libcryfs/vendor/cryptopp/vendor_cryptopp/simon64_simd.cpp

878 lines
31 KiB
C++

// simon-simd.cpp - written and placed in the public domain by Jeffrey Walton
//
// This source file uses intrinsics and built-ins to gain access to
// SSSE3, ARM NEON and ARMv8a, and Altivec instructions. A separate
// source file is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "simon.h"
#include "misc.h"
// Uncomment for benchmarking C++ against SSE or NEON.
// Do so in both simon.cpp and simon-simd.cpp.
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include "adv_simd.h"
# include <pmmintrin.h>
# include <tmmintrin.h>
#endif
#if (CRYPTOPP_SSE41_AVAILABLE)
# include <smmintrin.h>
#endif
#if defined(__XOP__)
# include <ammintrin.h>
#endif
#if defined(__AVX512F__)
# define CRYPTOPP_AVX512_ROTATE 1
# include <immintrin.h>
#endif
// C1189: error: This header is specific to ARM targets
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include "adv_simd.h"
# ifndef _M_ARM64
# include <arm_neon.h>
# endif
#endif
#if (CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "adv_simd.h"
# include "ppc_simd.h"
#endif
// Squash MS LNK4221 and libtool warnings
extern const char SIMON64_SIMD_FNAME[] = __FILE__;
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::vec_swap; // SunCC
// *************************** ARM NEON ************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
template <class T>
inline T UnpackHigh32(const T& a, const T& b)
{
const uint32x2_t x(vget_high_u32((uint32x4_t)a));
const uint32x2_t y(vget_high_u32((uint32x4_t)b));
const uint32x2x2_t r = vzip_u32(x, y);
return (T)vcombine_u32(r.val[0], r.val[1]);
}
template <class T>
inline T UnpackLow32(const T& a, const T& b)
{
const uint32x2_t x(vget_low_u32((uint32x4_t)a));
const uint32x2_t y(vget_low_u32((uint32x4_t)b));
const uint32x2x2_t r = vzip_u32(x, y);
return (T)vcombine_u32(r.val[0], r.val[1]);
}
template <unsigned int R>
inline uint32x4_t RotateLeft32(const uint32x4_t& val)
{
const uint32x4_t a(vshlq_n_u32(val, R));
const uint32x4_t b(vshrq_n_u32(val, 32 - R));
return vorrq_u32(a, b);
}
template <unsigned int R>
inline uint32x4_t RotateRight32(const uint32x4_t& val)
{
const uint32x4_t a(vshlq_n_u32(val, 32 - R));
const uint32x4_t b(vshrq_n_u32(val, R));
return vorrq_u32(a, b);
}
#if defined(__aarch32__) || defined(__aarch64__)
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint32x4_t RotateLeft32<8>(const uint32x4_t& val)
{
const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint32x4_t RotateRight32<8>(const uint32x4_t& val)
{
const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,14,12 };
const uint8x16_t mask = vld1q_u8(maskb);
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
}
#endif
inline uint32x4_t SIMON64_f(const uint32x4_t& val)
{
return veorq_u32(RotateLeft32<2>(val),
vandq_u32(RotateLeft32<1>(val), RotateLeft32<8>(val)));
}
inline void SIMON64_Enc_Block(uint32x4_t &block1, uint32x4_t &block0,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
const uint32x4_t rk = vld1q_dup_u32(subkeys+rounds-1);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk);
std::swap(x1, y1);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
}
inline void SIMON64_Dec_Block(uint32x4_t &block0, uint32x4_t &block1,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
if (rounds & 1)
{
std::swap(x1, y1);
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
}
inline void SIMON64_Enc_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
uint32x4_t x2 = vuzpq_u32(block2, block3).val[1];
uint32x4_t y2 = vuzpq_u32(block2, block3).val[0];
uint32x4_t x3 = vuzpq_u32(block4, block5).val[1];
uint32x4_t y3 = vuzpq_u32(block4, block5).val[0];
for (int i = 0; i < static_cast<int>(rounds & ~1) - 1; i += 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk1);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2);
x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk2);
x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk);
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
block2 = UnpackLow32(y2, x2);
block3 = UnpackHigh32(y2, x2);
block4 = UnpackLow32(y3, x3);
block5 = UnpackHigh32(y3, x3);
}
inline void SIMON64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
uint32x4_t x2 = vuzpq_u32(block2, block3).val[1];
uint32x4_t y2 = vuzpq_u32(block2, block3).val[0];
uint32x4_t x3 = vuzpq_u32(block4, block5).val[1];
uint32x4_t y3 = vuzpq_u32(block4, block5).val[0];
if (rounds & 1)
{
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1));
y2 = veorq_u32(veorq_u32(y2, rk), SIMON64_f(x2));
y3 = veorq_u32(veorq_u32(y3, rk), SIMON64_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys + i + 1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1);
x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk1);
x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys + i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk2);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk2);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
block2 = UnpackLow32(y2, x2);
block3 = UnpackHigh32(y2, x2);
block4 = UnpackLow32(y3, x3);
block5 = UnpackHigh32(y3, x3);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSE41_AVAILABLE)
inline void Swap128(__m128i& a,__m128i& b)
{
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
// __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
// SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
vec_swap(a, b);
#else
std::swap(a, b);
#endif
}
template <unsigned int R>
inline __m128i RotateLeft32(const __m128i& val)
{
#if defined(__XOP__)
return _mm_roti_epi32(val, R);
#else
return _mm_or_si128(
_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
#endif
}
template <unsigned int R>
inline __m128i RotateRight32(const __m128i& val)
{
#if defined(__XOP__)
return _mm_roti_epi32(val, 32-R);
#else
return _mm_or_si128(
_mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R));
#endif
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
__m128i RotateLeft32<8>(const __m128i& val)
{
#if defined(__XOP__)
return _mm_roti_epi32(val, 8);
#else
const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
return _mm_shuffle_epi8(val, mask);
#endif
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
__m128i RotateRight32<8>(const __m128i& val)
{
#if defined(__XOP__)
return _mm_roti_epi32(val, 32-8);
#else
const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1);
return _mm_shuffle_epi8(val, mask);
#endif
}
inline __m128i SIMON64_f(const __m128i& v)
{
return _mm_xor_si128(RotateLeft32<2>(v),
_mm_and_si128(RotateLeft32<1>(v), RotateLeft32<8>(v)));
}
inline void SIMON64_Enc_Block(__m128i &block0, __m128i &block1,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk);
Swap128(x1, y1);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
}
inline void SIMON64_Dec_Block(__m128i &block0, __m128i &block1,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
if (rounds & 1)
{
Swap128(x1, y1);
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
}
inline void SIMON64_Enc_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
const __m128 t2 = _mm_castsi128_ps(block2);
const __m128 t3 = _mm_castsi128_ps(block3);
__m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1)));
__m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0)));
const __m128 t4 = _mm_castsi128_ps(block4);
const __m128 t5 = _mm_castsi128_ps(block5);
__m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1)));
__m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0)));
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk1);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk2);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk);
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
block2 = _mm_unpacklo_epi32(y2, x2);
block3 = _mm_unpackhi_epi32(y2, x2);
block4 = _mm_unpacklo_epi32(y3, x3);
block5 = _mm_unpackhi_epi32(y3, x3);
}
inline void SIMON64_Dec_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word32 *subkeys, unsigned int rounds)
{
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
const __m128 t2 = _mm_castsi128_ps(block2);
const __m128 t3 = _mm_castsi128_ps(block3);
__m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1)));
__m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0)));
const __m128 t4 = _mm_castsi128_ps(block4);
const __m128 t5 = _mm_castsi128_ps(block5);
__m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1)));
__m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0)));
if (rounds & 1)
{
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1));
y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON64_f(x2));
y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON64_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk1);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk2);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk2);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
block2 = _mm_unpacklo_epi32(y2, x2);
block3 = _mm_unpackhi_epi32(y2, x2);
block4 = _mm_unpacklo_epi32(y3, x3);
block5 = _mm_unpackhi_epi32(y3, x3);
}
#endif // CRYPTOPP_SSE41_AVAILABLE
// ***************************** Altivec ***************************** //
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
using CryptoPP::uint8x16_p;
using CryptoPP::uint32x4_p;
using CryptoPP::VecAnd;
using CryptoPP::VecXor;
using CryptoPP::VecLoad;
using CryptoPP::VecLoadBE;
using CryptoPP::VecPermute;
// Rotate left by bit count
template<unsigned int C>
inline uint32x4_p RotateLeft32(const uint32x4_p val)
{
const uint32x4_p m = {C, C, C, C};
return vec_rl(val, m);
}
// Rotate right by bit count
template<unsigned int C>
inline uint32x4_p RotateRight32(const uint32x4_p val)
{
const uint32x4_p m = {32-C, 32-C, 32-C, 32-C};
return vec_rl(val, m);
}
inline uint32x4_p SIMON64_f(const uint32x4_p val)
{
return VecXor(RotateLeft32<2>(val),
VecAnd(RotateLeft32<1>(val), RotateLeft32<8>(val)));
}
inline void SIMON64_Enc_Block(uint32x4_p &block0, uint32x4_p &block1,
const word32 *subkeys, unsigned int rounds)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
#else
const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
#endif
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_p x1 = VecPermute(block0, block1, m1);
uint32x4_p y1 = VecPermute(block0, block1, m2);
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk1 = vec_splats(subkeys[i]);
const uint32x4_p rk2 = vec_splats(subkeys[i+1]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk1 = VecLoad(subkeys+i);
uint32x4_p rk2 = VecLoad(subkeys+i+1);
rk1 = VecPermute(rk1, rk1, m);
rk2 = VecPermute(rk2, rk2, m);
#endif
y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk1);
x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk = vec_splats(subkeys[rounds-1]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk = VecLoad(subkeys+rounds-1);
rk = VecPermute(rk, rk, m);
#endif
y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk);
std::swap(x1, y1);
}
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4};
const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12};
#else
const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20};
const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28};
#endif
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = (uint32x4_p)VecPermute(x1, y1, m3);
block1 = (uint32x4_p)VecPermute(x1, y1, m4);
}
inline void SIMON64_Dec_Block(uint32x4_p &block0, uint32x4_p &block1,
const word32 *subkeys, unsigned int rounds)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
#else
const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
#endif
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_p x1 = VecPermute(block0, block1, m1);
uint32x4_p y1 = VecPermute(block0, block1, m2);
if (rounds & 1)
{
std::swap(x1, y1);
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk = vec_splats(subkeys[rounds-1]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk = VecLoad(subkeys+rounds-1);
rk = VecPermute(rk, rk, m);
#endif
y1 = VecXor(VecXor(y1, rk), SIMON64_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk1 = vec_splats(subkeys[i+1]);
const uint32x4_p rk2 = vec_splats(subkeys[i]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk1 = VecLoad(subkeys+i+1);
uint32x4_p rk2 = VecLoad(subkeys+i);
rk1 = VecPermute(rk1, rk1, m);
rk2 = VecPermute(rk2, rk2, m);
#endif
x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk1);
y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk2);
}
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4};
const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12};
#else
const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20};
const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28};
#endif
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = (uint32x4_p)VecPermute(x1, y1, m3);
block1 = (uint32x4_p)VecPermute(x1, y1, m4);
}
inline void SIMON64_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
#else
const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
#endif
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint32x4_p x1 = (uint32x4_p)VecPermute(block0, block1, m1);
uint32x4_p y1 = (uint32x4_p)VecPermute(block0, block1, m2);
uint32x4_p x2 = (uint32x4_p)VecPermute(block2, block3, m1);
uint32x4_p y2 = (uint32x4_p)VecPermute(block2, block3, m2);
uint32x4_p x3 = (uint32x4_p)VecPermute(block4, block5, m1);
uint32x4_p y3 = (uint32x4_p)VecPermute(block4, block5, m2);
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk1 = vec_splats(subkeys[i]);
const uint32x4_p rk2 = vec_splats(subkeys[i+1]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk1 = VecLoad(subkeys+i);
uint32x4_p rk2 = VecLoad(subkeys+i+1);
rk1 = VecPermute(rk1, rk1, m);
rk2 = VecPermute(rk2, rk2, m);
#endif
y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk1);
y2 = VecXor(VecXor(y2, SIMON64_f(x2)), rk1);
y3 = VecXor(VecXor(y3, SIMON64_f(x3)), rk1);
x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk2);
x2 = VecXor(VecXor(x2, SIMON64_f(y2)), rk2);
x3 = VecXor(VecXor(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk = vec_splats(subkeys[rounds-1]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk = VecLoad(subkeys+rounds-1);
rk = VecPermute(rk, rk, m);
#endif
y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk);
y2 = VecXor(VecXor(y2, SIMON64_f(x2)), rk);
y3 = VecXor(VecXor(y3, SIMON64_f(x3)), rk);
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
}
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4};
const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12};
#else
const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20};
const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28};
#endif
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = (uint32x4_p)VecPermute(x1, y1, m3);
block1 = (uint32x4_p)VecPermute(x1, y1, m4);
block2 = (uint32x4_p)VecPermute(x2, y2, m3);
block3 = (uint32x4_p)VecPermute(x2, y2, m4);
block4 = (uint32x4_p)VecPermute(x3, y3, m3);
block5 = (uint32x4_p)VecPermute(x3, y3, m4);
}
inline void SIMON64_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
#else
const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24};
const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28};
#endif
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint32x4_p x1 = (uint32x4_p)VecPermute(block0, block1, m1);
uint32x4_p y1 = (uint32x4_p)VecPermute(block0, block1, m2);
uint32x4_p x2 = (uint32x4_p)VecPermute(block2, block3, m1);
uint32x4_p y2 = (uint32x4_p)VecPermute(block2, block3, m2);
uint32x4_p x3 = (uint32x4_p)VecPermute(block4, block5, m1);
uint32x4_p y3 = (uint32x4_p)VecPermute(block4, block5, m2);
if (rounds & 1)
{
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk = vec_splats(subkeys[rounds-1]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk = VecLoad(subkeys+rounds-1);
rk = VecPermute(rk, rk, m);
#endif
y1 = VecXor(VecXor(y1, rk), SIMON64_f(x1));
y2 = VecXor(VecXor(y2, rk), SIMON64_f(x2));
y3 = VecXor(VecXor(y3, rk), SIMON64_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
#if CRYPTOPP_POWER8_AVAILABLE
const uint32x4_p rk1 = vec_splats(subkeys[i+1]);
const uint32x4_p rk2 = vec_splats(subkeys[i]);
#else
const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3};
uint32x4_p rk1 = VecLoad(subkeys+i+1);
uint32x4_p rk2 = VecLoad(subkeys+i);
rk1 = VecPermute(rk1, rk1, m);
rk2 = VecPermute(rk2, rk2, m);
#endif
x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk1);
x2 = VecXor(VecXor(x2, SIMON64_f(y2)), rk1);
x3 = VecXor(VecXor(x3, SIMON64_f(y3)), rk1);
y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk2);
y2 = VecXor(VecXor(y2, SIMON64_f(x2)), rk2);
y3 = VecXor(VecXor(y3, SIMON64_f(x3)), rk2);
}
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4};
const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12};
#else
const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20};
const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28};
#endif
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = (uint32x4_p)VecPermute(x1, y1, m3);
block1 = (uint32x4_p)VecPermute(x1, y1, m4);
block2 = (uint32x4_p)VecPermute(x2, y2, m3);
block3 = (uint32x4_p)VecPermute(x2, y2, m4);
block4 = (uint32x4_p)VecPermute(x3, y3, m3);
block5 = (uint32x4_p)VecPermute(x3, y3, m4);
}
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
ANONYMOUS_NAMESPACE_END
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(CryptoPP)
// *************************** ARM NEON **************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSE41_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif
// ***************************** Altivec ***************************** //
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_ALTIVEC(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_ALTIVEC(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_ALTIVEC(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_ALTIVEC(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif
NAMESPACE_END