, const ge25519 *p) {
ge25519_p1p1 t;
ge25519_double_p1p1(&t, p);
ge25519_p1p1_to_full(r, &t);
}
void
ge25519_add(ge25519 *r, const ge25519 *p, const ge25519 *q) {
ge25519_p1p1 t;
ge25519_add_p1p1(&t, p, q);
ge25519_p1p1_to_full(r, &t);
}
void
ge25519_nielsadd2(ge25519 *r, const ge25519_niels *q) {
bignum25519 a,b,c,e,f,g,h;
curve25519_sub(a, r->y, r->x);
curve25519_add(b, r->y, r->x);
curve25519_mul(a, a, q->ysubx);
curve25519_mul(e, b, q->xaddy);
curve25519_add(h, e, a);
curve25519_sub(e, e, a);
curve25519_mul(c, r->t, q->t2d);
curve25519_add(f, r->z, r->z);
curve25519_add_after_basic(g, f, c);
curve25519_sub_after_basic(f, f, c);
curve25519_mul(r->x, e, f);
curve25519_mul(r->y, h, g);
curve25519_mul(r->z, g, f);
curve25519_mul(r->t, e, h);
}
void
ge25519_pnielsadd(ge25519_pniels *r, const ge25519 *p, const ge25519_pniels *q) {
bignum25519 a,b,c,x,y,z,t;
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
curve25519_mul(a, a, q->ysubx);
curve25519_mul(x, b, q->xaddy);
curve25519_add(y, x, a);
curve25519_sub(x, x, a);
curve25519_mul(c, p->t, q->t2d);
curve25519_mul(t, p->z, q->z);
curve25519_add(t, t, t);
curve25519_add_after_basic(z, t, c);
curve25519_sub_after_basic(t, t, c);
curve25519_mul(r->xaddy, x, t);
curve25519_mul(r->ysubx, y, z);
curve25519_mul(r->z, z, t);
curve25519_mul(r->t2d, x, y);
curve25519_copy(y, r->ysubx);
curve25519_sub(r->ysubx, r->ysubx, r->xaddy);
curve25519_add(r->xaddy, r->xaddy, y);
curve25519_mul(r->t2d, r->t2d, ge25519_ec2d);
}
void
ge25519_pack(byte r[32], const ge25519 *p) {
bignum25519 tx, ty, zi;
byte parity[32];
curve25519_recip(zi, p->z);
curve25519_mul(tx, p->x, zi);
curve25519_mul(ty, p->y, zi);
curve25519_contract(r, ty);
curve25519_contract(parity, tx);
r[31] ^= ((parity[0] & 1) << 7);
}
int
ed25519_verify(const byte *x, const byte *y, size_t len) {
size_t differentbits = 0;
while (len--)
differentbits |= (*x++ ^ *y++);
return (int) (1 & ((differentbits - 1) >> 8));
}
int
ge25519_unpack_negative_vartime(ge25519 *r, const byte p[32]) {
const byte zero[32] = {0};
const bignum25519 one = {1};
byte parity = p[31] >> 7;
byte check[32];
bignum25519 t, root, num, den, d3;
curve25519_expand(r->y, p);
curve25519_copy(r->z, one);
curve25519_square(num, r->y); /* x = y^2 */
curve25519_mul(den, num, ge25519_ecd); /* den = dy^2 */
curve25519_sub_reduce(num, num, r->z); /* x = y^1 - 1 */
curve25519_add(den, den, r->z); /* den = dy^2 + 1 */
/* Computation of sqrt(num/den) */
/* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
curve25519_square(t, den);
curve25519_mul(d3, t, den);
curve25519_square(r->x, d3);
curve25519_mul(r->x, r->x, den);
curve25519_mul(r->x, r->x, num);
curve25519_pow_two252m3(r->x, r->x);
/* 2. computation of r->x = num * den^3 * (num*den^7)^((p-5)/8) */
curve25519_mul(r->x, r->x, d3);
curve25519_mul(r->x, r->x, num);
/* 3. Check if either of the roots works: */
curve25519_square(t, r->x);
curve25519_mul(t, t, den);
curve25519_sub_reduce(root, t, num);
curve25519_contract(check, root);
if (!ed25519_verify(check, zero, 32)) {
curve25519_add_reduce(t, t, num);
curve25519_contract(check, t);
if (!ed25519_verify(check, zero, 32))
return 0;
curve25519_mul(r->x, r->x, ge25519_sqrtneg1);
}
curve25519_contract(check, r->x);
if ((check[0] & 1) == parity) {
curve25519_copy(t, r->x);
curve25519_neg(r->x, t);
}
curve25519_mul(r->t, r->x, r->y);
return 1;
}
/* computes [s1]p1 + [s2]basepoint */
void
ge25519_double_scalarmult_vartime(ge25519 *r, const ge25519 *p1, const bignum256modm s1, const bignum256modm s2) {
signed char slide1[256], slide2[256];
ge25519_pniels pre1[S1_TABLE_SIZE];
ge25519 d1;
ge25519_p1p1 t;
sword32 i;
contract256_slidingwindow_modm(slide1, s1, S1_SWINDOWSIZE);
contract256_slidingwindow_modm(slide2, s2, S2_SWINDOWSIZE);
ge25519_double(&d1, p1);
ge25519_full_to_pniels(pre1, p1);
for (i = 0; i < S1_TABLE_SIZE - 1; i++)
ge25519_pnielsadd(&pre1[i+1], &d1, &pre1[i]);
/* set neutral */
memset(r, 0, sizeof(ge25519));
r->y[0] = 1;
r->z[0] = 1;
i = 255;
while ((i >= 0) && !(slide1[i] | slide2[i]))
i--;
for (; i >= 0; i--) {
ge25519_double_p1p1(&t, r);
if (slide1[i]) {
ge25519_p1p1_to_full(r, &t);
ge25519_pnielsadd_p1p1(&t, r, &pre1[abs(slide1[i]) / 2], (byte)slide1[i] >> 7);
}
if (slide2[i]) {
ge25519_p1p1_to_full(r, &t);
ge25519_nielsadd2_p1p1(&t, r, &ge25519_niels_sliding_multiples[abs(slide2[i]) / 2], (byte)slide2[i] >> 7);
}
ge25519_p1p1_to_partial(r, &t);
}
}
#if !defined(HAVE_GE25519_SCALARMULT_BASE_CHOOSE_NIELS)
word32
ge25519_windowb_equal(word32 b, word32 c) {
return ((b ^ c) - 1) >> 31;
}
void
ge25519_scalarmult_base_choose_niels(ge25519_niels *t, const byte table[256][96], word32 pos, signed char b) {
bignum25519 neg;
word32 sign = (word32)((byte)b >> 7);
word32 mask = ~(sign - 1);
word32 u = (b + mask) ^ mask;
word32 i;
/* ysubx, xaddy, t2d in packed form. initialize to ysubx = 1, xaddy = 1, t2d = 0 */
byte packed[96] = {0};
packed[0] = 1;
packed[32] = 1;
for (i = 0; i < 8; i++)
curve25519_move_conditional_bytes(packed, table[(pos * 8) + i], ge25519_windowb_equal(u, i + 1));
/* expand in to t */
curve25519_expand(t->ysubx, packed + 0);
curve25519_expand(t->xaddy, packed + 32);
curve25519_expand(t->t2d , packed + 64);
/* adjust for sign */
curve25519_swap_conditional(t->ysubx, t->xaddy, sign);
curve25519_neg(neg, t->t2d);
curve25519_swap_conditional(t->t2d, neg, sign);
}
#endif /* HAVE_GE25519_SCALARMULT_BASE_CHOOSE_NIELS */
/* computes [s]basepoint */
void
ge25519_scalarmult_base_niels(ge25519 *r, const byte basepoint_table[256][96], const bignum256modm s) {
signed char b[64];
word32 i;
ge25519_niels t;
contract256_window4_modm(b, s);
ge25519_scalarmult_base_choose_niels(&t, basepoint_table, 0, b[1]);
curve25519_sub_reduce(r->x, t.xaddy, t.ysubx);
curve25519_add_reduce(r->y, t.xaddy, t.ysubx);
memset(r->z, 0, sizeof(bignum25519));
curve25519_copy(r->t, t.t2d);
r->z[0] = 2;
for (i = 3; i < 64; i += 2) {
ge25519_scalarmult_base_choose_niels(&t, basepoint_table, i / 2, b[i]);
ge25519_nielsadd2(r, &t);
}
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double(r, r);
ge25519_scalarmult_base_choose_niels(&t, basepoint_table, 0, b[0]);
curve25519_mul(t.t2d, t.t2d, ge25519_ecd);
ge25519_nielsadd2(r, &t);
for(i = 2; i < 64; i += 2) {
ge25519_scalarmult_base_choose_niels(&t, basepoint_table, i / 2, b[i]);
ge25519_nielsadd2(r, &t);
}
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_END // Ed25519
NAMESPACE_END // Donna
NAMESPACE_END // CryptoPP
//***************************** curve25519 *****************************//
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Donna)
int curve25519_mult_CXX(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32])
{
using namespace CryptoPP::Donna::X25519;
FixedSizeSecBlock<byte, 32> e;
for (size_t i = 0;i < 32;++i)
e[i] = secretKey[i];
e[0] &= 0xf8; e[31] &= 0x7f; e[31] |= 0x40;
bignum25519 nqpqx = {1}, nqpqz = {0}, nqz = {1}, nqx;
bignum25519 q, qx, qpqx, qqx, zzz, zmone;
size_t bit, lastbit;
curve25519_expand(q, othersKey);
curve25519_copy(nqx, q);
/* bit 255 is always 0, and bit 254 is always 1, so skip bit 255 and
start pre-swapped on bit 254 */
lastbit = 1;
/* we are doing bits 254..3 in the loop, but are swapping in bits 253..2 */
for (int i = 253; i >= 2; i--) {
curve25519_add(qx, nqx, nqz);
curve25519_sub(nqz, nqx, nqz);
curve25519_add(qpqx, nqpqx, nqpqz);
curve25519_sub(nqpqz, nqpqx, nqpqz);
curve25519_mul(nqpqx, qpqx, nqz);
curve25519_mul(nqpqz, qx, nqpqz);
curve25519_add(qqx, nqpqx, nqpqz);
curve25519_sub(nqpqz, nqpqx, nqpqz);
curve25519_square(nqpqz, nqpqz);
curve25519_square(nqpqx, qqx);
curve25519_mul(nqpqz, nqpqz, q);
curve25519_square(qx, qx);
curve25519_square(nqz, nqz);
curve25519_mul(nqx, qx, nqz);
curve25519_sub(nqz, qx, nqz);
curve25519_scalar_product(zzz, nqz, 121665);
curve25519_add(zzz, zzz, qx);
curve25519_mul(nqz, nqz, zzz);
bit = (e[i/8] >> (i & 7)) & 1;
curve25519_swap_conditional(nqx, nqpqx, bit ^ lastbit);
curve25519_swap_conditional(nqz, nqpqz, bit ^ lastbit);
lastbit = bit;
}
/* the final 3 bits are always zero, so we only need to double */
for (int i = 0; i < 3; i++) {
curve25519_add(qx, nqx, nqz);
curve25519_sub(nqz, nqx, nqz);
curve25519_square(qx, qx);
curve25519_square(nqz, nqz);
curve25519_mul(nqx, qx, nqz);
curve25519_sub(nqz, qx, nqz);
curve25519_scalar_product(zzz, nqz, 121665);
curve25519_add(zzz, zzz, qx);
curve25519_mul(nqz, nqz, zzz);
}
curve25519_recip(zmone, nqz);
curve25519_mul(nqz, nqx, zmone);
curve25519_contract(sharedKey, nqz);
return 0;
}
int curve25519_mult(byte publicKey[32], const byte secretKey[32])
{
using namespace CryptoPP::Donna::X25519;
#if (CRYPTOPP_CURVE25519_SSE2)
if (HasSSE2())
return curve25519_mult_SSE2(publicKey, secretKey, basePoint);
else
#endif
return curve25519_mult_CXX(publicKey, secretKey, basePoint);
}
int curve25519_mult(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32])
{
#if (CRYPTOPP_CURVE25519_SSE2)
if (HasSSE2())
return curve25519_mult_SSE2(sharedKey, secretKey, othersKey);
else
#endif
return curve25519_mult_CXX(sharedKey, secretKey, othersKey);
}
NAMESPACE_END // Donna
NAMESPACE_END // CryptoPP
//******************************* ed25519 *******************************//
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Donna)
int
ed25519_publickey_CXX(byte publicKey[32], const byte secretKey[32])
{
using namespace CryptoPP::Donna::Ed25519;
bignum256modm a;
ALIGN(ALIGN_SPEC) ge25519 A;
hash_512bits extsk;
/* A = aB */
ed25519_extsk(extsk, secretKey);
expand256_modm(a, extsk, 32);
ge25519_scalarmult_base_niels(&A, ge25519_niels_base_multiples, a);
ge25519_pack(publicKey, &A);
return 0;
}
int
ed25519_publickey(byte publicKey[32], const byte secretKey[32])
{
return ed25519_publickey_CXX(publicKey, secretKey);
}
int
ed25519_sign_CXX(std::istream& stream, const byte sk[32], const byte pk[32], byte RS[64])
{
using namespace CryptoPP::Donna::Ed25519;
bignum256modm r, S, a;
ALIGN(ALIGN_SPEC) ge25519 R;
hash_512bits extsk, hashr, hram;
// Unfortunately we need to read the stream twice. The fisrt time calculates
// 'r = H(aExt[32..64], m)'. The second time calculates 'S = H(R,A,m)'. There
// is a data dependency due to hashing 'RS' with 'R = [r]B' that does not
// allow us to read the stream once.
std::streampos where = stream.tellg();
ed25519_extsk(extsk, sk);
/* r = H(aExt[32..64], m) */
SHA512 hash;
hash.Update(extsk + 32, 32);
UpdateFromStream(hash, stream);
hash.Final(hashr);
expand256_modm(r, hashr, 64);
/* R = rB */
ge25519_scalarmult_base_niels(&R, ge25519_niels_base_multiples, r);
ge25519_pack(RS, &R);
// Reset stream for the second digest
stream.clear();
stream.seekg(where);
/* S = H(R,A,m).. */
ed25519_hram(hram, RS, pk, stream);
expand256_modm(S, hram, 64);
/* S = H(R,A,m)a */
expand256_modm(a, extsk, 32);
mul256_modm(S, S, a);
/* S = (r + H(R,A,m)a) */
add256_modm(S, S, r);
/* S = (r + H(R,A,m)a) mod L */
contract256_modm(RS + 32, S);
return 0;
}
int
ed25519_sign_CXX(const byte *m, size_t mlen, const byte sk[32], const byte pk[32], byte RS[64])
{
using namespace CryptoPP::Donna::Ed25519;
bignum256modm r, S, a;
ALIGN(ALIGN_SPEC) ge25519 R;
hash_512bits extsk, hashr, hram;
ed25519_extsk(extsk, sk);
/* r = H(aExt[32..64], m) */
SHA512 hash;
hash.Update(extsk + 32, 32);
hash.Update(m, mlen);
hash.Final(hashr);
expand256_modm(r, hashr, 64);
/* R = rB */
ge25519_scalarmult_base_niels(&R, ge25519_niels_base_multiples, r);
ge25519_pack(RS, &R);
/* S = H(R,A,m).. */
ed25519_hram(hram, RS, pk, m, mlen);
expand256_modm(S, hram, 64);
/* S = H(R,A,m)a */
expand256_modm(a, extsk, 32);
mul256_modm(S, S, a);
/* S = (r + H(R,A,m)a) */
add256_modm(S, S, r);
/* S = (r + H(R,A,m)a) mod L */
contract256_modm(RS + 32, S);
return 0;
}
int
ed25519_sign(std::istream& stream, const byte secretKey[32], const byte publicKey[32],
byte signature[64])
{
return ed25519_sign_CXX(stream, secretKey, publicKey, signature);
}
int
ed25519_sign(const byte* message, size_t messageLength, const byte secretKey[32],
const byte publicKey[32], byte signature[64])
{
return ed25519_sign_CXX(message, messageLength, secretKey, publicKey, signature);
}
int
ed25519_sign_open_CXX(const byte *m, size_t mlen, const byte pk[32], const byte RS[64]) {
using namespace CryptoPP::Donna::Ed25519;
ALIGN(ALIGN_SPEC) ge25519 R, A;
hash_512bits hash;
bignum256modm hram, S;
byte checkR[32];
if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk))
return -1;
/* hram = H(R,A,m) */
ed25519_hram(hash, RS, pk, m, mlen);
expand256_modm(hram, hash, 64);
/* S */
expand256_modm(S, RS + 32, 32);
/* SB - H(R,A,m)A */
ge25519_double_scalarmult_vartime(&R, &A, hram, S);
ge25519_pack(checkR, &R);
/* check that R = SB - H(R,A,m)A */
return ed25519_verify(RS, checkR, 32) ? 0 : -1;
}
int
ed25519_sign_open_CXX(std::istream& stream, const byte pk[32], const byte RS[64]) {
using namespace CryptoPP::Donna::Ed25519;
ALIGN(ALIGN_SPEC) ge25519 R, A;
hash_512bits hash;
bignum256modm hram, S;
byte checkR[32];
if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk))
return -1;
/* hram = H(R,A,m) */
ed25519_hram(hash, RS, pk, stream);
expand256_modm(hram, hash, 64);
/* S */
expand256_modm(S, RS + 32, 32);
/* SB - H(R,A,m)A */
ge25519_double_scalarmult_vartime(&R, &A, hram, S);
ge25519_pack(checkR, &R);
/* check that R = SB - H(R,A,m)A */
return ed25519_verify(RS, checkR, 32) ? 0 : -1;
}
int
ed25519_sign_open(std::istream& stream, const byte publicKey[32], const byte signature[64])
{
return ed25519_sign_open_CXX(stream, publicKey, signature);
}
int
ed25519_sign_open(const byte *message, size_t messageLength, const byte publicKey[32], const byte signature[64])
{
return ed25519_sign_open_CXX(message, messageLength, publicKey, signature);
}
NAMESPACE_END // Donna
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_CURVE25519_64BIT