libcryfs/vendor/cryptopp/vendor_cryptopp/pwdbased.h

482 lines
16 KiB
C++

// pwdbased.h - originally written and placed in the public domain by Wei Dai
// Cutover to KeyDerivationFunction interface by Uri Blumenthal
// Marcel Raad and Jeffrey Walton in March 2018.
/// \file pwdbased.h
/// \brief Password based key derivation functions
#ifndef CRYPTOPP_PWDBASED_H
#define CRYPTOPP_PWDBASED_H
#include "cryptlib.h"
#include "hrtimer.h"
#include "integer.h"
#include "argnames.h"
#include "algparam.h"
#include "hmac.h"
NAMESPACE_BEGIN(CryptoPP)
// ******************** PBKDF1 ********************
/// \brief PBKDF1 from PKCS #5
/// \tparam T a HashTransformation class
/// \sa PasswordBasedKeyDerivationFunction, <A
/// HREF="https://www.cryptopp.com/wiki/PKCS5_PBKDF1">PKCS5_PBKDF1</A>
/// on the Crypto++ wiki
/// \since Crypto++ 2.0
template <class T>
class PKCS5_PBKDF1 : public PasswordBasedKeyDerivationFunction
{
public:
virtual ~PKCS5_PBKDF1() {}
static std::string StaticAlgorithmName () {
const std::string name(std::string("PBKDF1(") +
std::string(T::StaticAlgorithmName()) + std::string(")"));
return name;
}
// KeyDerivationFunction interface
std::string AlgorithmName() const {
return StaticAlgorithmName();
}
// KeyDerivationFunction interface
size_t MaxDerivedKeyLength() const {
return static_cast<size_t>(T::DIGESTSIZE);
}
// KeyDerivationFunction interface
size_t GetValidDerivedLength(size_t keylength) const;
// KeyDerivationFunction interface
virtual size_t DeriveKey(byte *derived, size_t derivedLen, const byte *secret, size_t secretLen,
const NameValuePairs& params = g_nullNameValuePairs) const;
/// \brief Derive a key from a secret seed
/// \param derived the derived output buffer
/// \param derivedLen the size of the derived buffer, in bytes
/// \param purpose a purpose byte
/// \param secret the seed input buffer
/// \param secretLen the size of the secret buffer, in bytes
/// \param salt the salt input buffer
/// \param saltLen the size of the salt buffer, in bytes
/// \param iterations the number of iterations
/// \param timeInSeconds the in seconds
/// \return the number of iterations performed
/// \throw InvalidDerivedKeyLength if <tt>derivedLen</tt> is invalid for the scheme
/// \details DeriveKey() provides a standard interface to derive a key from
/// a seed and other parameters. Each class that derives from KeyDerivationFunction
/// provides an overload that accepts most parameters used by the derivation function.
/// \details If <tt>timeInSeconds</tt> is <tt>&gt; 0.0</tt> then DeriveKey will run for
/// the specified amount of time. If <tt>timeInSeconds</tt> is <tt>0.0</tt> then DeriveKey
/// will run for the specified number of iterations.
/// \details PKCS #5 says PBKDF1 should only take 8-byte salts. This implementation
/// allows salts of any length.
size_t DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *secret, size_t secretLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds=0) const;
protected:
// KeyDerivationFunction interface
const Algorithm & GetAlgorithm() const {
return *this;
}
};
template <class T>
size_t PKCS5_PBKDF1<T>::GetValidDerivedLength(size_t keylength) const
{
if (keylength > MaxDerivedKeyLength())
return MaxDerivedKeyLength();
return keylength;
}
template <class T>
size_t PKCS5_PBKDF1<T>::DeriveKey(byte *derived, size_t derivedLen,
const byte *secret, size_t secretLen, const NameValuePairs& params) const
{
CRYPTOPP_ASSERT(secret /*&& secretLen*/);
CRYPTOPP_ASSERT(derived && derivedLen);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
byte purpose = (byte)params.GetIntValueWithDefault("Purpose", 0);
unsigned int iterations = (unsigned int)params.GetIntValueWithDefault("Iterations", 1);
double timeInSeconds = 0.0f;
(void)params.GetValue("TimeInSeconds", timeInSeconds);
ConstByteArrayParameter salt;
(void)params.GetValue(Name::Salt(), salt);
return DeriveKey(derived, derivedLen, purpose, secret, secretLen, salt.begin(), salt.size(), iterations, timeInSeconds);
}
template <class T>
size_t PKCS5_PBKDF1<T>::DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *secret, size_t secretLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const
{
CRYPTOPP_ASSERT(secret /*&& secretLen*/);
CRYPTOPP_ASSERT(derived && derivedLen);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
CRYPTOPP_ASSERT(iterations > 0 || timeInSeconds > 0);
CRYPTOPP_UNUSED(purpose);
ThrowIfInvalidDerivedKeyLength(derivedLen);
// Business logic
if (!iterations) { iterations = 1; }
T hash;
hash.Update(secret, secretLen);
hash.Update(salt, saltLen);
SecByteBlock buffer(hash.DigestSize());
hash.Final(buffer);
unsigned int i;
ThreadUserTimer timer;
if (timeInSeconds)
timer.StartTimer();
for (i=1; i<iterations || (timeInSeconds && (i%128!=0 || timer.ElapsedTimeAsDouble() < timeInSeconds)); i++)
hash.CalculateDigest(buffer, buffer, buffer.size());
if (derived)
std::memcpy(derived, buffer, derivedLen);
return i;
}
// ******************** PKCS5_PBKDF2_HMAC ********************
/// \brief PBKDF2 from PKCS #5
/// \tparam T a HashTransformation class
/// \sa PasswordBasedKeyDerivationFunction, <A
/// HREF="https://www.cryptopp.com/wiki/PKCS5_PBKDF2_HMAC">PKCS5_PBKDF2_HMAC</A>
/// on the Crypto++ wiki
/// \since Crypto++ 2.0
template <class T>
class PKCS5_PBKDF2_HMAC : public PasswordBasedKeyDerivationFunction
{
public:
virtual ~PKCS5_PBKDF2_HMAC() {}
static std::string StaticAlgorithmName () {
const std::string name(std::string("PBKDF2_HMAC(") +
std::string(T::StaticAlgorithmName()) + std::string(")"));
return name;
}
// KeyDerivationFunction interface
std::string AlgorithmName() const {
return StaticAlgorithmName();
}
// KeyDerivationFunction interface
// should multiply by T::DIGESTSIZE, but gets overflow that way
size_t MaxDerivedKeyLength() const {
return 0xffffffffU;
}
// KeyDerivationFunction interface
size_t GetValidDerivedLength(size_t keylength) const;
// KeyDerivationFunction interface
size_t DeriveKey(byte *derived, size_t derivedLen, const byte *secret, size_t secretLen,
const NameValuePairs& params = g_nullNameValuePairs) const;
/// \brief Derive a key from a secret seed
/// \param derived the derived output buffer
/// \param derivedLen the size of the derived buffer, in bytes
/// \param purpose a purpose byte
/// \param secret the seed input buffer
/// \param secretLen the size of the secret buffer, in bytes
/// \param salt the salt input buffer
/// \param saltLen the size of the salt buffer, in bytes
/// \param iterations the number of iterations
/// \param timeInSeconds the in seconds
/// \return the number of iterations performed
/// \throw InvalidDerivedKeyLength if <tt>derivedLen</tt> is invalid for the scheme
/// \details DeriveKey() provides a standard interface to derive a key from
/// a seed and other parameters. Each class that derives from KeyDerivationFunction
/// provides an overload that accepts most parameters used by the derivation function.
/// \details If <tt>timeInSeconds</tt> is <tt>&gt; 0.0</tt> then DeriveKey will run for
/// the specified amount of time. If <tt>timeInSeconds</tt> is <tt>0.0</tt> then DeriveKey
/// will run for the specified number of iterations.
size_t DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *secret, size_t secretLen,
const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds=0) const;
protected:
// KeyDerivationFunction interface
const Algorithm & GetAlgorithm() const {
return *this;
}
};
template <class T>
size_t PKCS5_PBKDF2_HMAC<T>::GetValidDerivedLength(size_t keylength) const
{
if (keylength > MaxDerivedKeyLength())
return MaxDerivedKeyLength();
return keylength;
}
template <class T>
size_t PKCS5_PBKDF2_HMAC<T>::DeriveKey(byte *derived, size_t derivedLen,
const byte *secret, size_t secretLen, const NameValuePairs& params) const
{
CRYPTOPP_ASSERT(secret /*&& secretLen*/);
CRYPTOPP_ASSERT(derived && derivedLen);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
byte purpose = (byte)params.GetIntValueWithDefault("Purpose", 0);
unsigned int iterations = (unsigned int)params.GetIntValueWithDefault("Iterations", 1);
double timeInSeconds = 0.0f;
(void)params.GetValue("TimeInSeconds", timeInSeconds);
ConstByteArrayParameter salt;
(void)params.GetValue(Name::Salt(), salt);
return DeriveKey(derived, derivedLen, purpose, secret, secretLen, salt.begin(), salt.size(), iterations, timeInSeconds);
}
template <class T>
size_t PKCS5_PBKDF2_HMAC<T>::DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *secret, size_t secretLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const
{
CRYPTOPP_ASSERT(secret /*&& secretLen*/);
CRYPTOPP_ASSERT(derived && derivedLen);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
CRYPTOPP_ASSERT(iterations > 0 || timeInSeconds > 0);
CRYPTOPP_UNUSED(purpose);
ThrowIfInvalidDerivedKeyLength(derivedLen);
// Business logic
if (!iterations) { iterations = 1; }
// DigestSize check due to https://github.com/weidai11/cryptopp/issues/855
HMAC<T> hmac(secret, secretLen);
if (hmac.DigestSize() == 0)
throw InvalidArgument("PKCS5_PBKDF2_HMAC: DigestSize cannot be 0");
SecByteBlock buffer(hmac.DigestSize());
ThreadUserTimer timer;
unsigned int i=1;
while (derivedLen > 0)
{
hmac.Update(salt, saltLen);
unsigned int j;
for (j=0; j<4; j++)
{
byte b = byte(i >> ((3-j)*8));
hmac.Update(&b, 1);
}
hmac.Final(buffer);
#if CRYPTOPP_MSC_VERSION
const size_t segmentLen = STDMIN(derivedLen, buffer.size());
memcpy_s(derived, segmentLen, buffer, segmentLen);
#else
const size_t segmentLen = STDMIN(derivedLen, buffer.size());
std::memcpy(derived, buffer, segmentLen);
#endif
if (timeInSeconds)
{
timeInSeconds = timeInSeconds / ((derivedLen + buffer.size() - 1) / buffer.size());
timer.StartTimer();
}
for (j=1; j<iterations || (timeInSeconds && (j%128!=0 || timer.ElapsedTimeAsDouble() < timeInSeconds)); j++)
{
hmac.CalculateDigest(buffer, buffer, buffer.size());
xorbuf(derived, buffer, segmentLen);
}
if (timeInSeconds)
{
iterations = j;
timeInSeconds = 0;
}
derived += segmentLen;
derivedLen -= segmentLen;
i++;
}
return iterations;
}
// ******************** PKCS12_PBKDF ********************
/// \brief PBKDF from PKCS #12, appendix B
/// \tparam T a HashTransformation class
/// \sa PasswordBasedKeyDerivationFunction, <A
/// HREF="https://www.cryptopp.com/wiki/PKCS12_PBKDF">PKCS12_PBKDF</A>
/// on the Crypto++ wiki
/// \since Crypto++ 2.0
template <class T>
class PKCS12_PBKDF : public PasswordBasedKeyDerivationFunction
{
public:
virtual ~PKCS12_PBKDF() {}
static std::string StaticAlgorithmName () {
const std::string name(std::string("PBKDF_PKCS12(") +
std::string(T::StaticAlgorithmName()) + std::string(")"));
return name;
}
// KeyDerivationFunction interface
std::string AlgorithmName() const {
return StaticAlgorithmName();
}
// TODO - check this
size_t MaxDerivedKeyLength() const {
return static_cast<size_t>(-1);
}
// KeyDerivationFunction interface
size_t GetValidDerivedLength(size_t keylength) const;
// KeyDerivationFunction interface
size_t DeriveKey(byte *derived, size_t derivedLen, const byte *secret, size_t secretLen,
const NameValuePairs& params = g_nullNameValuePairs) const;
/// \brief Derive a key from a secret seed
/// \param derived the derived output buffer
/// \param derivedLen the size of the derived buffer, in bytes
/// \param purpose a purpose byte
/// \param secret the seed input buffer
/// \param secretLen the size of the secret buffer, in bytes
/// \param salt the salt input buffer
/// \param saltLen the size of the salt buffer, in bytes
/// \param iterations the number of iterations
/// \param timeInSeconds the in seconds
/// \return the number of iterations performed
/// \throw InvalidDerivedKeyLength if <tt>derivedLen</tt> is invalid for the scheme
/// \details DeriveKey() provides a standard interface to derive a key from
/// a seed and other parameters. Each class that derives from KeyDerivationFunction
/// provides an overload that accepts most parameters used by the derivation function.
/// \details If <tt>timeInSeconds</tt> is <tt>&gt; 0.0</tt> then DeriveKey will run for
/// the specified amount of time. If <tt>timeInSeconds</tt> is <tt>0.0</tt> then DeriveKey
/// will run for the specified number of iterations.
size_t DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *secret, size_t secretLen,
const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const;
protected:
// KeyDerivationFunction interface
const Algorithm & GetAlgorithm() const {
return *this;
}
};
template <class T>
size_t PKCS12_PBKDF<T>::GetValidDerivedLength(size_t keylength) const
{
if (keylength > MaxDerivedKeyLength())
return MaxDerivedKeyLength();
return keylength;
}
template <class T>
size_t PKCS12_PBKDF<T>::DeriveKey(byte *derived, size_t derivedLen,
const byte *secret, size_t secretLen, const NameValuePairs& params) const
{
CRYPTOPP_ASSERT(secret /*&& secretLen*/);
CRYPTOPP_ASSERT(derived && derivedLen);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
byte purpose = (byte)params.GetIntValueWithDefault("Purpose", 0);
unsigned int iterations = (unsigned int)params.GetIntValueWithDefault("Iterations", 1);
double timeInSeconds = 0.0f;
(void)params.GetValue("TimeInSeconds", timeInSeconds);
// NULL or 0 length salt OK
ConstByteArrayParameter salt;
(void)params.GetValue(Name::Salt(), salt);
return DeriveKey(derived, derivedLen, purpose, secret, secretLen, salt.begin(), salt.size(), iterations, timeInSeconds);
}
template <class T>
size_t PKCS12_PBKDF<T>::DeriveKey(byte *derived, size_t derivedLen, byte purpose, const byte *secret, size_t secretLen, const byte *salt, size_t saltLen, unsigned int iterations, double timeInSeconds) const
{
CRYPTOPP_ASSERT(secret /*&& secretLen*/);
CRYPTOPP_ASSERT(derived && derivedLen);
CRYPTOPP_ASSERT(derivedLen <= MaxDerivedKeyLength());
CRYPTOPP_ASSERT(iterations > 0 || timeInSeconds > 0);
ThrowIfInvalidDerivedKeyLength(derivedLen);
// Business logic
if (!iterations) { iterations = 1; }
const size_t v = T::BLOCKSIZE; // v is in bytes rather than bits as in PKCS #12
const size_t DLen = v, SLen = RoundUpToMultipleOf(saltLen, v);
const size_t PLen = RoundUpToMultipleOf(secretLen, v), ILen = SLen + PLen;
SecByteBlock buffer(DLen + SLen + PLen);
byte *D = buffer, *S = buffer+DLen, *P = buffer+DLen+SLen, *I = S;
if (D) // GCC analyzer
std::memset(D, purpose, DLen);
size_t i;
for (i=0; i<SLen; i++)
S[i] = salt[i % saltLen];
for (i=0; i<PLen; i++)
P[i] = secret[i % secretLen];
T hash;
SecByteBlock Ai(T::DIGESTSIZE), B(v);
ThreadUserTimer timer;
while (derivedLen > 0)
{
hash.CalculateDigest(Ai, buffer, buffer.size());
if (timeInSeconds)
{
timeInSeconds = timeInSeconds / ((derivedLen + Ai.size() - 1) / Ai.size());
timer.StartTimer();
}
for (i=1; i<iterations || (timeInSeconds && (i%128!=0 || timer.ElapsedTimeAsDouble() < timeInSeconds)); i++)
hash.CalculateDigest(Ai, Ai, Ai.size());
if (timeInSeconds)
{
iterations = (unsigned int)i;
timeInSeconds = 0;
}
for (i=0; i<B.size(); i++)
B[i] = Ai[i % Ai.size()];
Integer B1(B, B.size());
++B1;
for (i=0; i<ILen; i+=v)
(Integer(I+i, v) + B1).Encode(I+i, v);
#if CRYPTOPP_MSC_VERSION
const size_t segmentLen = STDMIN(derivedLen, Ai.size());
memcpy_s(derived, segmentLen, Ai, segmentLen);
#else
const size_t segmentLen = STDMIN(derivedLen, Ai.size());
std::memcpy(derived, Ai, segmentLen);
#endif
derived += segmentLen;
derivedLen -= segmentLen;
}
return iterations;
}
NAMESPACE_END
#endif