package cryptfs // File content encryption / decryption import ( "os" "errors" "crypto/cipher" ) type CryptFile struct { file *os.File gcm cipher.AEAD } // decryptBlock - Verify and decrypt GCM block func (be *CryptFS) DecryptBlock(ciphertext []byte) ([]byte, error) { // Empty block? if len(ciphertext) == 0 { return ciphertext, nil } if len(ciphertext) < NONCE_LEN { Warn.Printf("decryptBlock: Block is too short: %d bytes\n", len(ciphertext)) return nil, errors.New("Block is too short") } // Extract nonce nonce := ciphertext[:NONCE_LEN] ciphertext = ciphertext[NONCE_LEN:] // Decrypt var plaintext []byte plaintext, err := be.gcm.Open(plaintext, nonce, ciphertext, nil) if err != nil { return nil, err } return plaintext, nil } // encryptBlock - Encrypt and add MAC using GCM func (be *CryptFS) EncryptBlock(plaintext []byte) []byte { // Empty block? if len(plaintext) == 0 { return plaintext } // Get fresh nonce nonce := gcmNonce.Get() // Encrypt plaintext and append to nonce ciphertext := be.gcm.Seal(nonce, nonce, plaintext, nil) return ciphertext } // Split a plaintext byte range into (possible partial) blocks func (be *CryptFS) SplitRange(offset uint64, length uint64) []intraBlock { var b intraBlock var parts []intraBlock b.fs = be for length > 0 { b.BlockNo = offset / be.plainBS b.Offset = offset % be.plainBS b.Length = be.minu64(length, be.plainBS - b.Offset) parts = append(parts, b) offset += b.Length length -= b.Length } return parts } // PlainSize - calculate plaintext size from ciphertext size func (be *CryptFS) PlainSize(size uint64) uint64 { // Zero sized files stay zero-sized if size > 0 { overhead := be.cipherBS - be.plainBS nBlocks := (size + be.cipherBS - 1) / be.cipherBS size -= nBlocks * overhead } return size } func (be *CryptFS) minu64(x uint64, y uint64) uint64 { if x < y { return x } return y }