libgocryptfs/pathfs_frontend/file.go

367 lines
9.5 KiB
Go

package pathfs_frontend
import (
"bytes"
"fmt"
"io"
"os"
"sync"
"syscall"
"time"
"github.com/hanwen/go-fuse/fuse"
"github.com/hanwen/go-fuse/fuse/nodefs"
"github.com/rfjakob/gocryptfs/cryptfs"
)
// File - based on loopbackFile in go-fuse/fuse/nodefs/files.go
type file struct {
fd *os.File
// os.File is not threadsafe. Although fd themselves are
// constant during the lifetime of an open file, the OS may
// reuse the fd number after it is closed. When open races
// with another close, they may lead to confusion as which
// file gets written in the end.
lock sync.Mutex
// Was the file opened O_WRONLY?
writeOnly bool
// Parent CryptFS
cfs *cryptfs.CryptFS
// Inode number
ino uint64
}
func NewFile(fd *os.File, writeOnly bool, cfs *cryptfs.CryptFS) nodefs.File {
var st syscall.Stat_t
syscall.Fstat(int(fd.Fd()), &st)
return &file{
fd: fd,
writeOnly: writeOnly,
cfs: cfs,
ino: st.Ino,
}
}
func (f *file) InnerFile() nodefs.File {
return nil
}
func (f *file) SetInode(n *nodefs.Inode) {
}
func (f *file) String() string {
return fmt.Sprintf("cryptFile(%s)", f.fd.Name())
}
// doRead - returns "length" plaintext bytes from plaintext offset "off".
// Arguments "length" and "off" do not have to be aligned.
//
// doRead reads the corresponding ciphertext blocks from disk, decryptfs them and
// returns the requested part of the plaintext.
//
// Called by Read() and by Write() and Truncate() for RMW
func (f *file) doRead(off uint64, length uint64) ([]byte, fuse.Status) {
// Read the backing ciphertext in one go
alignedOffset, alignedLength, skip := f.cfs.CiphertextRange(off, length)
cryptfs.Debug.Printf("CiphertextRange(%d, %d) -> %d, %d, %d\n", off, length, alignedOffset, alignedLength, skip)
ciphertext := make([]byte, int(alignedLength))
f.lock.Lock()
n, err := f.fd.ReadAt(ciphertext, int64(alignedOffset))
f.lock.Unlock()
if err != nil && err != io.EOF {
cryptfs.Warn.Printf("read: ReadAt: %s\n", err.Error())
return nil, fuse.ToStatus(err)
}
// Truncate ciphertext buffer down to actually read bytes
ciphertext = ciphertext[0:n]
{
blockNo := alignedOffset / f.cfs.CipherBS()
cryptfs.Debug.Printf("ReadAt offset=%d bytes (%d blocks), want=%d, got=%d\n", alignedOffset, blockNo, alignedLength, n)
}
// Decrypt it
plaintext, err := f.cfs.DecryptBlocks(ciphertext)
if err != nil {
blockNo := (alignedOffset + uint64(len(plaintext))) / f.cfs.PlainBS()
cipherOff := blockNo * f.cfs.CipherBS()
plainOff := blockNo * f.cfs.PlainBS()
cryptfs.Warn.Printf("ino%d: doRead: corrupt block #%d (plainOff=%d/%d, cipherOff=%d/%d)\n",
f.ino, blockNo, plainOff, f.cfs.PlainBS(), cipherOff, f.cfs.CipherBS())
return nil, fuse.EIO
}
// Crop down to the relevant part
var out []byte
lenHave := len(plaintext)
lenWant := skip + int(length)
if lenHave > lenWant {
out = plaintext[skip : skip+int(length)]
} else if lenHave > skip {
out = plaintext[skip:lenHave]
} else {
// Out stays empty, file was smaller than the requested offset
}
return out, fuse.OK
}
// Read - FUSE call
func (f *file) Read(buf []byte, off int64) (resultData fuse.ReadResult, code fuse.Status) {
cryptfs.Debug.Printf("ino%d: FUSE Read: offset=%d length=%d\n", f.ino, len(buf), off)
if f.writeOnly {
cryptfs.Warn.Printf("ino%d: Tried to read from write-only file\n", f.ino)
return nil, fuse.EBADF
}
out, status := f.doRead(uint64(off), uint64(len(buf)))
if status == fuse.EIO {
cryptfs.Warn.Printf("ino%d: Read failed with EIO, offset=%d, length=%d\n", f.ino, len(buf), off)
}
if status != fuse.OK {
return nil, status
}
cryptfs.Debug.Printf("ino%d: Read: status %v, returning %d bytes\n", f.ino, status, len(out))
return fuse.ReadResultData(out), status
}
// Do the actual write
func (f *file) doWrite(data []byte, off int64) (uint32, fuse.Status) {
var written uint32
status := fuse.OK
dataBuf := bytes.NewBuffer(data)
blocks := f.cfs.SplitRange(uint64(off), uint64(len(data)))
for _, b := range blocks {
blockData := dataBuf.Next(int(b.Length))
// Incomplete block -> Read-Modify-Write
if b.IsPartial() {
// Read
o, _ := b.PlaintextRange()
oldData, status := f.doRead(o, f.cfs.PlainBS())
if status != fuse.OK {
cryptfs.Warn.Printf("RMW read failed: %s\n", status.String())
return written, status
}
// Modify
blockData = f.cfs.MergeBlocks(oldData, blockData, int(b.Skip))
cryptfs.Debug.Printf("len(oldData)=%d len(blockData)=%d\n", len(oldData), len(blockData))
}
// Write
blockOffset, _ := b.CiphertextRange()
blockData = f.cfs.EncryptBlock(blockData)
cryptfs.Debug.Printf("ino%d: Writing %d bytes to block #%d, md5=%s\n", f.ino, len(blockData), b.BlockNo, cryptfs.Debug.Md5sum(blockData))
if len(blockData) != int(f.cfs.CipherBS()) {
cryptfs.Debug.Printf("ino%d: Writing partial block #%d (%d bytes)\n", f.ino, b.BlockNo, len(blockData))
}
f.lock.Lock()
_, err := f.fd.WriteAt(blockData, int64(blockOffset))
f.lock.Unlock()
if err != nil {
cryptfs.Warn.Printf("Write failed: %s\n", err.Error())
status = fuse.ToStatus(err)
break
}
written += uint32(b.Length)
}
return written, status
}
// Write - FUSE call
func (f *file) Write(data []byte, off int64) (uint32, fuse.Status) {
cryptfs.Debug.Printf("ino%d: FUSE Write: offset=%d length=%d\n", f.ino, off, len(data))
fi, err := f.fd.Stat()
if err != nil {
cryptfs.Warn.Printf("Write: Fstat failed: %v\n", err)
return 0, fuse.ToStatus(err)
}
plainSize := f.cfs.PlainSize(uint64(fi.Size()))
if f.createsHole(plainSize, off) {
status := f.zeroPad(plainSize)
if status != fuse.OK {
cryptfs.Warn.Printf("zeroPad returned error %v\n", status)
return 0, status
}
}
return f.doWrite(data, off)
}
// Release - FUSE call, forget file
func (f *file) Release() {
f.lock.Lock()
f.fd.Close()
f.lock.Unlock()
}
// Flush - FUSE call
func (f *file) Flush() fuse.Status {
f.lock.Lock()
// Since Flush() may be called for each dup'd fd, we don't
// want to really close the file, we just want to flush. This
// is achieved by closing a dup'd fd.
newFd, err := syscall.Dup(int(f.fd.Fd()))
f.lock.Unlock()
if err != nil {
return fuse.ToStatus(err)
}
err = syscall.Close(newFd)
return fuse.ToStatus(err)
}
func (f *file) Fsync(flags int) (code fuse.Status) {
f.lock.Lock()
r := fuse.ToStatus(syscall.Fsync(int(f.fd.Fd())))
f.lock.Unlock()
return r
}
func (f *file) Truncate(newSize uint64) fuse.Status {
// We need the old file size to determine if we are growing or shrinking
// the file
fi, err := f.fd.Stat()
if err != nil {
cryptfs.Warn.Printf("Truncate: Fstat failed: %v\n", err)
return fuse.ToStatus(err)
}
oldSize := f.cfs.PlainSize(uint64(fi.Size()))
{
oldB := (oldSize + f.cfs.PlainBS() - 1) / f.cfs.PlainBS()
newB := (newSize + f.cfs.PlainBS() - 1) / f.cfs.PlainBS()
cryptfs.Debug.Printf("ino%d: truncate from %d to %d blocks (%d to %d bytes)\n", f.ino, oldB, newB, oldSize, newSize)
}
// File grows
if newSize > oldSize {
blocks := f.cfs.SplitRange(oldSize, newSize-oldSize)
for _, b := range blocks {
// First and last block may be partial
if b.IsPartial() {
off, _ := b.PlaintextRange()
off += b.Skip
_, status := f.doWrite(make([]byte, b.Length), int64(off))
if status != fuse.OK {
return status
}
} else {
off, length := b.CiphertextRange()
f.lock.Lock()
err := syscall.Ftruncate(int(f.fd.Fd()), int64(off+length))
f.lock.Unlock()
if err != nil {
cryptfs.Warn.Printf("grow Ftruncate returned error: %v", err)
return fuse.ToStatus(err)
}
}
}
return fuse.OK
// File shrinks
} else {
blockNo := f.cfs.BlockNoPlainOff(newSize)
lastBlockOff := blockNo * f.cfs.PlainBS()
lastBlockLen := newSize - lastBlockOff
var data []byte
if lastBlockLen > 0 {
var status fuse.Status
data, status = f.doRead(lastBlockOff, lastBlockLen)
if status != fuse.OK {
cryptfs.Warn.Printf("shrink doRead returned error: %v", err)
return status
}
}
f.lock.Lock()
err = syscall.Ftruncate(int(f.fd.Fd()), int64(lastBlockOff))
f.lock.Unlock()
if err != nil {
cryptfs.Warn.Printf("shrink Ftruncate returned error: %v", err)
return fuse.ToStatus(err)
}
if lastBlockLen > 0 {
_, status := f.doWrite(data, int64(lastBlockOff))
return status
}
return fuse.OK
}
}
func (f *file) Chmod(mode uint32) fuse.Status {
f.lock.Lock()
r := fuse.ToStatus(f.fd.Chmod(os.FileMode(mode)))
f.lock.Unlock()
return r
}
func (f *file) Chown(uid uint32, gid uint32) fuse.Status {
f.lock.Lock()
r := fuse.ToStatus(f.fd.Chown(int(uid), int(gid)))
f.lock.Unlock()
return r
}
func (f *file) GetAttr(a *fuse.Attr) fuse.Status {
cryptfs.Debug.Printf("file.GetAttr()\n")
st := syscall.Stat_t{}
f.lock.Lock()
err := syscall.Fstat(int(f.fd.Fd()), &st)
f.lock.Unlock()
if err != nil {
return fuse.ToStatus(err)
}
a.FromStat(&st)
a.Size = f.cfs.PlainSize(a.Size)
return fuse.OK
}
func (f *file) Allocate(off uint64, sz uint64, mode uint32) fuse.Status {
f.lock.Lock()
err := syscall.Fallocate(int(f.fd.Fd()), mode, int64(off), int64(sz))
f.lock.Unlock()
if err != nil {
return fuse.ToStatus(err)
}
return fuse.OK
}
const _UTIME_NOW = ((1 << 30) - 1)
const _UTIME_OMIT = ((1 << 30) - 2)
func (f *file) Utimens(a *time.Time, m *time.Time) fuse.Status {
tv := make([]syscall.Timeval, 2)
if a == nil {
tv[0].Usec = _UTIME_OMIT
} else {
n := a.UnixNano()
tv[0] = syscall.NsecToTimeval(n)
}
if m == nil {
tv[1].Usec = _UTIME_OMIT
} else {
n := a.UnixNano()
tv[1] = syscall.NsecToTimeval(n)
}
f.lock.Lock()
err := syscall.Futimes(int(f.fd.Fd()), tv)
f.lock.Unlock()
return fuse.ToStatus(err)
}