Sebastian Messmer a44b6318e2 - Refactor math functions for reuse (and write test cases for them)
- Implemented BlobOnBlocks::read() and write(). Not tested yet.
2015-02-26 20:19:12 +01:00

209 lines
7.2 KiB
C++

#include "DataTree.h"
#include "../datanodestore/DataNodeStore.h"
#include "../datanodestore/DataInnerNode.h"
#include "../datanodestore/DataLeafNode.h"
#include "../utils/Math.h"
#include "impl/algorithms.h"
#include "messmer/cpp-utils/pointer.h"
#include "messmer/cpp-utils/optional_ownership_ptr.h"
#include <cmath>
using blockstore::Key;
using blobstore::onblocks::datanodestore::DataNodeStore;
using blobstore::onblocks::datanodestore::DataNode;
using blobstore::onblocks::datanodestore::DataInnerNode;
using blobstore::onblocks::datanodestore::DataLeafNode;
using blobstore::onblocks::datanodestore::DataNodeLayout;
using std::unique_ptr;
using std::dynamic_pointer_cast;
using std::function;
using cpputils::dynamic_pointer_move;
using cpputils::optional_ownership_ptr;
using cpputils::WithOwnership;
using cpputils::WithoutOwnership;
namespace blobstore {
namespace onblocks {
namespace datatreestore {
DataTree::DataTree(DataNodeStore *nodeStore, unique_ptr<DataNode> rootNode)
: _nodeStore(nodeStore), _rootNode(std::move(rootNode)) {
}
DataTree::~DataTree() {
}
void DataTree::removeLastDataLeaf() {
auto deletePosOrNull = algorithms::GetLowestRightBorderNodeWithMoreThanOneChildOrNull(_nodeStore, _rootNode.get());
assert(deletePosOrNull.get() != nullptr); //TODO Correct exception (tree has only one leaf, can't shrink it)
deleteLastChildSubtree(deletePosOrNull.get());
ifRootHasOnlyOneChildReplaceRootWithItsChild();
}
void DataTree::ifRootHasOnlyOneChildReplaceRootWithItsChild() {
DataInnerNode *rootNode = dynamic_cast<DataInnerNode*>(_rootNode.get());
assert(rootNode != nullptr);
if (rootNode->numChildren() == 1) {
auto child = _nodeStore->load(rootNode->getChild(0)->key());
_rootNode = _nodeStore->overwriteNodeWith(std::move(_rootNode), *child);
_nodeStore->remove(std::move(child));
}
}
void DataTree::deleteLastChildSubtree(DataInnerNode *node) {
auto lastChild = _nodeStore->load(node->LastChild()->key());
_nodeStore->removeSubtree(std::move(lastChild));
node->removeLastChild();
}
unique_ptr<DataLeafNode> DataTree::addDataLeaf() {
auto insertPosOrNull = algorithms::GetLowestInnerRightBorderNodeWithLessThanKChildrenOrNull(_nodeStore, _rootNode.get());
if (insertPosOrNull) {
return addDataLeafAt(insertPosOrNull.get());
} else {
return addDataLeafToFullTree();
}
}
unique_ptr<DataLeafNode> DataTree::addDataLeafAt(DataInnerNode *insertPos) {
auto new_leaf = _nodeStore->createNewLeafNode();
auto chain = createChainOfInnerNodes(insertPos->depth()-1, new_leaf.get());
insertPos->addChild(*chain);
return new_leaf;
}
optional_ownership_ptr<DataNode> DataTree::createChainOfInnerNodes(unsigned int num, DataLeafNode *leaf) {
optional_ownership_ptr<DataNode> chain = cpputils::WithoutOwnership<DataNode>(leaf);
for(unsigned int i=0; i<num; ++i) {
auto newnode = _nodeStore->createNewInnerNode(*chain);
chain = cpputils::WithOwnership<DataNode>(std::move(newnode));
}
return chain;
}
unique_ptr<DataLeafNode> DataTree::addDataLeafToFullTree() {
auto copyOfOldRoot = _nodeStore->createNewNodeAsCopyFrom(*_rootNode);
auto newRootNode = DataNode::convertToNewInnerNode(std::move(_rootNode), *copyOfOldRoot);
auto newLeaf = addDataLeafAt(newRootNode.get());
_rootNode = std::move(newRootNode);
return newLeaf;
}
const Key &DataTree::key() const {
return _rootNode->key();
}
void DataTree::flush() const {
_rootNode->flush();
}
unique_ptr<DataNode> DataTree::releaseRootNode() {
return std::move(_rootNode);
}
void DataTree::traverseLeaves(uint32_t beginIndex, uint32_t endIndex, function<void (DataLeafNode*, uint32_t)> func) {
assert(beginIndex <= endIndex);
//TODO assert(beginIndex <= numLeaves());
//TODO assert(endIndex <= numLeaves());
traverseLeaves(_rootNode.get(), 0, beginIndex, endIndex, func);
}
void DataTree::traverseLeaves(DataNode *root, uint32_t leafOffset, uint32_t beginIndex, uint32_t endIndex, function<void (DataLeafNode*, uint32_t)> func) {
DataLeafNode *leaf = dynamic_cast<DataLeafNode*>(root);
if (leaf != nullptr) {
assert(beginIndex <= 1 && endIndex <= 1);
if (beginIndex == 0 && endIndex == 1) {
func(leaf, leafOffset);
}
return;
}
DataInnerNode *inner = dynamic_cast<DataInnerNode*>(root);
uint32_t leavesPerChild = leavesPerFullChild(*inner);
uint32_t beginChild = beginIndex/leavesPerChild;
uint32_t endChild = utils::ceilDivision(endIndex, leavesPerChild);
for (uint32_t childIndex = beginChild; childIndex < endChild; ++childIndex) {
uint32_t childOffset = childIndex * leavesPerChild;
uint32_t localBeginIndex = utils::maxZeroSubtraction(beginIndex, childOffset);
uint32_t localEndIndex = std::min(leavesPerChild, endIndex - childOffset);
auto child = _nodeStore->load(inner->getChild(childIndex)->key());
traverseLeaves(child.get(), leafOffset + childOffset, localBeginIndex, localEndIndex, func);
}
}
uint32_t DataTree::leavesPerFullChild(const DataInnerNode &root) const {
return utils::intPow(_nodeStore->layout().maxChildrenPerInnerNode(), root.depth()-1);
}
uint64_t DataTree::numStoredBytes() const {
return numStoredBytes(*_rootNode);
}
uint64_t DataTree::numStoredBytes(const DataNode &root) const {
const DataLeafNode *leaf = dynamic_cast<const DataLeafNode*>(&root);
if (leaf != nullptr) {
return leaf->numBytes();
}
const DataInnerNode &inner = dynamic_cast<const DataInnerNode&>(root);
uint64_t numBytesInLeftChildren = (inner.numChildren()-1) * leavesPerFullChild(inner) * _nodeStore->layout().maxBytesPerLeaf();
auto lastChild = _nodeStore->load(inner.LastChild()->key());
uint64_t numBytesInRightChild = numStoredBytes(*lastChild);
return numBytesInLeftChildren + numBytesInRightChild;
}
void DataTree::resizeNumBytes(uint64_t newNumBytes) {
//TODO Faster implementation possible
LastLeaf(_rootNode.get())->resize(_nodeStore->layout().maxBytesPerLeaf());
uint64_t currentNumBytes = numStoredBytes();
assert(currentNumBytes % _nodeStore->layout().maxBytesPerLeaf() == 0);
uint32_t currentNumLeaves = currentNumBytes / _nodeStore->layout().maxBytesPerLeaf();
uint32_t newNumLeaves = utils::ceilDivision(newNumBytes, _nodeStore->layout().maxBytesPerLeaf());
for(uint32_t i = currentNumLeaves; i < newNumLeaves; ++i) {
addDataLeaf();
}
for(uint32_t i = currentNumLeaves; i > newNumLeaves; --i) {
removeLastDataLeaf();
}
uint32_t newLastLeafSize = newNumBytes - (newNumLeaves-1)*_nodeStore->layout().maxBytesPerLeaf();
LastLeaf(_rootNode.get())->resize(newLastLeafSize);
assert(newNumBytes == numStoredBytes());
}
optional_ownership_ptr<DataLeafNode> DataTree::LastLeaf(DataNode *root) {
DataLeafNode *leaf = dynamic_cast<DataLeafNode*>(root);
if (leaf != nullptr) {
return WithoutOwnership(leaf);
}
DataInnerNode *inner = dynamic_cast<DataInnerNode*>(root);
return WithOwnership(LastLeaf(_nodeStore->load(inner->LastChild()->key())));
}
unique_ptr<DataLeafNode> DataTree::LastLeaf(unique_ptr<DataNode> root) {
auto leaf = dynamic_pointer_move<DataLeafNode>(root);
if (leaf.get() != nullptr) {
return leaf;
}
auto inner = dynamic_pointer_move<DataInnerNode>(root);
return LastLeaf(_nodeStore->load(inner->LastChild()->key()));
}
uint32_t DataTree::maxBytesPerLeaf() const {
return _nodeStore->layout().maxBytesPerLeaf();
}
}
}
}