libcryfs/vendor/cryptopp/vendor_cryptopp/esign.h

170 lines
5.7 KiB
C++

// esign.h - originally written and placed in the public domain by Wei Dai
/// \file esign.h
/// \brief Classes providing ESIGN signature schemes as defined in IEEE P1363a
/// \since Crypto++ 5.0
#ifndef CRYPTOPP_ESIGN_H
#define CRYPTOPP_ESIGN_H
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief ESIGN trapdoor function using the public key
/// \since Crypto++ 5.0
class ESIGNFunction : public TrapdoorFunction, public ASN1CryptoMaterial<PublicKey>
{
typedef ESIGNFunction ThisClass;
public:
/// \brief Initialize a ESIGN public key with {n,e}
/// \param n the modulus
/// \param e the public exponent
void Initialize(const Integer &n, const Integer &e)
{m_n = n; m_e = e;}
// PublicKey
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
// CryptoMaterial
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// TrapdoorFunction
Integer ApplyFunction(const Integer &x) const;
Integer PreimageBound() const {return m_n;}
Integer ImageBound() const {return Integer::Power2(GetK());}
// non-derived
const Integer & GetModulus() const {return m_n;}
const Integer & GetPublicExponent() const {return m_e;}
void SetModulus(const Integer &n) {m_n = n;}
void SetPublicExponent(const Integer &e) {m_e = e;}
protected:
// Covertiy finding on overflow. The library allows small values for research purposes.
unsigned int GetK() const {return SaturatingSubtract(m_n.BitCount()/3, 1U);}
Integer m_n, m_e;
};
/// \brief ESIGN trapdoor function using the private key
/// \since Crypto++ 5.0
class InvertibleESIGNFunction : public ESIGNFunction, public RandomizedTrapdoorFunctionInverse, public PrivateKey
{
typedef InvertibleESIGNFunction ThisClass;
public:
/// \brief Initialize a ESIGN private key with {n,e,p,q}
/// \param n modulus
/// \param e public exponent
/// \param p first prime factor
/// \param q second prime factor
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const Integer &n, const Integer &e, const Integer &p, const Integer &q)
{m_n = n; m_e = e; m_p = p; m_q = q;}
/// \brief Create a ESIGN private key
/// \param rng a RandomNumberGenerator derived class
/// \param modulusBits the size of the modulud, in bits
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
{GenerateRandomWithKeySize(rng, modulusBits);}
// Squash Visual Studio C4250 warning
void Save(BufferedTransformation &bt) const
{BEREncode(bt);}
// Squash Visual Studio C4250 warning
void Load(BufferedTransformation &bt)
{BERDecode(bt);}
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
Integer CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const;
// GeneratibleCryptoMaterial
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
/*! parameters: (ModulusSize) */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
const Integer& GetPrime1() const {return m_p;}
const Integer& GetPrime2() const {return m_q;}
void SetPrime1(const Integer &p) {m_p = p;}
void SetPrime2(const Integer &q) {m_q = q;}
protected:
Integer m_p, m_q;
};
/// \brief EMSA5 padding method
/// \tparam T Mask Generation Function
/// \since Crypto++ 5.0
template <class T>
class EMSA5Pad : public PK_DeterministicSignatureMessageEncodingMethod
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "EMSA5";}
void ComputeMessageRepresentative(RandomNumberGenerator &rng,
const byte *recoverableMessage, size_t recoverableMessageLength,
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
byte *representative, size_t representativeBitLength) const
{
CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(recoverableMessage), CRYPTOPP_UNUSED(recoverableMessageLength);
CRYPTOPP_UNUSED(messageEmpty), CRYPTOPP_UNUSED(hashIdentifier);
SecByteBlock digest(hash.DigestSize());
hash.Final(digest);
size_t representativeByteLength = BitsToBytes(representativeBitLength);
T mgf;
mgf.GenerateAndMask(hash, representative, representativeByteLength, digest, digest.size(), false);
if (representativeBitLength % 8 != 0)
representative[0] = (byte)Crop(representative[0], representativeBitLength % 8);
}
};
/// \brief EMSA5 padding method, for use with ESIGN
/// \since Crypto++ 5.0
struct P1363_EMSA5 : public SignatureStandard
{
typedef EMSA5Pad<P1363_MGF1> SignatureMessageEncodingMethod;
};
/// \brief ESIGN keys
/// \since Crypto++ 5.0
struct ESIGN_Keys
{
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "ESIGN";}
typedef ESIGNFunction PublicKey;
typedef InvertibleESIGNFunction PrivateKey;
};
/// \brief ESIGN signature scheme, IEEE P1363a
/// \tparam H HashTransformation derived class
/// \tparam STANDARD Signature encoding method
/// \since Crypto++ 5.0
template <class H, class STANDARD = P1363_EMSA5>
struct ESIGN : public TF_SS<ESIGN_Keys, STANDARD, H>
{
};
NAMESPACE_END
#endif