libgocryptfs/internal/fusefrontend/file.go

442 lines
14 KiB
Go

package fusefrontend
// FUSE operations on file handles
import (
"bytes"
"io"
"log"
"os"
"sync"
"syscall"
"time"
"github.com/hanwen/go-fuse/fuse"
"github.com/hanwen/go-fuse/fuse/nodefs"
"github.com/rfjakob/gocryptfs/internal/contentenc"
"github.com/rfjakob/gocryptfs/internal/openfiletable"
"github.com/rfjakob/gocryptfs/internal/serialize_reads"
"github.com/rfjakob/gocryptfs/internal/stupidgcm"
"github.com/rfjakob/gocryptfs/internal/syscallcompat"
"github.com/rfjakob/gocryptfs/internal/tlog"
)
var _ nodefs.File = &file{} // Verify that interface is implemented.
// File - based on loopbackFile in go-fuse/fuse/nodefs/files.go
type file struct {
fd *os.File
// Has Release() already been called on this file? This also means that the
// wlock entry has been freed, so let's not crash trying to access it.
// Due to concurrency, Release can overtake other operations. These will
// return EBADF in that case.
released bool
// fdLock prevents the fd to be closed while we are in the middle of
// an operation.
// Every FUSE entrypoint should RLock(). The only user of Lock() is
// Release(), which closes the fd and sets "released" to true.
fdLock sync.RWMutex
// Content encryption helper
contentEnc *contentenc.ContentEnc
// Device and inode number uniquely identify the backing file
qIno openfiletable.QIno
// Entry in the open file table
fileTableEntry *openfiletable.Entry
// go-fuse nodefs.loopbackFile
loopbackFile nodefs.File
// Store where the last byte was written
lastWrittenOffset int64
// The opCount is used to judge whether "lastWrittenOffset" is still
// guaranteed to be correct.
lastOpCount uint64
// Parent filesystem
fs *FS
// We embed a nodefs.NewDefaultFile() that returns ENOSYS for every operation we
// have not implemented. This prevents build breakage when the go-fuse library
// adds new methods to the nodefs.File interface.
nodefs.File
}
// NewFile returns a new go-fuse File instance.
func NewFile(fd *os.File, fs *FS) (nodefs.File, fuse.Status) {
var st syscall.Stat_t
err := syscall.Fstat(int(fd.Fd()), &st)
if err != nil {
tlog.Warn.Printf("NewFile: Fstat on fd %d failed: %v\n", fd.Fd(), err)
return nil, fuse.ToStatus(err)
}
qi := openfiletable.QInoFromStat(&st)
e := openfiletable.Register(qi)
return &file{
fd: fd,
contentEnc: fs.contentEnc,
qIno: qi,
fileTableEntry: e,
loopbackFile: nodefs.NewLoopbackFile(fd),
fs: fs,
File: nodefs.NewDefaultFile(),
}, fuse.OK
}
// intFd - return the backing file descriptor as an integer. Used for debug
// messages.
func (f *file) intFd() int {
return int(f.fd.Fd())
}
// readFileID loads the file header from disk and extracts the file ID.
// Returns io.EOF if the file is empty.
func (f *file) readFileID() ([]byte, error) {
// We read +1 byte to determine if the file has actual content
// and not only the header. A header-only file will be considered empty.
// This makes File ID poisoning more difficult.
readLen := contentenc.HeaderLen + 1
buf := make([]byte, readLen)
n, err := f.fd.ReadAt(buf, 0)
if err != nil {
if err == io.EOF && n != 0 {
tlog.Warn.Printf("ino%d: readFileID: incomplete file, got %d instead of %d bytes",
f.qIno.Ino, n, readLen)
}
return nil, err
}
buf = buf[:contentenc.HeaderLen]
h, err := contentenc.ParseHeader(buf)
if err != nil {
return nil, err
}
return h.ID, nil
}
// createHeader creates a new random header and writes it to disk.
// Returns the new file ID.
// The caller must hold fileIDLock.Lock().
func (f *file) createHeader() (fileID []byte, err error) {
h := contentenc.RandomHeader()
buf := h.Pack()
// Prevent partially written (=corrupt) header by preallocating the space beforehand
if !f.fs.args.NoPrealloc {
err = syscallcompat.EnospcPrealloc(int(f.fd.Fd()), 0, contentenc.HeaderLen)
if err != nil {
tlog.Warn.Printf("ino%d: createHeader: prealloc failed: %s\n", f.qIno.Ino, err.Error())
return nil, err
}
}
// Actually write header
_, err = f.fd.WriteAt(buf, 0)
if err != nil {
return nil, err
}
return h.ID, err
}
// doRead - returns "length" plaintext bytes from plaintext offset "off".
// Arguments "length" and "off" do not have to be block-aligned.
//
// doRead reads the corresponding ciphertext blocks from disk, decrypts them and
// returns the requested part of the plaintext.
//
// Called by Read() for normal reading,
// by Write() and Truncate() for Read-Modify-Write
func (f *file) doRead(off uint64, length uint64) ([]byte, fuse.Status) {
// Make sure we have the file ID.
f.fileTableEntry.HeaderLock.RLock()
if f.fileTableEntry.ID == nil {
f.fileTableEntry.HeaderLock.RUnlock()
// Yes, somebody else may take the lock before we can. This will get
// the header read twice, but causes no harm otherwise.
f.fileTableEntry.HeaderLock.Lock()
tmpID, err := f.readFileID()
if err == io.EOF {
f.fileTableEntry.HeaderLock.Unlock()
return nil, fuse.OK
}
if err != nil {
f.fileTableEntry.HeaderLock.Unlock()
return nil, fuse.ToStatus(err)
}
f.fileTableEntry.ID = tmpID
// Downgrade the lock.
f.fileTableEntry.HeaderLock.Unlock()
// The file ID may change in here. This does no harm because we
// re-read it after the RLock().
f.fileTableEntry.HeaderLock.RLock()
}
fileID := f.fileTableEntry.ID
// Read the backing ciphertext in one go
blocks := f.contentEnc.ExplodePlainRange(off, length)
alignedOffset, alignedLength := blocks[0].JointCiphertextRange(blocks)
skip := blocks[0].Skip
tlog.Debug.Printf("JointCiphertextRange(%d, %d) -> %d, %d, %d", off, length, alignedOffset, alignedLength, skip)
ciphertext := make([]byte, int(alignedLength))
n, err := f.fd.ReadAt(ciphertext, int64(alignedOffset))
// We don't care if the file ID changes after we have read the data. Drop the lock.
f.fileTableEntry.HeaderLock.RUnlock()
if err != nil && err != io.EOF {
tlog.Warn.Printf("read: ReadAt: %s", err.Error())
return nil, fuse.ToStatus(err)
}
// Truncate ciphertext buffer down to actually read bytes
ciphertext = ciphertext[0:n]
firstBlockNo := blocks[0].BlockNo
tlog.Debug.Printf("ReadAt offset=%d bytes (%d blocks), want=%d, got=%d", alignedOffset, firstBlockNo, alignedLength, n)
// Decrypt it
plaintext, err := f.contentEnc.DecryptBlocks(ciphertext, firstBlockNo, fileID)
if err != nil {
if f.fs.args.ForceDecode && err == stupidgcm.ErrAuth {
// We do not have the information which block was corrupt here anymore,
// but DecryptBlocks() has already logged it anyway.
tlog.Warn.Printf("ino%d: doRead off=%d len=%d: returning corrupt data due to forcedecode",
f.qIno.Ino, off, length)
} else {
curruptBlockNo := firstBlockNo + f.contentEnc.PlainOffToBlockNo(uint64(len(plaintext)))
tlog.Warn.Printf("ino%d: doRead: corrupt block #%d: %v", f.qIno.Ino, curruptBlockNo, err)
return nil, fuse.EIO
}
}
// Crop down to the relevant part
var out []byte
lenHave := len(plaintext)
lenWant := int(skip + length)
if lenHave > lenWant {
out = plaintext[skip:lenWant]
} else if lenHave > int(skip) {
out = plaintext[skip:lenHave]
}
// else: out stays empty, file was smaller than the requested offset
return out, fuse.OK
}
// Read - FUSE call
func (f *file) Read(buf []byte, off int64) (resultData fuse.ReadResult, code fuse.Status) {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
tlog.Debug.Printf("ino%d: FUSE Read: offset=%d length=%d", f.qIno.Ino, len(buf), off)
if f.fs.args.SerializeReads {
serialize_reads.Wait(off, len(buf))
}
out, status := f.doRead(uint64(off), uint64(len(buf)))
if f.fs.args.SerializeReads {
serialize_reads.Done()
}
if status == fuse.EIO {
tlog.Warn.Printf("ino%d: Read: returning EIO, offset=%d, length=%d", f.qIno.Ino, len(buf), off)
}
if status != fuse.OK {
return nil, status
}
tlog.Debug.Printf("ino%d: Read: status %v, returning %d bytes", f.qIno.Ino, status, len(out))
return fuse.ReadResultData(out), status
}
// doWrite - encrypt "data" and write it to plaintext offset "off"
//
// Arguments do not have to be block-aligned, read-modify-write is
// performed internally as necessary
//
// Called by Write() for normal writing,
// and by Truncate() to rewrite the last file block.
//
// Empty writes do nothing and are allowed.
func (f *file) doWrite(data []byte, off int64) (uint32, fuse.Status) {
// Read header from disk, create a new one if the file is empty
f.fileTableEntry.HeaderLock.RLock()
if f.fileTableEntry.ID == nil {
f.fileTableEntry.HeaderLock.RUnlock()
// Somebody else may write the header here, but this would do no harm.
f.fileTableEntry.HeaderLock.Lock()
tmpID, err := f.readFileID()
if err == io.EOF {
tmpID, err = f.createHeader()
}
if err != nil {
f.fileTableEntry.HeaderLock.Unlock()
return 0, fuse.ToStatus(err)
}
f.fileTableEntry.ID = tmpID
f.fileTableEntry.HeaderLock.Unlock()
// The file ID may change in here. This does no harm because we
// re-read it after the RLock().
f.fileTableEntry.HeaderLock.RLock()
}
defer f.fileTableEntry.HeaderLock.RUnlock()
// Handle payload data
dataBuf := bytes.NewBuffer(data)
blocks := f.contentEnc.ExplodePlainRange(uint64(off), uint64(len(data)))
toEncrypt := make([][]byte, len(blocks))
for i, b := range blocks {
blockData := dataBuf.Next(int(b.Length))
// Incomplete block -> Read-Modify-Write
if b.IsPartial() {
// Read
oldData, status := f.doRead(b.BlockPlainOff(), f.contentEnc.PlainBS())
if status != fuse.OK {
tlog.Warn.Printf("ino%d fh%d: RMW read failed: %s", f.qIno.Ino, f.intFd(), status.String())
return 0, status
}
// Modify
blockData = f.contentEnc.MergeBlocks(oldData, blockData, int(b.Skip))
tlog.Debug.Printf("len(oldData)=%d len(blockData)=%d", len(oldData), len(blockData))
}
tlog.Debug.Printf("ino%d: Writing %d bytes to block #%d",
f.qIno.Ino, uint64(len(blockData))-f.contentEnc.BlockOverhead(), b.BlockNo)
// Write into the to-encrypt list
toEncrypt[i] = blockData
}
// Encrypt all blocks
ciphertext := f.contentEnc.EncryptBlocks(toEncrypt, blocks[0].BlockNo, f.fileTableEntry.ID)
// Preallocate so we cannot run out of space in the middle of the write.
// This prevents partially written (=corrupt) blocks.
var err error
cOff := int64(blocks[0].BlockCipherOff())
if !f.fs.args.NoPrealloc {
err = syscallcompat.EnospcPrealloc(int(f.fd.Fd()), cOff, int64(len(ciphertext)))
if err != nil {
tlog.Warn.Printf("ino%d fh%d: doWrite: prealloc failed: %s", f.qIno.Ino, f.intFd(), err.Error())
return 0, fuse.ToStatus(err)
}
}
// Write
_, err = f.fd.WriteAt(ciphertext, cOff)
if err != nil {
tlog.Warn.Printf("doWrite: Write failed: %s", err.Error())
return 0, fuse.ToStatus(err)
}
return uint32(len(data)), fuse.OK
}
// isConsecutiveWrite returns true if the current write
// directly (in time and space) follows the last write.
// This is an optimisation for streaming writes on NFS where a
// Stat() call is very expensive.
// The caller must "wlock.lock(f.devIno.ino)" otherwise this check would be racy.
func (f *file) isConsecutiveWrite(off int64) bool {
opCount := openfiletable.WriteOpCount()
return opCount == f.lastOpCount+1 && off == f.lastWrittenOffset+1
}
// Write - FUSE call
//
// If the write creates a hole, pads the file to the next block boundary.
func (f *file) Write(data []byte, off int64) (uint32, fuse.Status) {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
if f.released {
// The file descriptor has been closed concurrently, which also means
// the wlock has been freed. Exit here so we don't crash trying to access
// it.
tlog.Warn.Printf("ino%d fh%d: Write on released file", f.qIno.Ino, f.intFd())
return 0, fuse.EBADF
}
f.fileTableEntry.ContentLock.Lock()
defer f.fileTableEntry.ContentLock.Unlock()
tlog.Debug.Printf("ino%d: FUSE Write: offset=%d length=%d", f.qIno.Ino, off, len(data))
// If the write creates a file hole, we have to zero-pad the last block.
// But if the write directly follows an earlier write, it cannot create a
// hole, and we can save one Stat() call.
if !f.isConsecutiveWrite(off) {
status := f.writePadHole(off)
if !status.Ok() {
return 0, status
}
}
n, status := f.doWrite(data, off)
if status.Ok() {
f.lastOpCount = openfiletable.WriteOpCount()
f.lastWrittenOffset = off + int64(len(data)) - 1
}
return n, status
}
// Release - FUSE call, close file
func (f *file) Release() {
f.fdLock.Lock()
if f.released {
log.Panicf("ino%d fh%d: double release", f.qIno.Ino, f.intFd())
}
f.fd.Close()
f.released = true
f.fdLock.Unlock()
openfiletable.Unregister(f.qIno)
}
// Flush - FUSE call
func (f *file) Flush() fuse.Status {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
// Since Flush() may be called for each dup'd fd, we don't
// want to really close the file, we just want to flush. This
// is achieved by closing a dup'd fd.
newFd, err := syscall.Dup(int(f.fd.Fd()))
if err != nil {
return fuse.ToStatus(err)
}
err = syscall.Close(newFd)
return fuse.ToStatus(err)
}
func (f *file) Fsync(flags int) (code fuse.Status) {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
return fuse.ToStatus(syscall.Fsync(int(f.fd.Fd())))
}
func (f *file) Chmod(mode uint32) fuse.Status {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
// os.File.Chmod goes through the "syscallMode" translation function that messes
// up the suid and sgid bits. So use syscall.Fchmod directly.
err := syscall.Fchmod(f.intFd(), mode)
return fuse.ToStatus(err)
}
func (f *file) Chown(uid uint32, gid uint32) fuse.Status {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
return fuse.ToStatus(f.fd.Chown(int(uid), int(gid)))
}
func (f *file) GetAttr(a *fuse.Attr) fuse.Status {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
tlog.Debug.Printf("file.GetAttr()")
st := syscall.Stat_t{}
err := syscall.Fstat(int(f.fd.Fd()), &st)
if err != nil {
return fuse.ToStatus(err)
}
a.FromStat(&st)
a.Size = f.contentEnc.CipherSizeToPlainSize(a.Size)
if f.fs.args.ForceOwner != nil {
a.Owner = *f.fs.args.ForceOwner
}
return fuse.OK
}
func (f *file) Utimens(a *time.Time, m *time.Time) fuse.Status {
f.fdLock.RLock()
defer f.fdLock.RUnlock()
return f.loopbackFile.Utimens(a, m)
}