libcryfs/test/blobstore/implementations/onblocks/datanodestore/DataLeafNodeTest.cpp
2017-12-03 19:01:41 +00:00

343 lines
13 KiB
C++

#include "blobstore/implementations/onblocks/datanodestore/DataLeafNode.h"
#include "blobstore/implementations/onblocks/datanodestore/DataInnerNode.h"
#include "blobstore/implementations/onblocks/datanodestore/DataNodeStore.h"
#include "blobstore/implementations/onblocks/BlobStoreOnBlocks.h"
#include <gtest/gtest.h>
#include <cpp-utils/pointer/cast.h>
#include <blockstore/implementations/testfake/FakeBlockStore.h>
#include <blockstore/implementations/testfake/FakeBlock.h>
#include <cpp-utils/data/DataFixture.h>
using ::testing::Test;
using ::testing::WithParamInterface;
using ::testing::Values;
using cpputils::unique_ref;
using cpputils::make_unique_ref;
using std::string;
using cpputils::DataFixture;
using cpputils::deserialize;
//TODO Split into multiple files
using cpputils::dynamic_pointer_move;
using blockstore::BlockStore;
using cpputils::Data;
using blockstore::BlockId;
using blockstore::testfake::FakeBlockStore;
using namespace blobstore;
using namespace blobstore::onblocks;
using namespace blobstore::onblocks::datanodestore;
#define EXPECT_IS_PTR_TYPE(Type, ptr) EXPECT_NE(nullptr, dynamic_cast<Type*>(ptr)) << "Given pointer cannot be cast to the given type"
class DataLeafNodeTest: public Test {
public:
static constexpr uint32_t BLOCKSIZE_BYTES = 1024;
static constexpr DataNodeLayout LAYOUT = DataNodeLayout(BLOCKSIZE_BYTES);
DataLeafNodeTest():
_blockStore(make_unique_ref<FakeBlockStore>()),
blockStore(_blockStore.get()),
nodeStore(make_unique_ref<DataNodeStore>(std::move(_blockStore), BLOCKSIZE_BYTES)),
ZEROES(nodeStore->layout().maxBytesPerLeaf()),
randomData(nodeStore->layout().maxBytesPerLeaf()),
leaf(nodeStore->createNewLeafNode(Data(0))) {
ZEROES.FillWithZeroes();
Data dataFixture(DataFixture::generate(nodeStore->layout().maxBytesPerLeaf()));
std::memcpy(randomData.data(), dataFixture.data(), randomData.size());
}
Data loadData(const DataLeafNode &leaf) {
Data data(leaf.numBytes());
leaf.read(data.data(), 0, leaf.numBytes());
return data;
}
BlockId WriteDataToNewLeafBlockAndReturnKey() {
auto newleaf = nodeStore->createNewLeafNode(Data(0));
newleaf->resize(randomData.size());
newleaf->write(randomData.data(), 0, randomData.size());
return newleaf->blockId();
}
void FillLeafBlockWithData() {
FillLeafBlockWithData(leaf.get());
}
void FillLeafBlockWithData(DataLeafNode *leaf_to_fill) {
leaf_to_fill->resize(randomData.size());
leaf_to_fill->write(randomData.data(), 0, randomData.size());
}
unique_ref<DataLeafNode> LoadLeafNode(const BlockId &blockId) {
auto leaf = nodeStore->load(blockId).value();
return dynamic_pointer_move<DataLeafNode>(leaf).value();
}
void ResizeLeaf(const BlockId &blockId, size_t size) {
auto leaf = LoadLeafNode(blockId);
EXPECT_IS_PTR_TYPE(DataLeafNode, leaf.get());
leaf->resize(size);
}
BlockId CreateLeafWithDataConvertItToInnerNodeAndReturnKey() {
auto leaf = nodeStore->createNewLeafNode(Data(0));
FillLeafBlockWithData(leaf.get());
auto child = nodeStore->createNewLeafNode(Data(0));
unique_ref<DataInnerNode> converted = DataNode::convertToNewInnerNode(std::move(leaf), LAYOUT, *child);
return converted->blockId();
}
unique_ref<DataLeafNode> CopyLeafNode(const DataLeafNode &node) {
auto copied = nodeStore->createNewNodeAsCopyFrom(node);
return dynamic_pointer_move<DataLeafNode>(copied).value();
}
BlockId InitializeLeafGrowAndReturnKey() {
auto leaf = DataLeafNode::CreateNewNode(blockStore, LAYOUT, Data(LAYOUT.maxBytesPerLeaf()));
leaf->resize(5);
return leaf->blockId();
}
unique_ref<BlockStore> _blockStore;
BlockStore *blockStore;
unique_ref<DataNodeStore> nodeStore;
Data ZEROES;
Data randomData;
unique_ref<DataLeafNode> leaf;
private:
DISALLOW_COPY_AND_ASSIGN(DataLeafNodeTest);
};
constexpr uint32_t DataLeafNodeTest::BLOCKSIZE_BYTES;
constexpr DataNodeLayout DataLeafNodeTest::LAYOUT;
TEST_F(DataLeafNodeTest, CorrectKeyReturnedAfterLoading) {
BlockId blockId = DataLeafNode::CreateNewNode(blockStore, LAYOUT, Data(LAYOUT.maxBytesPerLeaf()))->blockId();
auto loaded = nodeStore->load(blockId).value();
EXPECT_EQ(blockId, loaded->blockId());
}
TEST_F(DataLeafNodeTest, InitializesCorrectly) {
auto leaf = DataLeafNode::CreateNewNode(blockStore, LAYOUT, Data(5));
EXPECT_EQ(5u, leaf->numBytes());
}
TEST_F(DataLeafNodeTest, ReadWrittenDataAfterReloadingBlock) {
BlockId blockId = WriteDataToNewLeafBlockAndReturnKey();
auto loaded = LoadLeafNode(blockId);
EXPECT_EQ(randomData.size(), loaded->numBytes());
EXPECT_EQ(randomData, loadData(*loaded));
}
TEST_F(DataLeafNodeTest, NewLeafNodeHasSizeZero) {
EXPECT_EQ(0u, leaf->numBytes());
}
TEST_F(DataLeafNodeTest, NewLeafNodeHasSizeZero_AfterLoading) {
BlockId blockId = nodeStore->createNewLeafNode(Data(0))->blockId();
auto leaf = LoadLeafNode(blockId);
EXPECT_EQ(0u, leaf->numBytes());
}
class DataLeafNodeSizeTest: public DataLeafNodeTest, public WithParamInterface<unsigned int> {
public:
BlockId CreateLeafResizeItAndReturnKey() {
auto leaf = nodeStore->createNewLeafNode(Data(0));
leaf->resize(GetParam());
return leaf->blockId();
}
};
INSTANTIATE_TEST_CASE_P(DataLeafNodeSizeTest, DataLeafNodeSizeTest, Values(0, 1, 5, 16, 32, 512, DataNodeLayout(DataLeafNodeTest::BLOCKSIZE_BYTES).maxBytesPerLeaf()));
TEST_P(DataLeafNodeSizeTest, ResizeNode_ReadSizeImmediately) {
leaf->resize(GetParam());
EXPECT_EQ(GetParam(), leaf->numBytes());
}
TEST_P(DataLeafNodeSizeTest, ResizeNode_ReadSizeAfterLoading) {
BlockId blockId = CreateLeafResizeItAndReturnKey();
auto leaf = LoadLeafNode(blockId);
EXPECT_EQ(GetParam(), leaf->numBytes());
}
TEST_F(DataLeafNodeTest, SpaceIsZeroFilledWhenGrowing) {
leaf->resize(randomData.size());
EXPECT_EQ(0, std::memcmp(ZEROES.data(), loadData(*leaf).data(), randomData.size()));
}
TEST_F(DataLeafNodeTest, SpaceGetsZeroFilledWhenShrinkingAndRegrowing) {
FillLeafBlockWithData();
// resize it smaller and then back to original size
uint32_t smaller_size = randomData.size() - 100;
leaf->resize(smaller_size);
leaf->resize(randomData.size());
//Check that the space was filled with zeroes
EXPECT_EQ(0, std::memcmp(ZEROES.data(), static_cast<const uint8_t*>(loadData(*leaf).data())+smaller_size, 100));
}
TEST_F(DataLeafNodeTest, DataGetsZeroFilledWhenShrinking) {
BlockId blockId = WriteDataToNewLeafBlockAndReturnKey();
uint32_t smaller_size = randomData.size() - 100;
{
//At first, we expect there to be random data in the underlying data block
auto block = blockStore->load(blockId).value();
EXPECT_EQ(0, std::memcmp(randomData.dataOffset(smaller_size), static_cast<const uint8_t*>(block->data())+DataNodeLayout::HEADERSIZE_BYTES+smaller_size, 100));
}
//After shrinking, we expect there to be zeroes in the underlying data block
ResizeLeaf(blockId, smaller_size);
{
auto block = blockStore->load(blockId).value();
EXPECT_EQ(0, std::memcmp(ZEROES.data(), static_cast<const uint8_t*>(block->data())+DataNodeLayout::HEADERSIZE_BYTES+smaller_size, 100));
}
}
TEST_F(DataLeafNodeTest, ShrinkingDoesntDestroyValidDataRegion) {
FillLeafBlockWithData();
uint32_t smaller_size = randomData.size() - 100;
leaf->resize(smaller_size);
//Check that the remaining data region is unchanged
EXPECT_EQ(0, std::memcmp(randomData.data(), loadData(*leaf).data(), smaller_size));
}
TEST_F(DataLeafNodeTest, ConvertToInternalNode) {
auto child = nodeStore->createNewLeafNode(Data(0));
BlockId leaf_blockId = leaf->blockId();
unique_ref<DataInnerNode> converted = DataNode::convertToNewInnerNode(std::move(leaf), LAYOUT, *child);
EXPECT_EQ(1u, converted->numChildren());
EXPECT_EQ(child->blockId(), converted->readChild(0).blockId());
EXPECT_EQ(leaf_blockId, converted->blockId());
}
TEST_F(DataLeafNodeTest, ConvertToInternalNodeZeroesOutChildrenRegion) {
BlockId blockId = CreateLeafWithDataConvertItToInnerNodeAndReturnKey();
auto block = blockStore->load(blockId).value();
EXPECT_EQ(0, std::memcmp(ZEROES.data(), static_cast<const uint8_t*>(block->data())+DataNodeLayout::HEADERSIZE_BYTES+sizeof(DataInnerNode::ChildEntry), nodeStore->layout().maxBytesPerLeaf()-sizeof(DataInnerNode::ChildEntry)));
}
TEST_F(DataLeafNodeTest, CopyingCreatesANewLeaf) {
auto copied = CopyLeafNode(*leaf);
EXPECT_NE(leaf->blockId(), copied->blockId());
}
TEST_F(DataLeafNodeTest, CopyEmptyLeaf) {
auto copied = CopyLeafNode(*leaf);
EXPECT_EQ(leaf->numBytes(), copied->numBytes());
}
TEST_F(DataLeafNodeTest, CopyDataLeaf) {
FillLeafBlockWithData();
auto copied = CopyLeafNode(*leaf);
EXPECT_EQ(leaf->numBytes(), copied->numBytes());
EXPECT_EQ(0, std::memcmp(loadData(*leaf).data(), loadData(*copied).data(), leaf->numBytes()));
//Test that they have different data regions (changing the original one doesn't change the copy)
uint8_t data = 0;
leaf->write(&data, 0, 1);
EXPECT_EQ(data, deserialize<uint8_t>(loadData(*leaf).data()));
EXPECT_NE(data, deserialize<uint8_t>(loadData(*copied).data()));
}
struct DataRange {
size_t leafsize;
off_t offset;
size_t count;
};
class DataLeafNodeDataTest: public DataLeafNodeTest, public WithParamInterface<DataRange> {
public:
Data foregroundData;
Data backgroundData;
DataLeafNodeDataTest():
foregroundData(DataFixture::generate(GetParam().count, 0)),
backgroundData(DataFixture::generate(GetParam().leafsize, 1)) {
}
BlockId CreateLeafWriteToItAndReturnKey(const Data &to_write) {
auto newleaf = nodeStore->createNewLeafNode(Data(0));
newleaf->resize(GetParam().leafsize);
newleaf->write(to_write.data(), GetParam().offset, GetParam().count);
return newleaf->blockId();
}
void EXPECT_DATA_READS_AS(const Data &expected, const DataLeafNode &leaf, off_t offset, size_t count) {
Data read(count);
leaf.read(read.data(), offset, count);
EXPECT_EQ(expected, read);
}
void EXPECT_DATA_READS_AS_OUTSIDE_OF(const Data &expected, const DataLeafNode &leaf, off_t start, size_t count) {
Data begin(start);
Data end(GetParam().leafsize - count - start);
std::memcpy(begin.data(), expected.data(), start);
std::memcpy(end.data(), expected.dataOffset(start+count), end.size());
EXPECT_DATA_READS_AS(begin, leaf, 0, start);
EXPECT_DATA_READS_AS(end, leaf, start + count, end.size());
}
void EXPECT_DATA_IS_ZEROES_OUTSIDE_OF(const DataLeafNode &leaf, off_t start, size_t count) {
Data ZEROES(GetParam().leafsize);
ZEROES.FillWithZeroes();
EXPECT_DATA_READS_AS_OUTSIDE_OF(ZEROES, leaf, start, count);
}
};
INSTANTIATE_TEST_CASE_P(DataLeafNodeDataTest, DataLeafNodeDataTest, Values(
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf(), 0, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()}, // full size leaf, access beginning to end
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf(), 100, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-200}, // full size leaf, access middle to middle
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf(), 0, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100}, // full size leaf, access beginning to middle
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf(), 100, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100}, // full size leaf, access middle to end
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100, 0, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100}, // non-full size leaf, access beginning to end
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100, 100, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-300}, // non-full size leaf, access middle to middle
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100, 0, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-200}, // non-full size leaf, access beginning to middle
DataRange{DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-100, 100, DataLeafNodeTest::LAYOUT.maxBytesPerLeaf()-200} // non-full size leaf, access middle to end
));
TEST_P(DataLeafNodeDataTest, WriteAndReadImmediately) {
leaf->resize(GetParam().leafsize);
leaf->write(this->foregroundData.data(), GetParam().offset, GetParam().count);
EXPECT_DATA_READS_AS(this->foregroundData, *leaf, GetParam().offset, GetParam().count);
EXPECT_DATA_IS_ZEROES_OUTSIDE_OF(*leaf, GetParam().offset, GetParam().count);
}
TEST_P(DataLeafNodeDataTest, WriteAndReadAfterLoading) {
BlockId blockId = CreateLeafWriteToItAndReturnKey(this->foregroundData);
auto loaded_leaf = LoadLeafNode(blockId);
EXPECT_DATA_READS_AS(this->foregroundData, *loaded_leaf, GetParam().offset, GetParam().count);
EXPECT_DATA_IS_ZEROES_OUTSIDE_OF(*loaded_leaf, GetParam().offset, GetParam().count);
}
TEST_P(DataLeafNodeDataTest, OverwriteAndRead) {
leaf->resize(GetParam().leafsize);
leaf->write(this->backgroundData.data(), 0, GetParam().leafsize);
leaf->write(this->foregroundData.data(), GetParam().offset, GetParam().count);
EXPECT_DATA_READS_AS(this->foregroundData, *leaf, GetParam().offset, GetParam().count);
EXPECT_DATA_READS_AS_OUTSIDE_OF(this->backgroundData, *leaf, GetParam().offset, GetParam().count);
}