libcryfs/test/implementations/onblocks/datanodestore/DataLeafNodeTest.cpp
2015-02-17 00:40:34 +01:00

327 lines
12 KiB
C++

#include "../../../../implementations/onblocks/datanodestore/DataLeafNode.h"
#include "../../../../implementations/onblocks/datanodestore/DataInnerNode.h"
#include "../../../../implementations/onblocks/datanodestore/DataNodeStore.h"
#include <google/gtest/gtest.h>
#include "messmer/cpp-utils/pointer.h"
#include "messmer/blockstore/implementations/testfake/FakeBlockStore.h"
#include "messmer/blockstore/implementations/testfake/FakeBlock.h"
#include "messmer/blobstore/implementations/onblocks/BlobStoreOnBlocks.h"
#include "../../../testutils/DataBlockFixture.h"
using ::testing::Test;
using ::testing::WithParamInterface;
using ::testing::Values;
using ::testing::Combine;
using std::unique_ptr;
using std::make_unique;
using std::string;
using cpputils::dynamic_pointer_move;
using blockstore::BlockStore;
using blockstore::Data;
using blockstore::Key;
using blockstore::testfake::FakeBlockStore;
using namespace blobstore;
using namespace blobstore::onblocks;
using namespace blobstore::onblocks::datanodestore;
#define EXPECT_IS_PTR_TYPE(Type, ptr) EXPECT_NE(nullptr, dynamic_cast<Type*>(ptr)) << "Given pointer cannot be cast to the given type"
class DataLeafNodeTest: public Test {
public:
DataLeafNodeTest():
ZEROES(DataLeafNode::MAX_STORED_BYTES),
randomData(DataLeafNode::MAX_STORED_BYTES),
_blockStore(make_unique<FakeBlockStore>()),
blockStore(_blockStore.get()),
nodeStore(make_unique<DataNodeStore>(std::move(_blockStore))),
leaf(nodeStore->createNewLeafNode()) {
ZEROES.FillWithZeroes();
DataBlockFixture dataFixture(DataLeafNode::MAX_STORED_BYTES);
std::memcpy(randomData.data(), dataFixture.data(), randomData.size());
}
Key WriteDataToNewLeafBlockAndReturnKey() {
auto newleaf = nodeStore->createNewLeafNode();
newleaf->resize(randomData.size());
std::memcpy(newleaf->data(), randomData.data(), randomData.size());
return newleaf->key();
}
void FillLeafBlockWithData() {
FillLeafBlockWithData(leaf.get());
}
void FillLeafBlockWithData(DataLeafNode *leaf_to_fill) {
leaf_to_fill->resize(randomData.size());
std::memcpy(leaf_to_fill->data(), randomData.data(), randomData.size());
}
unique_ptr<DataLeafNode> LoadLeafNode(const Key &key) {
auto leaf = nodeStore->load(key);
return dynamic_pointer_move<DataLeafNode>(leaf);
}
void ResizeLeaf(const Key &key, size_t size) {
auto leaf = LoadLeafNode(key);
EXPECT_IS_PTR_TYPE(DataLeafNode, leaf.get());
leaf->resize(size);
}
Key CreateLeafWithDataConvertItToInnerNodeAndReturnKey() {
auto leaf = nodeStore->createNewLeafNode();
FillLeafBlockWithData(leaf.get());
auto child = nodeStore->createNewLeafNode();
unique_ptr<DataInnerNode> converted = DataNode::convertToNewInnerNode(std::move(leaf), *child);
return converted->key();
}
unique_ptr<DataLeafNode> CopyLeafNode(const DataLeafNode &node) {
auto copied = nodeStore->createNewNodeAsCopyFrom(node);
return dynamic_pointer_move<DataLeafNode>(copied);
}
Data ZEROES;
Data randomData;
unique_ptr<BlockStore> _blockStore;
BlockStore *blockStore;
unique_ptr<DataNodeStore> nodeStore;
unique_ptr<DataLeafNode> leaf;
};
TEST_F(DataLeafNodeTest, InitializesCorrectly) {
leaf->InitializeNewNode();
EXPECT_EQ(0u, leaf->numBytes());
}
TEST_F(DataLeafNodeTest, ReinitializesCorrectly) {
leaf->resize(5);
leaf->InitializeNewNode();
EXPECT_EQ(0u, leaf->numBytes());
}
TEST_F(DataLeafNodeTest, ReadWrittenDataAfterReloadingBlock) {
Key key = WriteDataToNewLeafBlockAndReturnKey();
auto loaded = LoadLeafNode(key);
EXPECT_EQ(randomData.size(), loaded->numBytes());
EXPECT_EQ(0, std::memcmp(randomData.data(), loaded->data(), randomData.size()));
}
TEST_F(DataLeafNodeTest, NewLeafNodeHasSizeZero) {
EXPECT_EQ(0u, leaf->numBytes());
}
TEST_F(DataLeafNodeTest, NewLeafNodeHasSizeZero_AfterLoading) {
Key key = nodeStore->createNewLeafNode()->key();
auto leaf = LoadLeafNode(key);
EXPECT_EQ(0u, leaf->numBytes());
}
class DataLeafNodeSizeTest: public DataLeafNodeTest, public WithParamInterface<unsigned int> {
public:
Key CreateLeafResizeItAndReturnKey() {
auto leaf = nodeStore->createNewLeafNode();
leaf->resize(GetParam());
return leaf->key();
}
};
INSTANTIATE_TEST_CASE_P(DataLeafNodeSizeTest, DataLeafNodeSizeTest, Values(0, 1, 5, 16, 32, 512, DataLeafNode::MAX_STORED_BYTES));
TEST_P(DataLeafNodeSizeTest, ResizeNode_ReadSizeImmediately) {
leaf->resize(GetParam());
EXPECT_EQ(GetParam(), leaf->numBytes());
}
TEST_P(DataLeafNodeSizeTest, ResizeNode_ReadSizeAfterLoading) {
Key key = CreateLeafResizeItAndReturnKey();
auto leaf = LoadLeafNode(key);
EXPECT_EQ(GetParam(), leaf->numBytes());
}
TEST_F(DataLeafNodeTest, SpaceIsZeroFilledWhenGrowing) {
leaf->resize(randomData.size());
EXPECT_EQ(0, std::memcmp(ZEROES.data(), leaf->data(), randomData.size()));
}
TEST_F(DataLeafNodeTest, SpaceGetsZeroFilledWhenShrinkingAndRegrowing) {
FillLeafBlockWithData();
// resize it smaller and then back to original size
uint32_t smaller_size = randomData.size() - 100;
leaf->resize(smaller_size);
leaf->resize(randomData.size());
//Check that the space was filled with zeroes
EXPECT_EQ(0, std::memcmp(ZEROES.data(), ((uint8_t*)leaf->data())+smaller_size, 100));
}
TEST_F(DataLeafNodeTest, DataGetsZeroFilledWhenShrinking) {
Key key = WriteDataToNewLeafBlockAndReturnKey();
uint32_t smaller_size = randomData.size() - 100;
{
//At first, we expect there to be random data in the underlying data block
auto block = blockStore->load(key);
EXPECT_EQ(0, std::memcmp((char*)randomData.data()+smaller_size, (uint8_t*)block->data()+DataNodeView::HEADERSIZE_BYTES+smaller_size, 100));
}
//After shrinking, we expect there to be zeroes in the underlying data block
ResizeLeaf(key, smaller_size);
{
auto block = blockStore->load(key);
EXPECT_EQ(0, std::memcmp(ZEROES.data(), (uint8_t*)block->data()+DataNodeView::HEADERSIZE_BYTES+smaller_size, 100));
}
}
TEST_F(DataLeafNodeTest, ShrinkingDoesntDestroyValidDataRegion) {
FillLeafBlockWithData();
uint32_t smaller_size = randomData.size() - 100;
leaf->resize(smaller_size);
//Check that the remaining data region is unchanged
EXPECT_EQ(0, std::memcmp(randomData.data(), leaf->data(), smaller_size));
}
TEST_F(DataLeafNodeTest, ConvertToInternalNode) {
auto child = nodeStore->createNewLeafNode();
Key leaf_key = leaf->key();
unique_ptr<DataInnerNode> converted = DataNode::convertToNewInnerNode(std::move(leaf), *child);
EXPECT_EQ(1u, converted->numChildren());
EXPECT_EQ(child->key(), converted->getChild(0)->key());
EXPECT_EQ(leaf_key, converted->key());
}
TEST_F(DataLeafNodeTest, ConvertToInternalNodeZeroesOutChildrenRegion) {
Key key = CreateLeafWithDataConvertItToInnerNodeAndReturnKey();
auto block = blockStore->load(key);
EXPECT_EQ(0, std::memcmp(ZEROES.data(), (uint8_t*)block->data()+DataNodeView::HEADERSIZE_BYTES+sizeof(DataInnerNode::ChildEntry), DataLeafNode::MAX_STORED_BYTES-sizeof(DataInnerNode::ChildEntry)));
}
TEST_F(DataLeafNodeTest, CopyingCreatesANewLeaf) {
auto copied = CopyLeafNode(*leaf);
EXPECT_NE(leaf->key(), copied->key());
}
TEST_F(DataLeafNodeTest, CopyEmptyLeaf) {
auto copied = CopyLeafNode(*leaf);
EXPECT_EQ(leaf->numBytes(), copied->numBytes());
}
TEST_F(DataLeafNodeTest, CopyDataLeaf) {
FillLeafBlockWithData();
auto copied = CopyLeafNode(*leaf);
EXPECT_EQ(leaf->numBytes(), copied->numBytes());
EXPECT_EQ(0, std::memcmp(leaf->data(), copied->data(), leaf->numBytes()));
EXPECT_NE(leaf->data(), copied->data());
}
/* TODO
* The following test cases test reading/writing part of a leaf. This doesn't make much sense,
* since the new leaf abstraction doesn't offer read()/write() anymore, but direct data pointer access.
* However, these test cases might make sense wherever the read()/write() for a leaf will be implemented.
* In case they're not needed then, delete them.
struct DataRange {
DataRange(size_t leafsize_, off_t offset_, size_t count_): leafsize(leafsize_), offset(offset_), count(count_) {}
size_t leafsize;
off_t offset;
size_t count;
};
class DataLeafNodeDataTest: public DataLeafNodeTest, public WithParamInterface<DataRange> {
public:
Data foregroundData;
Data backgroundData;
DataLeafNodeDataTest(): foregroundData(GetParam().count), backgroundData(GetParam().leafsize) {
DataBlockFixture _foregroundData(GetParam().count);
DataBlockFixture _backgroundData(GetParam().leafsize);
std::memcpy(foregroundData.data(), _foregroundData.data(), foregroundData.size());
std::memcpy(backgroundData.data(), _backgroundData.data(), backgroundData.size());
}
void EXPECT_DATA_EQ(const Data &expected, const Data &actual) {
EXPECT_EQ(expected.size(), actual.size());
EXPECT_EQ(0, std::memcmp(expected.data(), actual.data(), expected.size()));
}
Key CreateLeafWriteToItAndReturnKey(const Data &to_write) {
auto newleaf = nodeStore->createNewLeafNode();
newleaf->resize(GetParam().leafsize);
newleaf->write(GetParam().offset, GetParam().count, to_write);
return newleaf->key();
}
void EXPECT_DATA_READS_AS(const Data &expected, const DataNode &leaf, off_t offset, size_t count) {
Data read(count);
leaf.read(offset, count, &read);
EXPECT_DATA_EQ(expected, read);
}
void EXPECT_DATA_READS_AS_OUTSIDE_OF(const Data &expected, const DataNode &leaf, off_t start, size_t count) {
Data begin(start);
Data end(GetParam().leafsize - count - start);
std::memcpy(begin.data(), expected.data(), start);
std::memcpy(end.data(), (uint8_t*)expected.data()+start+count, end.size());
EXPECT_DATA_READS_AS(begin, leaf, 0, start);
EXPECT_DATA_READS_AS(end, leaf, start + count, end.size());
}
void EXPECT_DATA_IS_ZEROES_OUTSIDE_OF(const DataNode &leaf, off_t start, size_t count) {
Data ZEROES(GetParam().leafsize);
ZEROES.FillWithZeroes();
EXPECT_DATA_READS_AS_OUTSIDE_OF(ZEROES, leaf, start, count);
}
};
INSTANTIATE_TEST_CASE_P(DataLeafNodeDataTest, DataLeafNodeDataTest, Values(
DataRange(DataLeafNode::MAX_STORED_BYTES, 0, DataLeafNode::MAX_STORED_BYTES), // full size leaf, access beginning to end
DataRange(DataLeafNode::MAX_STORED_BYTES, 100, DataLeafNode::MAX_STORED_BYTES-200), // full size leaf, access middle to middle
DataRange(DataLeafNode::MAX_STORED_BYTES, 0, DataLeafNode::MAX_STORED_BYTES-100), // full size leaf, access beginning to middle
DataRange(DataLeafNode::MAX_STORED_BYTES, 100, DataLeafNode::MAX_STORED_BYTES-100), // full size leaf, access middle to end
DataRange(DataLeafNode::MAX_STORED_BYTES-100, 0, DataLeafNode::MAX_STORED_BYTES-100), // non-full size leaf, access beginning to end
DataRange(DataLeafNode::MAX_STORED_BYTES-100, 100, DataLeafNode::MAX_STORED_BYTES-300), // non-full size leaf, access middle to middle
DataRange(DataLeafNode::MAX_STORED_BYTES-100, 0, DataLeafNode::MAX_STORED_BYTES-200), // non-full size leaf, access beginning to middle
DataRange(DataLeafNode::MAX_STORED_BYTES-100, 100, DataLeafNode::MAX_STORED_BYTES-200) // non-full size leaf, access middle to end
));
TEST_P(DataLeafNodeDataTest, WriteAndReadImmediately) {
leaf->resize(GetParam().leafsize);
leaf->write(GetParam().offset, GetParam().count, this->foregroundData);
EXPECT_DATA_READS_AS(this->foregroundData, *leaf, GetParam().offset, GetParam().count);
EXPECT_DATA_IS_ZEROES_OUTSIDE_OF(*leaf, GetParam().offset, GetParam().count);
}
TEST_P(DataLeafNodeDataTest, WriteAndReadAfterLoading) {
Key key = CreateLeafWriteToItAndReturnKey(this->foregroundData);
auto loaded_leaf = nodeStore->load(key);
EXPECT_DATA_READS_AS(this->foregroundData, *loaded_leaf, GetParam().offset, GetParam().count);
EXPECT_DATA_IS_ZEROES_OUTSIDE_OF(*loaded_leaf, GetParam().offset, GetParam().count);
}
TEST_P(DataLeafNodeDataTest, OverwriteAndRead) {
leaf->resize(GetParam().leafsize);
leaf->write(0, GetParam().leafsize, this->backgroundData);
leaf->write(GetParam().offset, GetParam().count, this->foregroundData);
EXPECT_DATA_READS_AS(this->foregroundData, *leaf, GetParam().offset, GetParam().count);
EXPECT_DATA_READS_AS_OUTSIDE_OF(this->backgroundData, *leaf, GetParam().offset, GetParam().count);
}
*/