libgocryptfs/internal/cryptocore/cryptocore.go
Jakob Unterwurzacher 6b0e63c1a8 Improve startup debug output
The startup debug output was very verbose but still missing some
effective crypto settings.
2021-06-21 11:32:04 +02:00

190 lines
5.1 KiB
Go

// Package cryptocore wraps OpenSSL and Go GCM crypto and provides
// a nonce generator.
package cryptocore
import (
"crypto/aes"
"crypto/cipher"
"crypto/sha512"
"fmt"
"log"
"runtime"
"github.com/rfjakob/eme"
"github.com/rfjakob/gocryptfs/internal/siv_aead"
"github.com/rfjakob/gocryptfs/internal/stupidgcm"
"github.com/rfjakob/gocryptfs/internal/tlog"
)
const (
// KeyLen is the cipher key length in bytes. 32 for AES-256.
KeyLen = 32
// AuthTagLen is the length of a GCM auth tag in bytes.
AuthTagLen = 16
)
// AEADTypeEnum indicates the type of AEAD backend in use.
type AEADTypeEnum int
const (
// BackendOpenSSL specifies the OpenSSL backend.
BackendOpenSSL AEADTypeEnum = 3
// BackendGoGCM specifies the Go based GCM backend.
BackendGoGCM AEADTypeEnum = 4
// BackendAESSIV specifies an AESSIV backend.
BackendAESSIV AEADTypeEnum = 5
)
func (a AEADTypeEnum) String() string {
switch a {
case BackendOpenSSL:
return "BackendOpenSSL"
case BackendGoGCM:
return "BackendGoGCM"
case BackendAESSIV:
return "BackendAESSIV"
default:
return fmt.Sprintf("%d", a)
}
}
// CryptoCore is the low level crypto implementation.
type CryptoCore struct {
// EME is used for filename encryption.
EMECipher *eme.EMECipher
// GCM or AES-SIV. This is used for content encryption.
AEADCipher cipher.AEAD
// Which backend is behind AEADCipher?
AEADBackend AEADTypeEnum
// GCM needs unique IVs (nonces)
IVGenerator *nonceGenerator
IVLen int
}
// New returns a new CryptoCore object or panics.
//
// Even though the "GCMIV128" feature flag is now mandatory, we must still
// support 96-bit IVs here because they were used for encrypting the master
// key in gocryptfs.conf up to gocryptfs v1.2. v1.3 switched to 128 bits.
//
// Note: "key" is either the scrypt hash of the password (when decrypting
// a config file) or the masterkey (when finally mounting the filesystem).
func New(key []byte, aeadType AEADTypeEnum, IVBitLen int, useHKDF bool, forceDecode bool) *CryptoCore {
tlog.Debug.Printf("cryptocore.New: key=%d bytes, aeadType=%v, IVBitLen=%d, useHKDF=%v, forceDecode=%v",
len(key), aeadType, IVBitLen, useHKDF, forceDecode)
if len(key) != KeyLen {
log.Panic(fmt.Sprintf("Unsupported key length %d", len(key)))
}
// We want the IV size in bytes
IVLen := IVBitLen / 8
// Initialize EME for filename encryption.
var emeCipher *eme.EMECipher
var err error
{
var emeBlockCipher cipher.Block
if useHKDF {
emeKey := hkdfDerive(key, hkdfInfoEMENames, KeyLen)
emeBlockCipher, err = aes.NewCipher(emeKey)
for i := range emeKey {
emeKey[i] = 0
}
} else {
emeBlockCipher, err = aes.NewCipher(key)
}
if err != nil {
log.Panic(err)
}
emeCipher = eme.New(emeBlockCipher)
}
// Initialize an AEAD cipher for file content encryption.
var aeadCipher cipher.AEAD
if aeadType == BackendOpenSSL || aeadType == BackendGoGCM {
var gcmKey []byte
if useHKDF {
gcmKey = hkdfDerive(key, hkdfInfoGCMContent, KeyLen)
} else {
gcmKey = append([]byte{}, key...)
}
switch aeadType {
case BackendOpenSSL:
if IVLen != 16 {
log.Panic("stupidgcm only supports 128-bit IVs")
}
aeadCipher = stupidgcm.New(gcmKey, forceDecode)
case BackendGoGCM:
goGcmBlockCipher, err := aes.NewCipher(gcmKey)
if err != nil {
log.Panic(err)
}
aeadCipher, err = cipher.NewGCMWithNonceSize(goGcmBlockCipher, IVLen)
if err != nil {
log.Panic(err)
}
}
for i := range gcmKey {
gcmKey[i] = 0
}
} else if aeadType == BackendAESSIV {
if IVLen != 16 {
// SIV supports any nonce size, but we only use 16.
log.Panic("AES-SIV must use 16-byte nonces")
}
// AES-SIV uses 1/2 of the key for authentication, 1/2 for
// encryption, so we need a 64-bytes key for AES-256. Derive it from
// the 32-byte master key using HKDF, or, for older filesystems, with
// SHA256.
var key64 []byte
if useHKDF {
key64 = hkdfDerive(key, hkdfInfoSIVContent, siv_aead.KeyLen)
} else {
s := sha512.Sum512(key)
key64 = s[:]
}
aeadCipher = siv_aead.New(key64)
for i := range key64 {
key64[i] = 0
}
} else {
log.Panic("unknown backend cipher")
}
return &CryptoCore{
EMECipher: emeCipher,
AEADCipher: aeadCipher,
AEADBackend: aeadType,
IVGenerator: &nonceGenerator{nonceLen: IVLen},
IVLen: IVLen,
}
}
type wiper interface {
Wipe()
}
// Wipe tries to wipe secret keys from memory by overwriting them with zeros
// and/or setting references to nil.
//
// This is not bulletproof due to possible GC copies, but
// still raises to bar for extracting the key.
func (c *CryptoCore) Wipe() {
be := c.AEADBackend
if be == BackendOpenSSL || be == BackendAESSIV {
tlog.Debug.Printf("CryptoCore.Wipe: Wiping AEADBackend %d key", be)
// We don't use "x, ok :=" because we *want* to crash loudly if the
// type assertion fails.
w := c.AEADCipher.(wiper)
w.Wipe()
} else {
tlog.Debug.Printf("CryptoCore.Wipe: Only nil'ing stdlib refs")
}
// We have no access to the keys (or key-equivalents) stored inside the
// Go stdlib. Best we can is to nil the references and force a GC.
c.AEADCipher = nil
c.EMECipher = nil
runtime.GC()
}