libcryfs/vendor/cryptopp/vendor_cryptopp/blake2.cpp

807 lines
25 KiB
C++

// blake2.cpp - written and placed in the public domain by Jeffrey Walton
// and Zooko Wilcox-O'Hearn. Based on Aumasson, Neves,
// Wilcox-O'Hearn and Winnerlein's reference BLAKE2
// implementation at http://github.com/BLAKE2/BLAKE2.
//
// The BLAKE2b and BLAKE2s numbers are consistent with the BLAKE2 team's
// numbers. However, we have an Altivec/POWER7 implementation of BLAKE2s,
// and a POWER8 implementation of BLAKE2b (BLAKE2 is missing them). The
// Altivec/POWER7 code is about 2x faster than C++ when using GCC 5.0 or
// above. The POWER8 code is about 2.5x faster than C++ when using GCC 5.0
// or above. If you use GCC 4.0 (PowerMac) or GCC 4.8 (GCC Compile Farm)
// then the PowerPC code will be slower than C++. Be sure to use GCC 5.0
// or above for PowerPC builds or disable Altivec for BLAKE2b and BLAKE2s
// if using the old compilers.
#include "pch.h"
#include "config.h"
#include "cryptlib.h"
#include "argnames.h"
#include "algparam.h"
#include "blake2.h"
#include "cpu.h"
// Uncomment for benchmarking C++ against SSE2 or NEON.
// Do so in both blake2.cpp and blake2-simd.cpp.
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
// #undef CRYPTOPP_ALTIVEC_AVAILABLE
// #undef CRYPTOPP_POWER8_AVAILABLE
// Disable NEON/ASIMD for Cortex-A53 and A57. The shifts are too slow and C/C++ is about
// 3 cpb faster than NEON/ASIMD. Also see http://github.com/weidai11/cryptopp/issues/367.
#if (defined(__aarch32__) || defined(__aarch64__)) && defined(CRYPTOPP_SLOW_ARMV8_SHIFT)
# undef CRYPTOPP_ARM_NEON_AVAILABLE
#endif
// BLAKE2s bug on AIX 7.1 (POWER7) with XLC 12.01
// https://github.com/weidai11/cryptopp/issues/743
#if defined(__xlC__) && (__xlC__ < 0x0d01)
# define CRYPTOPP_DISABLE_ALTIVEC 1
# undef CRYPTOPP_POWER7_AVAILABLE
# undef CRYPTOPP_POWER8_AVAILABLE
# undef CRYPTOPP_ALTIVEC_AVAILABLE
#endif
NAMESPACE_BEGIN(CryptoPP)
// Export the tables to the SIMD files
extern const word32 BLAKE2S_IV[8];
extern const word64 BLAKE2B_IV[8];
CRYPTOPP_ALIGN_DATA(16)
const word32 BLAKE2S_IV[8] = {
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
CRYPTOPP_ALIGN_DATA(16)
const word64 BLAKE2B_IV[8] = {
W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b),
W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1),
W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f),
W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)
};
NAMESPACE_END
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotrConstant;
CRYPTOPP_ALIGN_DATA(16)
const byte BLAKE2S_SIGMA[10][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
};
CRYPTOPP_ALIGN_DATA(16)
const byte BLAKE2B_SIGMA[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
template <unsigned int R, unsigned int N>
inline void BLAKE2B_G(const word64 m[16], word64& a, word64& b, word64& c, word64& d)
{
a = a + b + m[BLAKE2B_SIGMA[R][2*N+0]];
d = rotrConstant<32>(d ^ a);
c = c + d;
b = rotrConstant<24>(b ^ c);
a = a + b + m[BLAKE2B_SIGMA[R][2*N+1]];
d = rotrConstant<16>(d ^ a);
c = c + d;
b = rotrConstant<63>(b ^ c);
}
template <unsigned int R>
inline void BLAKE2B_ROUND(const word64 m[16], word64 v[16])
{
BLAKE2B_G<R,0>(m,v[ 0],v[ 4],v[ 8],v[12]);
BLAKE2B_G<R,1>(m,v[ 1],v[ 5],v[ 9],v[13]);
BLAKE2B_G<R,2>(m,v[ 2],v[ 6],v[10],v[14]);
BLAKE2B_G<R,3>(m,v[ 3],v[ 7],v[11],v[15]);
BLAKE2B_G<R,4>(m,v[ 0],v[ 5],v[10],v[15]);
BLAKE2B_G<R,5>(m,v[ 1],v[ 6],v[11],v[12]);
BLAKE2B_G<R,6>(m,v[ 2],v[ 7],v[ 8],v[13]);
BLAKE2B_G<R,7>(m,v[ 3],v[ 4],v[ 9],v[14]);
}
template <unsigned int R, unsigned int N>
inline void BLAKE2S_G(const word32 m[16], word32& a, word32& b, word32& c, word32& d)
{
a = a + b + m[BLAKE2S_SIGMA[R][2*N+0]];
d = rotrConstant<16>(d ^ a);
c = c + d;
b = rotrConstant<12>(b ^ c);
a = a + b + m[BLAKE2S_SIGMA[R][2*N+1]];
d = rotrConstant<8>(d ^ a);
c = c + d;
b = rotrConstant<7>(b ^ c);
}
template <unsigned int R>
inline void BLAKE2S_ROUND(const word32 m[16], word32 v[])
{
BLAKE2S_G<R,0>(m,v[ 0],v[ 4],v[ 8],v[12]);
BLAKE2S_G<R,1>(m,v[ 1],v[ 5],v[ 9],v[13]);
BLAKE2S_G<R,2>(m,v[ 2],v[ 6],v[10],v[14]);
BLAKE2S_G<R,3>(m,v[ 3],v[ 7],v[11],v[15]);
BLAKE2S_G<R,4>(m,v[ 0],v[ 5],v[10],v[15]);
BLAKE2S_G<R,5>(m,v[ 1],v[ 6],v[11],v[12]);
BLAKE2S_G<R,6>(m,v[ 2],v[ 7],v[ 8],v[13]);
BLAKE2S_G<R,7>(m,v[ 3],v[ 4],v[ 9],v[14]);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
void BLAKE2_Compress32_CXX(const byte* input, BLAKE2s_State& state);
void BLAKE2_Compress64_CXX(const byte* input, BLAKE2b_State& state);
#if CRYPTOPP_SSE41_AVAILABLE
extern void BLAKE2_Compress32_SSE4(const byte* input, BLAKE2s_State& state);
extern void BLAKE2_Compress64_SSE4(const byte* input, BLAKE2b_State& state);
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
extern void BLAKE2_Compress32_NEON(const byte* input, BLAKE2s_State& state);
extern void BLAKE2_Compress64_NEON(const byte* input, BLAKE2b_State& state);
#endif
#if CRYPTOPP_POWER8_AVAILABLE
extern void BLAKE2_Compress32_POWER8(const byte* input, BLAKE2s_State& state);
#elif CRYPTOPP_ALTIVEC_AVAILABLE
extern void BLAKE2_Compress32_ALTIVEC(const byte* input, BLAKE2s_State& state);
#endif
#if CRYPTOPP_POWER8_AVAILABLE
extern void BLAKE2_Compress64_POWER8(const byte* input, BLAKE2b_State& state);
#endif
unsigned int BLAKE2b::OptimalDataAlignment() const
{
#if defined(CRYPTOPP_SSE41_AVAILABLE)
if (HasSSE41())
return 16;
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 4;
else
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
if (HasPower8())
return 16;
else
#endif
return GetAlignmentOf<word64>();
}
std::string BLAKE2b::AlgorithmProvider() const
{
#if defined(CRYPTOPP_SSE41_AVAILABLE)
if (HasSSE41())
return "SSE4.1";
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
else
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
if (HasPower8())
return "Power8";
else
#endif
return "C++";
}
unsigned int BLAKE2s::OptimalDataAlignment() const
{
#if defined(CRYPTOPP_SSE41_AVAILABLE)
if (HasSSE41())
return 16;
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 4;
else
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
if (HasPower8())
return 16;
else
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 16;
else
#endif
return GetAlignmentOf<word32>();
}
std::string BLAKE2s::AlgorithmProvider() const
{
#if defined(CRYPTOPP_SSE41_AVAILABLE)
if (HasSSE41())
return "SSE4.1";
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
else
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
if (HasPower8())
return "Power8";
else
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return "Altivec";
else
#endif
return "C++";
}
void BLAKE2s_State::Reset()
{
std::memset(m_hft, 0x00, m_hft.SizeInBytes());
m_len = 0;
}
void BLAKE2b_State::Reset()
{
std::memset(m_hft, 0x00, m_hft.SizeInBytes());
m_len = 0;
}
BLAKE2s_ParameterBlock::BLAKE2s_ParameterBlock(size_t digestLen, size_t keyLen,
const byte* saltStr, size_t saltLen,
const byte* personalizationStr, size_t personalizationLen)
{
Reset(digestLen, keyLen);
if (saltStr && saltLen)
memcpy_s(salt(), SALTSIZE, saltStr, saltLen);
if (personalizationStr && personalizationLen)
memcpy_s(personalization(), PERSONALIZATIONSIZE, personalizationStr, personalizationLen);
}
BLAKE2b_ParameterBlock::BLAKE2b_ParameterBlock(size_t digestLen, size_t keyLen,
const byte* saltStr, size_t saltLen,
const byte* personalizationStr, size_t personalizationLen)
{
Reset(digestLen, keyLen);
if (saltStr && saltLen)
memcpy_s(salt(), SALTSIZE, saltStr, saltLen);
if (personalizationStr && personalizationLen)
memcpy_s(personalization(), PERSONALIZATIONSIZE, personalizationStr, personalizationLen);
}
void BLAKE2s_ParameterBlock::Reset(size_t digestLen, size_t keyLen)
{
std::memset(m_data, 0x00, m_data.size());
m_data[DigestOff] = static_cast<byte>(digestLen);
m_data[KeyOff] = static_cast<byte>(keyLen);
m_data[FanoutOff] = m_data[DepthOff] = 1;
}
void BLAKE2b_ParameterBlock::Reset(size_t digestLen, size_t keyLen)
{
std::memset(m_data, 0x00, m_data.size());
m_data[DigestOff] = static_cast<byte>(digestLen);
m_data[KeyOff] = static_cast<byte>(keyLen);
m_data[FanoutOff] = m_data[DepthOff] = 1;
}
BLAKE2s::BLAKE2s(bool treeMode, unsigned int digestSize)
: m_digestSize(digestSize), m_keyLength(0), m_treeMode(treeMode)
{
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
UncheckedSetKey(NULLPTR, 0, MakeParameters
(Name::DigestSize(), (int)digestSize)
(Name::TreeMode(), treeMode));
}
BLAKE2b::BLAKE2b(bool treeMode, unsigned int digestSize)
: m_digestSize(digestSize), m_keyLength(0), m_treeMode(treeMode)
{
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
UncheckedSetKey(NULLPTR, 0, MakeParameters
(Name::DigestSize(), (int)digestSize)
(Name::TreeMode(), treeMode));
}
BLAKE2s::BLAKE2s(unsigned int digestSize)
: m_digestSize(digestSize), m_keyLength(0), m_treeMode(false)
{
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
UncheckedSetKey(NULLPTR, 0, MakeParameters
(Name::DigestSize(), (int)digestSize)
(Name::TreeMode(), false));
}
BLAKE2b::BLAKE2b(unsigned int digestSize)
: m_digestSize(digestSize), m_keyLength(0), m_treeMode(false)
{
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
UncheckedSetKey(NULLPTR, 0, MakeParameters
(Name::DigestSize(), (int)digestSize)
(Name::TreeMode(), false));
}
BLAKE2s::BLAKE2s(const byte *key, size_t keyLength, const byte* salt, size_t saltLength,
const byte* personalization, size_t personalizationLength, bool treeMode, unsigned int digestSize)
: m_digestSize(digestSize), m_keyLength(static_cast<unsigned int>(keyLength)), m_treeMode(treeMode)
{
CRYPTOPP_ASSERT(keyLength <= MAX_KEYLENGTH);
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
CRYPTOPP_ASSERT(saltLength <= SALTSIZE);
CRYPTOPP_ASSERT(personalizationLength <= PERSONALIZATIONSIZE);
UncheckedSetKey(key, static_cast<unsigned int>(keyLength), MakeParameters
(Name::DigestSize(),(int)digestSize)
(Name::TreeMode(),treeMode)
(Name::Salt(), ConstByteArrayParameter(salt, saltLength))
(Name::Personalization(), ConstByteArrayParameter(personalization, personalizationLength)));
}
BLAKE2b::BLAKE2b(const byte *key, size_t keyLength, const byte* salt, size_t saltLength,
const byte* personalization, size_t personalizationLength, bool treeMode, unsigned int digestSize)
: m_digestSize(digestSize), m_keyLength(static_cast<unsigned int>(keyLength)), m_treeMode(treeMode)
{
CRYPTOPP_ASSERT(keyLength <= MAX_KEYLENGTH);
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
CRYPTOPP_ASSERT(saltLength <= SALTSIZE);
CRYPTOPP_ASSERT(personalizationLength <= PERSONALIZATIONSIZE);
UncheckedSetKey(key, static_cast<unsigned int>(keyLength), MakeParameters
(Name::DigestSize(),(int)digestSize)
(Name::TreeMode(),treeMode)
(Name::Salt(), ConstByteArrayParameter(salt, saltLength))
(Name::Personalization(), ConstByteArrayParameter(personalization, personalizationLength)));
}
void BLAKE2s::UncheckedSetKey(const byte *key, unsigned int length, const CryptoPP::NameValuePairs& params)
{
if (key && length)
{
m_key.New(BLOCKSIZE);
std::memcpy(m_key, key, length);
std::memset(m_key + length, 0x00, BLOCKSIZE - length);
m_keyLength = length;
}
else
{
m_key.resize(0);
m_keyLength = 0;
}
m_digestSize = static_cast<unsigned int>(params.GetIntValueWithDefault(
Name::DigestSize(), static_cast<int>(m_digestSize)));
m_state.Reset();
m_block.Reset(m_digestSize, m_keyLength);
(void)params.GetValue(Name::TreeMode(), m_treeMode);
ConstByteArrayParameter t;
if (params.GetValue(Name::Salt(), t) && t.begin() && t.size())
memcpy_s(m_block.salt(), SALTSIZE, t.begin(), t.size());
if (params.GetValue(Name::Personalization(), t) && t.begin() && t.size())
memcpy_s(m_block.personalization(), PERSONALIZATIONSIZE, t.begin(), t.size());
Restart();
}
void BLAKE2b::UncheckedSetKey(const byte *key, unsigned int length, const CryptoPP::NameValuePairs& params)
{
if (key && length)
{
m_key.New(BLOCKSIZE);
std::memcpy(m_key, key, length);
std::memset(m_key + length, 0x00, BLOCKSIZE - length);
m_keyLength = length;
}
else
{
m_key.resize(0);
m_keyLength = 0;
}
m_digestSize = static_cast<unsigned int>(params.GetIntValueWithDefault(
Name::DigestSize(), static_cast<int>(m_digestSize)));
m_state.Reset();
m_block.Reset(m_digestSize, m_keyLength);
(void)params.GetValue(Name::TreeMode(), m_treeMode);
ConstByteArrayParameter t;
if (params.GetValue(Name::Salt(), t) && t.begin() && t.size())
memcpy_s(m_block.salt(), SALTSIZE, t.begin(), t.size());
if (params.GetValue(Name::Personalization(), t) && t.begin() && t.size())
memcpy_s(m_block.personalization(), PERSONALIZATIONSIZE, t.begin(), t.size());
Restart();
}
void BLAKE2s::Restart()
{
static const word32 zero[2] = {0,0};
Restart(m_block, zero);
}
void BLAKE2b::Restart()
{
static const word64 zero[2] = {0,0};
Restart(m_block, zero);
}
void BLAKE2s::Restart(const BLAKE2s_ParameterBlock& block, const word32 counter[2])
{
// We take a counter as a parameter to allow customized state.
m_state.Reset();
if (counter != NULLPTR)
{
word32* t = m_state.t();
t[0] = counter[0];
t[1] = counter[1];
}
// We take a parameter block as a parameter to allow customized state.
// Avoid the copy of the parameter block when we are passing our own block.
if (block.data() == m_block.data())
m_block.Reset(m_digestSize, m_keyLength);
else
{
std::memcpy(m_block.data(), block.data(), m_block.size());
m_block.m_data[BLAKE2s_ParameterBlock::DigestOff] = (byte)m_digestSize;
m_block.m_data[BLAKE2s_ParameterBlock::KeyOff] = (byte)m_keyLength;
}
const word32* iv = BLAKE2S_IV;
PutBlock<word32, LittleEndian, true> put(m_block.data(), m_state.h());
put(iv[0])(iv[1])(iv[2])(iv[3])(iv[4])(iv[5])(iv[6])(iv[7]);
// When BLAKE2 is keyed, the input stream is simply {key || 0 || message}.
// The key is padded to a full Blocksize with 0. Key it during Restart to
// avoid FirstPut and friends. Key size == 0 means no key.
if (m_keyLength)
Update(m_key, BLOCKSIZE);
}
void BLAKE2b::Restart(const BLAKE2b_ParameterBlock& block, const word64 counter[2])
{
// We take a counter as a parameter to allow customized state.
m_state.Reset();
if (counter != NULLPTR)
{
word64* t = m_state.t();
t[0] = counter[0];
t[1] = counter[1];
}
// We take a parameter block as a parameter to allow customized state.
// Avoid the copy of the parameter block when we are passing our own block.
if (block.data() == m_block.data())
m_block.Reset(m_digestSize, m_keyLength);
else
{
std::memcpy(m_block.data(), block.data(), m_block.size());
m_block.m_data[BLAKE2b_ParameterBlock::DigestOff] = (byte)m_digestSize;
m_block.m_data[BLAKE2b_ParameterBlock::KeyOff] = (byte)m_keyLength;
}
const word64* iv = BLAKE2B_IV;
PutBlock<word64, LittleEndian, true> put(m_block.data(), m_state.h());
put(iv[0])(iv[1])(iv[2])(iv[3])(iv[4])(iv[5])(iv[6])(iv[7]);
// When BLAKE2 is keyed, the input stream is simply {key || 0 || message}.
// The key is padded to a full Blocksize with 0. Key it during Restart to
// avoid FirstPut and friends. Key size == 0 means no key.
if (m_keyLength)
Update(m_key, BLOCKSIZE);
}
void BLAKE2s::Update(const byte *input, size_t length)
{
CRYPTOPP_ASSERT(input != NULLPTR || length == 0);
if (length > BLOCKSIZE - m_state.m_len)
{
if (m_state.m_len != 0)
{
// Complete current block
const size_t fill = BLOCKSIZE - m_state.m_len;
std::memcpy(m_state.m_buf+m_state.m_len, input, fill);
IncrementCounter(BLOCKSIZE);
Compress(m_state.m_buf);
m_state.m_len = 0;
length -= fill, input += fill;
}
// Compress in-place to avoid copies
while (length > BLOCKSIZE)
{
IncrementCounter(BLOCKSIZE);
Compress(input);
length -= BLOCKSIZE, input += BLOCKSIZE;
}
}
// Copy tail bytes
if (length)
{
CRYPTOPP_ASSERT(length <= BLOCKSIZE - m_state.m_len);
std::memcpy(m_state.m_buf+m_state.m_len, input, length);
m_state.m_len += static_cast<unsigned int>(length);
}
}
void BLAKE2b::Update(const byte *input, size_t length)
{
CRYPTOPP_ASSERT(input != NULLPTR || length == 0);
if (length > BLOCKSIZE - m_state.m_len)
{
if (m_state.m_len != 0)
{
// Complete current block
const size_t fill = BLOCKSIZE - m_state.m_len;
std::memcpy(m_state.m_buf+m_state.m_len, input, fill);
IncrementCounter(BLOCKSIZE);
Compress(m_state.m_buf);
m_state.m_len = 0;
length -= fill, input += fill;
}
// Compress in-place to avoid copies
while (length > BLOCKSIZE)
{
CRYPTOPP_ASSERT(m_state.m_len == 0);
IncrementCounter(BLOCKSIZE);
Compress(input);
length -= BLOCKSIZE, input += BLOCKSIZE;
}
}
// Copy tail bytes
if (length)
{
CRYPTOPP_ASSERT(length <= BLOCKSIZE - m_state.m_len);
std::memcpy(m_state.m_buf + m_state.m_len, input, length);
m_state.m_len += static_cast<unsigned int>(length);
}
}
void BLAKE2s::TruncatedFinal(byte *hash, size_t size)
{
CRYPTOPP_ASSERT(hash != NULLPTR);
this->ThrowIfInvalidTruncatedSize(size);
word32* f = m_state.f();
// Set last block unconditionally
f[0] = ~static_cast<word32>(0);
// Set last node if tree mode
if (m_treeMode)
f[1] = ~static_cast<word32>(0);
// Increment counter for tail bytes only
IncrementCounter(m_state.m_len);
std::memset(m_state.m_buf + m_state.m_len, 0x00, BLOCKSIZE - m_state.m_len);
Compress(m_state.m_buf);
// Copy to caller buffer
std::memcpy(hash, m_state.h(), size);
Restart();
}
void BLAKE2b::TruncatedFinal(byte *hash, size_t size)
{
CRYPTOPP_ASSERT(hash != NULLPTR);
this->ThrowIfInvalidTruncatedSize(size);
word64* f = m_state.f();
// Set last block unconditionally
f[0] = ~static_cast<word64>(0);
// Set last node if tree mode
if (m_treeMode)
f[1] = ~static_cast<word64>(0);
// Increment counter for tail bytes only
IncrementCounter(m_state.m_len);
std::memset(m_state.m_buf + m_state.m_len, 0x00, BLOCKSIZE - m_state.m_len);
Compress(m_state.m_buf);
// Copy to caller buffer
std::memcpy(hash, m_state.h(), size);
Restart();
}
void BLAKE2s::IncrementCounter(size_t count)
{
word32* t = m_state.t();
t[0] += static_cast<word32>(count);
t[1] += !!(t[0] < count);
}
void BLAKE2b::IncrementCounter(size_t count)
{
word64* t = m_state.t();
t[0] += static_cast<word64>(count);
t[1] += !!(t[0] < count);
}
void BLAKE2s::Compress(const byte *input)
{
#if CRYPTOPP_SSE41_AVAILABLE
if(HasSSE41())
{
return BLAKE2_Compress32_SSE4(input, m_state);
}
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
if(HasNEON())
{
return BLAKE2_Compress32_NEON(input, m_state);
}
#endif
#if CRYPTOPP_POWER8_AVAILABLE
if(HasPower8())
{
return BLAKE2_Compress32_POWER8(input, m_state);
}
#elif CRYPTOPP_ALTIVEC_AVAILABLE
if(HasAltivec())
{
return BLAKE2_Compress32_ALTIVEC(input, m_state);
}
#endif
return BLAKE2_Compress32_CXX(input, m_state);
}
void BLAKE2b::Compress(const byte *input)
{
#if CRYPTOPP_SSE41_AVAILABLE
if(HasSSE41())
{
return BLAKE2_Compress64_SSE4(input, m_state);
}
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
if(HasNEON())
{
return BLAKE2_Compress64_NEON(input, m_state);
}
#endif
#if CRYPTOPP_POWER8_AVAILABLE
if(HasPower8())
{
return BLAKE2_Compress64_POWER8(input, m_state);
}
#endif
return BLAKE2_Compress64_CXX(input, m_state);
}
void BLAKE2_Compress64_CXX(const byte* input, BLAKE2b_State& state)
{
word64 m[16], v[16];
GetBlock<word64, LittleEndian, true> get1(input);
get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]);
GetBlock<word64, LittleEndian, true> get2(state.h());
get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]);
const word64* iv = BLAKE2B_IV;
const word64* tf = state.t();
v[ 8] = iv[0];
v[ 9] = iv[1];
v[10] = iv[2];
v[11] = iv[3];
v[12] = tf[0] ^ iv[4];
v[13] = tf[1] ^ iv[5];
v[14] = tf[2] ^ iv[6];
v[15] = tf[3] ^ iv[7];
BLAKE2B_ROUND<0>(m, v);
BLAKE2B_ROUND<1>(m, v);
BLAKE2B_ROUND<2>(m, v);
BLAKE2B_ROUND<3>(m, v);
BLAKE2B_ROUND<4>(m, v);
BLAKE2B_ROUND<5>(m, v);
BLAKE2B_ROUND<6>(m, v);
BLAKE2B_ROUND<7>(m, v);
BLAKE2B_ROUND<8>(m, v);
BLAKE2B_ROUND<9>(m, v);
BLAKE2B_ROUND<10>(m, v);
BLAKE2B_ROUND<11>(m, v);
word64* h = state.h();
for (unsigned int i = 0; i < 8; ++i)
h[i] = h[i] ^ ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v[i] ^ v[i + 8]);
}
void BLAKE2_Compress32_CXX(const byte* input, BLAKE2s_State& state)
{
word32 m[16], v[16];
GetBlock<word32, LittleEndian, true> get1(input);
get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]);
GetBlock<word32, LittleEndian, true> get2(state.h());
get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]);
const word32* iv = BLAKE2S_IV;
const word32* tf = state.t();
v[ 8] = iv[0];
v[ 9] = iv[1];
v[10] = iv[2];
v[11] = iv[3];
v[12] = tf[0] ^ iv[4];
v[13] = tf[1] ^ iv[5];
v[14] = tf[2] ^ iv[6];
v[15] = tf[3] ^ iv[7];
BLAKE2S_ROUND<0>(m, v);
BLAKE2S_ROUND<1>(m, v);
BLAKE2S_ROUND<2>(m, v);
BLAKE2S_ROUND<3>(m, v);
BLAKE2S_ROUND<4>(m, v);
BLAKE2S_ROUND<5>(m, v);
BLAKE2S_ROUND<6>(m, v);
BLAKE2S_ROUND<7>(m, v);
BLAKE2S_ROUND<8>(m, v);
BLAKE2S_ROUND<9>(m, v);
word32* h = state.h();
for (unsigned int i = 0; i < 8; ++i)
h[i] = h[i] ^ ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v[i] ^ v[i + 8]);
}
NAMESPACE_END