// Package cryptocore wraps OpenSSL and Go GCM crypto and provides // a nonce generator. package cryptocore import ( "crypto/aes" "crypto/cipher" "crypto/sha512" "log" "runtime" "golang.org/x/crypto/chacha20poly1305" "github.com/rfjakob/eme" "../siv_aead" "../stupidgcm" ) const ( // KeyLen is the cipher key length in bytes. All backends use 32 bytes. KeyLen = 32 // AuthTagLen is the length of a authentication tag in bytes. // All backends use 16 bytes. AuthTagLen = 16 ) // AEADTypeEnum indicates the type of AEAD backend in use. type AEADTypeEnum struct { Name string NonceSize int } // BackendOpenSSL specifies the OpenSSL backend. // "AES-GCM-256-OpenSSL" in gocryptfs -speed. var BackendOpenSSL AEADTypeEnum = AEADTypeEnum{"AES-GCM-256-OpenSSL", 16} // BackendGoGCM specifies the Go based GCM backend. // "AES-GCM-256-Go" in gocryptfs -speed. var BackendGoGCM AEADTypeEnum = AEADTypeEnum{"AES-GCM-256-Go", 16} // BackendAESSIV specifies an AESSIV backend. // "AES-SIV-512-Go" in gocryptfs -speed. var BackendAESSIV AEADTypeEnum = AEADTypeEnum{"AES-SIV-512-Go", siv_aead.NonceSize} // BackendXChaCha20Poly1305 specifies XChaCha20-Poly1305-Go. // "XChaCha20-Poly1305-Go" in gocryptfs -speed. var BackendXChaCha20Poly1305 AEADTypeEnum = AEADTypeEnum{"XChaCha20-Poly1305-Go", chacha20poly1305.NonceSizeX} // CryptoCore is the low level crypto implementation. type CryptoCore struct { // EME is used for filename encryption. EMECipher *eme.EMECipher // GCM or AES-SIV. This is used for content encryption. AEADCipher cipher.AEAD // Which backend is behind AEADCipher? AEADBackend AEADTypeEnum // GCM needs unique IVs (nonces) IVGenerator *nonceGenerator // IVLen in bytes IVLen int } // New returns a new CryptoCore object or panics. // // Even though the "GCMIV128" feature flag is now mandatory, we must still // support 96-bit IVs here because they were used for encrypting the master // key in gocryptfs.conf up to gocryptfs v1.2. v1.3 switched to 128 bits. // // Note: "key" is either the scrypt hash of the password (when decrypting // a config file) or the masterkey (when finally mounting the filesystem). func New(key []byte, aeadType AEADTypeEnum, IVBitLen int, useHKDF bool, forceDecode bool) *CryptoCore { if len(key) != KeyLen { log.Panicf("Unsupported key length of %d bytes", len(key)) } if IVBitLen != 96 && IVBitLen != 128 && IVBitLen != chacha20poly1305.NonceSizeX*8 { log.Panicf("Unsupported IV length of %d bits", IVBitLen) } // Initialize EME for filename encryption. var emeCipher *eme.EMECipher var err error { var emeBlockCipher cipher.Block if useHKDF { emeKey := hkdfDerive(key, hkdfInfoEMENames, KeyLen) emeBlockCipher, err = aes.NewCipher(emeKey) for i := range emeKey { emeKey[i] = 0 } } else { emeBlockCipher, err = aes.NewCipher(key) } if err != nil { log.Panic(err) } emeCipher = eme.New(emeBlockCipher) } // Initialize an AEAD cipher for file content encryption. var aeadCipher cipher.AEAD if aeadType == BackendOpenSSL || aeadType == BackendGoGCM { var gcmKey []byte if useHKDF { gcmKey = hkdfDerive(key, hkdfInfoGCMContent, KeyLen) } else { // Filesystems created by gocryptfs v0.7 through v1.2 don't use HKDF. // Example: tests/example_filesystems/v0.9 gcmKey = append([]byte{}, key...) } switch aeadType { case BackendOpenSSL: if IVBitLen != 128 { log.Panicf("stupidgcm only supports 128-bit IVs, you wanted %d", IVBitLen) } aeadCipher = stupidgcm.New(gcmKey, forceDecode) case BackendGoGCM: goGcmBlockCipher, err := aes.NewCipher(gcmKey) if err != nil { log.Panic(err) } aeadCipher, err = cipher.NewGCMWithNonceSize(goGcmBlockCipher, IVBitLen/8) if err != nil { log.Panic(err) } } for i := range gcmKey { gcmKey[i] = 0 } } else if aeadType == BackendAESSIV { if IVBitLen != 128 { // SIV supports any nonce size, but we only use 128. log.Panicf("AES-SIV must use 128-bit IVs, you wanted %d", IVBitLen) } // AES-SIV uses 1/2 of the key for authentication, 1/2 for // encryption, so we need a 64-bytes key for AES-256. Derive it from // the 32-byte master key using HKDF, or, for older filesystems, with // SHA256. var key64 []byte if useHKDF { key64 = hkdfDerive(key, hkdfInfoSIVContent, siv_aead.KeyLen) } else { s := sha512.Sum512(key) key64 = s[:] } aeadCipher = siv_aead.New(key64) for i := range key64 { key64[i] = 0 } } else if aeadType == BackendXChaCha20Poly1305 { // We don't support legacy modes with XChaCha20-Poly1305 if IVBitLen != chacha20poly1305.NonceSizeX*8 { log.Panicf("XChaCha20-Poly1305 must use 192-bit IVs, you wanted %d", IVBitLen) } if !useHKDF { log.Panic("XChaCha20-Poly1305 must use HKDF, but it is disabled") } derivedKey := hkdfDerive(key, hkdfInfoXChaChaPoly1305Content, chacha20poly1305.KeySize) aeadCipher, err = chacha20poly1305.NewX(derivedKey) if err != nil { log.Panic(err) } } else { log.Panicf("unknown cipher backend %q", aeadType.Name) } if aeadCipher.NonceSize()*8 != IVBitLen { log.Panicf("Mismatched aeadCipher.NonceSize*8=%d and IVBitLen=%d bits", aeadCipher.NonceSize()*8, IVBitLen) } return &CryptoCore{ EMECipher: emeCipher, AEADCipher: aeadCipher, AEADBackend: aeadType, IVGenerator: &nonceGenerator{nonceLen: IVBitLen / 8}, IVLen: IVBitLen / 8, } } type wiper interface { Wipe() } // Wipe tries to wipe secret keys from memory by overwriting them with zeros // and/or setting references to nil. // // This is not bulletproof due to possible GC copies, but // still raises to bar for extracting the key. func (c *CryptoCore) Wipe() { be := c.AEADBackend if be == BackendOpenSSL || be == BackendAESSIV { // We don't use "x, ok :=" because we *want* to crash loudly if the // type assertion fails. w := c.AEADCipher.(wiper) w.Wipe() } // We have no access to the keys (or key-equivalents) stored inside the // Go stdlib. Best we can is to nil the references and force a GC. c.AEADCipher = nil c.EMECipher = nil runtime.GC() }