libcryfs/vendor/cryptopp/vendor_cryptopp/ppc-simd.h
2018-05-20 19:21:59 -07:00

554 lines
18 KiB
C++

// ppc-simd.h - written and placed in public domain by Jeffrey Walton
/// \file ppc-simd.h
/// \brief Support functions for PowerPC and vector operations
/// \details This header provides an agnostic interface into GCC and
/// IBM XL C/C++ compilers modulo their different built-in functions
/// for accessing vector intructions.
/// \details The abstractions are necesssary to support back to GCC 4.8.
/// GCC 4.8 and 4.9 are still popular, and they are the default
/// compiler for GCC112, GCC118 and others on the compile farm. Older
/// IBM XL C/C++ compilers also experience it due to lack of
/// <tt>vec_xl_be</tt> support on some platforms. Modern compilers
/// provide best support and don't need many of the little hacks below.
/// \since Crypto++ 6.0
#ifndef CRYPTOPP_PPC_CRYPTO_H
#define CRYPTOPP_PPC_CRYPTO_H
#include "config.h"
#include "misc.h"
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
# include <altivec.h>
# undef vector
# undef pixel
# undef bool
#endif
NAMESPACE_BEGIN(CryptoPP)
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
typedef __vector unsigned char uint8x16_p;
typedef __vector unsigned short uint16x8_p;
typedef __vector unsigned int uint32x4_p;
#if defined(CRYPTOPP_POWER8_AVAILABLE)
typedef __vector unsigned long long uint64x2_p;
#endif
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE) && !defined(CRYPTOPP_POWER7_AVAILABLE)
inline uint32x4_p VectorLoad(const byte src[16])
{
uint8x16_p data;
if (IsAlignedOn(src, 16))
{
data = vec_ld(0, src);
}
else
{
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
const uint8x16_p perm = vec_lvsl(0, src);
const uint8x16_p low = vec_ld(0, src);
const uint8x16_p high = vec_ld(15, src);
data = vec_perm(low, high, perm);
}
#if defined(CRYPTOPP_BIG_ENDIAN)
return (uint32x4_p)data;
#else
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
return (uint32x4_p)vec_perm(data, data, mask);
#endif
}
inline void VectorStore(const uint32x4_p data, byte dest[16])
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
const uint8x16_p t1 = (uint8x16_p)vec_perm(data, data, mask);
#else
const uint8x16_p t1 = (uint8x16_p)data;
#endif
if (IsAlignedOn(dest, 16))
{
vec_st(t1, 0, dest);
}
else
{
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
const uint8x16_p t2 = vec_perm(t1, t1, vec_lvsr(0, dest));
vec_ste((uint8x16_p) t2, 0, (unsigned char*) dest);
vec_ste((uint16x8_p) t2, 1, (unsigned short*)dest);
vec_ste((uint32x4_p) t2, 3, (unsigned int*) dest);
vec_ste((uint32x4_p) t2, 4, (unsigned int*) dest);
vec_ste((uint32x4_p) t2, 8, (unsigned int*) dest);
vec_ste((uint32x4_p) t2, 12, (unsigned int*) dest);
vec_ste((uint16x8_p) t2, 14, (unsigned short*)dest);
vec_ste((uint8x16_p) t2, 15, (unsigned char*) dest);
}
}
inline uint32x4_p VectorXor(const uint32x4_p vec1, const uint32x4_p vec2)
{
return vec_xor(vec1, vec2);
}
inline uint32x4_p VectorAdd(const uint32x4_p vec1, const uint32x4_p vec2)
{
return vec_add(vec1, vec2);
}
#endif
#if defined(CRYPTOPP_POWER7_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Reverse a 16-byte array
/// \param src the byte array
/// \details ReverseByteArrayLE reverses a 16-byte array on a little endian
/// system. It does nothing on a big endian system.
/// \since Crypto++ 6.0
inline void ReverseByteArrayLE(byte src[16])
{
#if defined(CRYPTOPP_XLC_VERSION) && defined(CRYPTOPP_LITTLE_ENDIAN)
vec_st(vec_reve(vec_ld(0, src)), 0, src);
#elif defined(CRYPTOPP_LITTLE_ENDIAN)
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
const uint8x16_p zero = {0};
vec_vsx_st(vec_perm(vec_vsx_ld(0, src), zero, mask), 0, src);
#endif
}
/// \brief Reverse a vector
/// \tparam T vector type
/// \param src the vector
/// \details Reverse() endian swaps the bytes in a vector
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
template <class T>
inline T Reverse(const T& src)
{
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
return vec_perm(src, src, mask);
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in big endian format from a byte array.
/// VectorLoadBE will swap endianess on little endian systems.
/// \note VectorLoadBE() does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadBE(const uint8_t src[16])
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint32x4_p)vec_xl_be(0, src);
#else
# if defined(CRYPTOPP_LITTLE_ENDIAN)
return (uint32x4_p)Reverse(vec_vsx_ld(0, src));
# else
return (uint32x4_p)vec_vsx_ld(0, src);
# endif
#endif
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector in big endian format from a byte array.
/// VectorLoadBE will swap endianess on little endian systems.
/// \note VectorLoadBE does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadBE(int off, const uint8_t src[16])
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint32x4_p)vec_xl_be(off, src);
#else
# if defined(CRYPTOPP_LITTLE_ENDIAN)
return (uint32x4_p)Reverse(vec_vsx_ld(off, src));
# else
return (uint32x4_p)vec_vsx_ld(off, src);
# endif
#endif
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in big endian format from a byte array.
/// VectorLoad will swap endianess on little endian systems.
/// \note VectorLoad does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad(const byte src[16])
{
return (uint32x4_p)VectorLoadBE(src);
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector in big endian format from a byte array.
/// VectorLoad will swap endianess on little endian systems.
/// \note VectorLoad does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad(int off, const byte src[16])
{
return (uint32x4_p)VectorLoadBE(off, src);
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector from a byte array.
/// VectorLoadKey does not swap endianess on little endian systems.
/// \note VectorLoadKey does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadKey(const byte src[16])
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint32x4_p)vec_xl(0, src);
#else
return (uint32x4_p)vec_vsx_ld(0, src);
#endif
}
/// \brief Loads a vector from a 32-bit word array
/// \param src the 32-bit word array
/// \details Loads a vector from a 32-bit word array.
/// VectorLoadKey does not swap endianess on little endian systems.
/// \note VectorLoadKey does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadKey(const word32 src[4])
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint32x4_p)vec_xl(0, src);
#else
return (uint32x4_p)vec_vsx_ld(0, src);
#endif
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector from a byte array.
/// VectorLoadKey does not swap endianess on little endian systems.
/// \note VectorLoadKey does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadKey(int off, const byte src[16])
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint32x4_p)vec_xl(off, src);
#else
return (uint32x4_p)vec_vsx_ld(off, src);
#endif
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param src the vector
/// \param dest the byte array
/// \details Stores a vector in big endian format to a byte array.
/// VectorStoreBE will swap endianess on little endian systems.
/// \note VectorStoreBE does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
template <class T>
inline void VectorStoreBE(const T& src, uint8_t dest[16])
{
#if defined(CRYPTOPP_XLC_VERSION)
vec_xst_be((uint8x16_p)src, 0, dest);
#else
# if defined(CRYPTOPP_LITTLE_ENDIAN)
vec_vsx_st(Reverse((uint8x16_p)src), 0, dest);
# else
vec_vsx_st((uint8x16_p)src, 0, dest);
# endif
#endif
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param src the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details Stores a vector in big endian format to a byte array.
/// VectorStoreBE will swap endianess on little endian systems.
/// \note VectorStoreBE does not require an aligned array.
/// \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey()
/// \since Crypto++ 6.0
template <class T>
inline void VectorStoreBE(const T& src, int off, uint8_t dest[16])
{
#if defined(CRYPTOPP_XLC_VERSION)
vec_xst_be((uint8x16_p)src, off, dest);
#else
# if defined(CRYPTOPP_LITTLE_ENDIAN)
vec_vsx_st(Reverse((uint8x16_p)src), off, dest);
# else
vec_vsx_st((uint8x16_p)src, off, dest);
# endif
#endif
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param src the vector
/// \param dest the byte array
/// \details Stores a vector in big endian format to a byte array.
/// VectorStore will swap endianess on little endian systems.
/// \note VectorStore does not require an aligned array.
/// \since Crypto++ 6.0
template<class T>
inline void VectorStore(const T& src, byte dest[16])
{
// Do not call VectorStoreBE. It slows us down by about 0.5 cpb on LE.
#if defined(CRYPTOPP_XLC_VERSION)
vec_xst_be((uint8x16_p)src, 0, dest);
#else
# if defined(CRYPTOPP_LITTLE_ENDIAN)
vec_vsx_st(Reverse((uint8x16_p)src), 0, dest);
# else
vec_vsx_st((uint8x16_p)src, 0, dest);
# endif
#endif
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param src the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details Stores a vector in big endian format to a byte array.
/// VectorStore will swap endianess on little endian systems.
/// \note VectorStore does not require an aligned array.
/// \since Crypto++ 6.0
template<class T>
inline void VectorStore(const T& src, int off, byte dest[16])
{
// Do not call VectorStoreBE. It slows us down by about 0.5 cpb on LE.
#if defined(CRYPTOPP_XLC_VERSION)
vec_xst_be((uint8x16_p)src, off, dest);
#else
# if defined(CRYPTOPP_LITTLE_ENDIAN)
vec_vsx_st(Reverse((uint8x16_p)src), off, dest);
# else
vec_vsx_st((uint8x16_p)src, off, dest);
# endif
#endif
}
/// \brief Permutes two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \param mask vector mask
/// \details VectorPermute returns a new vector from vec1 and vec2
/// based on mask. mask is an uint8x16_p type vector. The return
/// vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorPermute(const T1& vec1, const T1& vec2, const T2& mask)
{
return (T1)vec_perm(vec1, vec2, (uint8x16_p)mask);
}
/// \brief XOR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VectorXor returns a new vector from vec1 and vec2. The return
/// vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorXor(const T1& vec1, const T2& vec2)
{
return (T1)vec_xor(vec1, (T1)vec2);
}
/// \brief Add two vector
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VectorAdd returns a new vector from vec1 and vec2.
/// vec2 is cast to the same type as vec1. The return vector
/// is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorAdd(const T1& vec1, const T2& vec2)
{
return (T1)vec_add(vec1, (T1)vec2);
}
/// \brief Shift two vectors left
/// \tparam C shift byte count
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VectorShiftLeft() concatenates vec1 and vec2 and returns a
/// new vector after shifting the concatenation by the specified number
/// of bytes. Both vec1 and vec2 are cast to uint8x16_p. The return
/// vector is the same type as vec1.
/// \details On big endian machines VectorShiftLeft() is <tt>vec_sld(a, b,
/// c)</tt>. On little endian machines VectorShiftLeft() is translated to
/// <tt>vec_sld(b, a, 16-c)</tt>. You should always call the function as
/// if on a big endian machine as shown below.
/// <pre>
/// uint8x16_p r0 = {0};
/// uint8x16_p r1 = VectorLoad(ptr);
/// uint8x16_p r5 = VectorShiftLeft<12>(r0, r1);
/// </pre>
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
/// endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T1, class T2>
inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
return (T1)vec_sld((uint8x16_p)vec2, (uint8x16_p)vec1, 16-C);
#else
return (T1)vec_sld((uint8x16_p)vec1, (uint8x16_p)vec2, C);
#endif
}
#endif // CRYPTOPP_POWER7_AVAILABLE
#if defined(CRYPTOPP_POWER8_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief One round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorEncrypt performs one round of AES encryption of state
/// using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorEncrypt(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief Final round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorEncryptLast performs the final round of AES encryption
/// of state using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorEncryptLast(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief One round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorDecrypt performs one round of AES decryption of state
/// using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorDecrypt(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief Final round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorDecryptLast performs the final round of AES decryption
/// of state using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorDecryptLast(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief SHA256 Sigma functions
/// \tparam func function
/// \tparam subfunc sub-function
/// \tparam T vector type
/// \param vec the block to transform
/// \details VectorSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on
/// func and subfunc. The return vector is the same type as vec.
/// \since Crypto++ 6.0
template <int func, int subfunc, class T>
inline T VectorSHA256(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmaw((uint32x4_p)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmaw((uint32x4_p)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief SHA512 Sigma functions
/// \tparam func function
/// \tparam subfunc sub-function
/// \tparam T vector type
/// \param vec the block to transform
/// \details VectorSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on
/// func and subfunc. The return vector is the same type as vec.
/// \since Crypto++ 6.0
template <int func, int subfunc, class T>
inline T VectorSHA512(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmad((uint64x2_p)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmad((uint64x2_p)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
#endif // CRYPTOPP_POWER8_AVAILABLE
NAMESPACE_END
#endif // CRYPTOPP_PPC_CRYPTO_H