1359 lines
39 KiB
Python
1359 lines
39 KiB
Python
|
from types import FunctionType
|
||
|
from collections import Counter
|
||
|
|
||
|
from mpmath import mp, workprec
|
||
|
from mpmath.libmp.libmpf import prec_to_dps
|
||
|
|
||
|
from sympy.core.compatibility import default_sort_key
|
||
|
from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted
|
||
|
from sympy.core.logic import fuzzy_and, fuzzy_or
|
||
|
from sympy.core.numbers import Float
|
||
|
from sympy.core.sympify import _sympify
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.polys import roots, CRootOf, ZZ, QQ, EX
|
||
|
from sympy.polys.matrices import DomainMatrix
|
||
|
from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy
|
||
|
from sympy.simplify import nsimplify, simplify as _simplify
|
||
|
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
||
|
|
||
|
from .common import MatrixError, NonSquareMatrixError
|
||
|
from .determinant import _find_reasonable_pivot
|
||
|
|
||
|
from .utilities import _iszero
|
||
|
|
||
|
|
||
|
def _eigenvals_eigenvects_mpmath(M):
|
||
|
norm2 = lambda v: mp.sqrt(sum(i**2 for i in v))
|
||
|
|
||
|
v1 = None
|
||
|
prec = max([x._prec for x in M.atoms(Float)])
|
||
|
eps = 2**-prec
|
||
|
|
||
|
while prec < DEFAULT_MAXPREC:
|
||
|
with workprec(prec):
|
||
|
A = mp.matrix(M.evalf(n=prec_to_dps(prec)))
|
||
|
E, ER = mp.eig(A)
|
||
|
v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))])
|
||
|
if v1 is not None and mp.fabs(v1 - v2) < eps:
|
||
|
return E, ER
|
||
|
v1 = v2
|
||
|
prec *= 2
|
||
|
|
||
|
# we get here because the next step would have taken us
|
||
|
# past MAXPREC or because we never took a step; in case
|
||
|
# of the latter, we refuse to send back a solution since
|
||
|
# it would not have been verified; we also resist taking
|
||
|
# a small step to arrive exactly at MAXPREC since then
|
||
|
# the two calculations might be artificially close.
|
||
|
raise PrecisionExhausted
|
||
|
|
||
|
|
||
|
def _eigenvals_mpmath(M, multiple=False):
|
||
|
"""Compute eigenvalues using mpmath"""
|
||
|
E, _ = _eigenvals_eigenvects_mpmath(M)
|
||
|
result = [_sympify(x) for x in E]
|
||
|
if multiple:
|
||
|
return result
|
||
|
return dict(Counter(result))
|
||
|
|
||
|
|
||
|
def _eigenvects_mpmath(M):
|
||
|
E, ER = _eigenvals_eigenvects_mpmath(M)
|
||
|
result = []
|
||
|
for i in range(M.rows):
|
||
|
eigenval = _sympify(E[i])
|
||
|
eigenvect = _sympify(ER[:, i])
|
||
|
result.append((eigenval, 1, [eigenvect]))
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
# This function is a candidate for caching if it gets implemented for matrices.
|
||
|
def _eigenvals(
|
||
|
M, error_when_incomplete=True, *, simplify=False, multiple=False,
|
||
|
rational=False, **flags):
|
||
|
r"""Compute eigenvalues of the matrix.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
error_when_incomplete : bool, optional
|
||
|
If it is set to ``True``, it will raise an error if not all
|
||
|
eigenvalues are computed. This is caused by ``roots`` not returning
|
||
|
a full list of eigenvalues.
|
||
|
|
||
|
simplify : bool or function, optional
|
||
|
If it is set to ``True``, it attempts to return the most
|
||
|
simplified form of expressions returned by applying default
|
||
|
simplification method in every routine.
|
||
|
|
||
|
If it is set to ``False``, it will skip simplification in this
|
||
|
particular routine to save computation resources.
|
||
|
|
||
|
If a function is passed to, it will attempt to apply
|
||
|
the particular function as simplification method.
|
||
|
|
||
|
rational : bool, optional
|
||
|
If it is set to ``True``, every floating point numbers would be
|
||
|
replaced with rationals before computation. It can solve some
|
||
|
issues of ``roots`` routine not working well with floats.
|
||
|
|
||
|
multiple : bool, optional
|
||
|
If it is set to ``True``, the result will be in the form of a
|
||
|
list.
|
||
|
|
||
|
If it is set to ``False``, the result will be in the form of a
|
||
|
dictionary.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
eigs : list or dict
|
||
|
Eigenvalues of a matrix. The return format would be specified by
|
||
|
the key ``multiple``.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
MatrixError
|
||
|
If not enough roots had got computed.
|
||
|
|
||
|
NonSquareMatrixError
|
||
|
If attempted to compute eigenvalues from a non-square matrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices import Matrix
|
||
|
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
|
||
|
>>> M.eigenvals()
|
||
|
{-1: 1, 0: 1, 2: 1}
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
MatrixDeterminant.charpoly
|
||
|
eigenvects
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Eigenvalues of a matrix $A$ can be computed by solving a matrix
|
||
|
equation $\det(A - \lambda I) = 0$
|
||
|
|
||
|
It's not always possible to return radical solutions for
|
||
|
eigenvalues for matrices larger than $4, 4$ shape due to
|
||
|
Abel-Ruffini theorem.
|
||
|
|
||
|
If there is no radical solution is found for the eigenvalue,
|
||
|
it may return eigenvalues in the form of
|
||
|
:class:`sympy.polys.rootoftools.ComplexRootOf`.
|
||
|
"""
|
||
|
if not M:
|
||
|
if multiple:
|
||
|
return []
|
||
|
return {}
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("{} must be a square matrix.".format(M))
|
||
|
|
||
|
if M._rep.domain not in (ZZ, QQ):
|
||
|
# Skip this check for ZZ/QQ because it can be slow
|
||
|
if all(x.is_number for x in M) and M.has(Float):
|
||
|
return _eigenvals_mpmath(M, multiple=multiple)
|
||
|
|
||
|
if rational:
|
||
|
M = M.applyfunc(
|
||
|
lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
|
||
|
|
||
|
if multiple:
|
||
|
return _eigenvals_list(
|
||
|
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
|
||
|
**flags)
|
||
|
return _eigenvals_dict(
|
||
|
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
|
||
|
**flags)
|
||
|
|
||
|
|
||
|
eigenvals_error_message = \
|
||
|
"It is not always possible to express the eigenvalues of a matrix " + \
|
||
|
"of size 5x5 or higher in radicals. " + \
|
||
|
"We have CRootOf, but domains other than the rationals are not " + \
|
||
|
"currently supported. " + \
|
||
|
"If there are no symbols in the matrix, " + \
|
||
|
"it should still be possible to compute numeric approximations " + \
|
||
|
"of the eigenvalues using " + \
|
||
|
"M.evalf().eigenvals() or M.charpoly().nroots()."
|
||
|
|
||
|
|
||
|
def _eigenvals_list(
|
||
|
M, error_when_incomplete=True, simplify=False, **flags):
|
||
|
iblocks = M.strongly_connected_components()
|
||
|
all_eigs = []
|
||
|
is_dom = M._rep.domain in (ZZ, QQ)
|
||
|
for b in iblocks:
|
||
|
|
||
|
# Fast path for a 1x1 block:
|
||
|
if is_dom and len(b) == 1:
|
||
|
index = b[0]
|
||
|
val = M[index, index]
|
||
|
all_eigs.append(val)
|
||
|
continue
|
||
|
|
||
|
block = M[b, b]
|
||
|
|
||
|
if isinstance(simplify, FunctionType):
|
||
|
charpoly = block.charpoly(simplify=simplify)
|
||
|
else:
|
||
|
charpoly = block.charpoly()
|
||
|
|
||
|
eigs = roots(charpoly, multiple=True, **flags)
|
||
|
|
||
|
if len(eigs) != block.rows:
|
||
|
degree = int(charpoly.degree())
|
||
|
f = charpoly.as_expr()
|
||
|
x = charpoly.gen
|
||
|
try:
|
||
|
eigs = [CRootOf(f, x, idx) for idx in range(degree)]
|
||
|
except NotImplementedError:
|
||
|
if error_when_incomplete:
|
||
|
raise MatrixError(eigenvals_error_message)
|
||
|
else:
|
||
|
eigs = []
|
||
|
|
||
|
all_eigs += eigs
|
||
|
|
||
|
if not simplify:
|
||
|
return all_eigs
|
||
|
if not isinstance(simplify, FunctionType):
|
||
|
simplify = _simplify
|
||
|
return [simplify(value) for value in all_eigs]
|
||
|
|
||
|
|
||
|
def _eigenvals_dict(
|
||
|
M, error_when_incomplete=True, simplify=False, **flags):
|
||
|
iblocks = M.strongly_connected_components()
|
||
|
all_eigs = {}
|
||
|
is_dom = M._rep.domain in (ZZ, QQ)
|
||
|
for b in iblocks:
|
||
|
|
||
|
# Fast path for a 1x1 block:
|
||
|
if is_dom and len(b) == 1:
|
||
|
index = b[0]
|
||
|
val = M[index, index]
|
||
|
all_eigs[val] = all_eigs.get(val, 0) + 1
|
||
|
continue
|
||
|
|
||
|
block = M[b, b]
|
||
|
|
||
|
if isinstance(simplify, FunctionType):
|
||
|
charpoly = block.charpoly(simplify=simplify)
|
||
|
else:
|
||
|
charpoly = block.charpoly()
|
||
|
|
||
|
eigs = roots(charpoly, multiple=False, **flags)
|
||
|
|
||
|
if sum(eigs.values()) != block.rows:
|
||
|
degree = int(charpoly.degree())
|
||
|
f = charpoly.as_expr()
|
||
|
x = charpoly.gen
|
||
|
try:
|
||
|
eigs = {CRootOf(f, x, idx): 1 for idx in range(degree)}
|
||
|
except NotImplementedError:
|
||
|
if error_when_incomplete:
|
||
|
raise MatrixError(eigenvals_error_message)
|
||
|
else:
|
||
|
eigs = {}
|
||
|
|
||
|
for k, v in eigs.items():
|
||
|
if k in all_eigs:
|
||
|
all_eigs[k] += v
|
||
|
else:
|
||
|
all_eigs[k] = v
|
||
|
|
||
|
if not simplify:
|
||
|
return all_eigs
|
||
|
if not isinstance(simplify, FunctionType):
|
||
|
simplify = _simplify
|
||
|
return {simplify(key): value for key, value in all_eigs.items()}
|
||
|
|
||
|
|
||
|
def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False):
|
||
|
"""Get a basis for the eigenspace for a particular eigenvalue"""
|
||
|
m = M - M.eye(M.rows) * eigenval
|
||
|
ret = m.nullspace(iszerofunc=iszerofunc)
|
||
|
|
||
|
# The nullspace for a real eigenvalue should be non-trivial.
|
||
|
# If we didn't find an eigenvector, try once more a little harder
|
||
|
if len(ret) == 0 and simplify:
|
||
|
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
|
||
|
if len(ret) == 0:
|
||
|
raise NotImplementedError(
|
||
|
"Can't evaluate eigenvector for eigenvalue {}".format(eigenval))
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _eigenvects_DOM(M, **kwargs):
|
||
|
DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
|
||
|
DOM = DOM.to_dense()
|
||
|
|
||
|
if DOM.domain != EX:
|
||
|
rational, algebraic = dom_eigenvects(DOM)
|
||
|
eigenvects = dom_eigenvects_to_sympy(
|
||
|
rational, algebraic, M.__class__, **kwargs)
|
||
|
eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0]))
|
||
|
|
||
|
return eigenvects
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags):
|
||
|
eigenvals = M.eigenvals(rational=False, **flags)
|
||
|
|
||
|
# Make sure that we have all roots in radical form
|
||
|
for x in eigenvals:
|
||
|
if x.has(CRootOf):
|
||
|
raise MatrixError(
|
||
|
"Eigenvector computation is not implemented if the matrix have "
|
||
|
"eigenvalues in CRootOf form")
|
||
|
|
||
|
eigenvals = sorted(eigenvals.items(), key=default_sort_key)
|
||
|
ret = []
|
||
|
for val, mult in eigenvals:
|
||
|
vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify)
|
||
|
ret.append((val, mult, vects))
|
||
|
return ret
|
||
|
|
||
|
|
||
|
# This functions is a candidate for caching if it gets implemented for matrices.
|
||
|
def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags):
|
||
|
"""Compute eigenvectors of the matrix.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
error_when_incomplete : bool, optional
|
||
|
Raise an error when not all eigenvalues are computed. This is
|
||
|
caused by ``roots`` not returning a full list of eigenvalues.
|
||
|
|
||
|
iszerofunc : function, optional
|
||
|
Specifies a zero testing function to be used in ``rref``.
|
||
|
|
||
|
Default value is ``_iszero``, which uses SymPy's naive and fast
|
||
|
default assumption handler.
|
||
|
|
||
|
It can also accept any user-specified zero testing function, if it
|
||
|
is formatted as a function which accepts a single symbolic argument
|
||
|
and returns ``True`` if it is tested as zero and ``False`` if it
|
||
|
is tested as non-zero, and ``None`` if it is undecidable.
|
||
|
|
||
|
simplify : bool or function, optional
|
||
|
If ``True``, ``as_content_primitive()`` will be used to tidy up
|
||
|
normalization artifacts.
|
||
|
|
||
|
It will also be used by the ``nullspace`` routine.
|
||
|
|
||
|
chop : bool or positive number, optional
|
||
|
If the matrix contains any Floats, they will be changed to Rationals
|
||
|
for computation purposes, but the answers will be returned after
|
||
|
being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
|
||
|
When ``chop=True`` a default precision will be used; a number will
|
||
|
be interpreted as the desired level of precision.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
ret : [(eigenval, multiplicity, eigenspace), ...]
|
||
|
A ragged list containing tuples of data obtained by ``eigenvals``
|
||
|
and ``nullspace``.
|
||
|
|
||
|
``eigenspace`` is a list containing the ``eigenvector`` for each
|
||
|
eigenvalue.
|
||
|
|
||
|
``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
|
||
|
a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
NotImplementedError
|
||
|
If failed to compute nullspace.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices import Matrix
|
||
|
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
|
||
|
>>> M.eigenvects()
|
||
|
[(-1, 1, [Matrix([
|
||
|
[-1],
|
||
|
[ 1],
|
||
|
[ 0]])]), (0, 1, [Matrix([
|
||
|
[ 0],
|
||
|
[-1],
|
||
|
[ 1]])]), (2, 1, [Matrix([
|
||
|
[2/3],
|
||
|
[1/3],
|
||
|
[ 1]])])]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
eigenvals
|
||
|
MatrixSubspaces.nullspace
|
||
|
"""
|
||
|
simplify = flags.get('simplify', True)
|
||
|
primitive = flags.get('simplify', False)
|
||
|
flags.pop('simplify', None) # remove this if it's there
|
||
|
flags.pop('multiple', None) # remove this if it's there
|
||
|
|
||
|
if not isinstance(simplify, FunctionType):
|
||
|
simpfunc = _simplify if simplify else lambda x: x
|
||
|
|
||
|
has_floats = M.has(Float)
|
||
|
if has_floats:
|
||
|
if all(x.is_number for x in M):
|
||
|
return _eigenvects_mpmath(M)
|
||
|
M = M.applyfunc(lambda x: nsimplify(x, rational=True))
|
||
|
|
||
|
ret = _eigenvects_DOM(M)
|
||
|
if ret is None:
|
||
|
ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags)
|
||
|
|
||
|
if primitive:
|
||
|
# if the primitive flag is set, get rid of any common
|
||
|
# integer denominators
|
||
|
def denom_clean(l):
|
||
|
from sympy import gcd
|
||
|
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
|
||
|
|
||
|
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
|
||
|
|
||
|
if has_floats:
|
||
|
# if we had floats to start with, turn the eigenvectors to floats
|
||
|
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es])
|
||
|
for val, mult, es in ret]
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def _is_diagonalizable_with_eigen(M, reals_only=False):
|
||
|
"""See _is_diagonalizable. This function returns the bool along with the
|
||
|
eigenvectors to avoid calculating them again in functions like
|
||
|
``diagonalize``."""
|
||
|
|
||
|
if not M.is_square:
|
||
|
return False, []
|
||
|
|
||
|
eigenvecs = M.eigenvects(simplify=True)
|
||
|
|
||
|
for val, mult, basis in eigenvecs:
|
||
|
if reals_only and not val.is_real: # if we have a complex eigenvalue
|
||
|
return False, eigenvecs
|
||
|
|
||
|
if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic
|
||
|
return False, eigenvecs
|
||
|
|
||
|
return True, eigenvecs
|
||
|
|
||
|
def _is_diagonalizable(M, reals_only=False, **kwargs):
|
||
|
"""Returns ``True`` if a matrix is diagonalizable.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
reals_only : bool, optional
|
||
|
If ``True``, it tests whether the matrix can be diagonalized
|
||
|
to contain only real numbers on the diagonal.
|
||
|
|
||
|
|
||
|
If ``False``, it tests whether the matrix can be diagonalized
|
||
|
at all, even with numbers that may not be real.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Example of a diagonalizable matrix:
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
|
||
|
>>> M.is_diagonalizable()
|
||
|
True
|
||
|
|
||
|
Example of a non-diagonalizable matrix:
|
||
|
|
||
|
>>> M = Matrix([[0, 1], [0, 0]])
|
||
|
>>> M.is_diagonalizable()
|
||
|
False
|
||
|
|
||
|
Example of a matrix that is diagonalized in terms of non-real entries:
|
||
|
|
||
|
>>> M = Matrix([[0, 1], [-1, 0]])
|
||
|
>>> M.is_diagonalizable(reals_only=False)
|
||
|
True
|
||
|
>>> M.is_diagonalizable(reals_only=True)
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_diagonal
|
||
|
diagonalize
|
||
|
"""
|
||
|
|
||
|
if 'clear_cache' in kwargs:
|
||
|
SymPyDeprecationWarning(
|
||
|
feature='clear_cache',
|
||
|
deprecated_since_version=1.4,
|
||
|
issue=15887
|
||
|
).warn()
|
||
|
|
||
|
if 'clear_subproducts' in kwargs:
|
||
|
SymPyDeprecationWarning(
|
||
|
feature='clear_subproducts',
|
||
|
deprecated_since_version=1.4,
|
||
|
issue=15887
|
||
|
).warn()
|
||
|
|
||
|
if not M.is_square:
|
||
|
return False
|
||
|
|
||
|
if all(e.is_real for e in M) and M.is_symmetric():
|
||
|
return True
|
||
|
|
||
|
if all(e.is_complex for e in M) and M.is_hermitian:
|
||
|
return True
|
||
|
|
||
|
return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0]
|
||
|
|
||
|
|
||
|
#G&VL, Matrix Computations, Algo 5.4.2
|
||
|
def _householder_vector(x):
|
||
|
if not x.cols == 1:
|
||
|
raise ValueError("Input must be a column matrix")
|
||
|
v = x.copy()
|
||
|
v_plus = x.copy()
|
||
|
v_minus = x.copy()
|
||
|
q = x[0, 0] / abs(x[0, 0])
|
||
|
norm_x = x.norm()
|
||
|
v_plus[0, 0] = x[0, 0] + q * norm_x
|
||
|
v_minus[0, 0] = x[0, 0] - q * norm_x
|
||
|
if x[1:, 0].norm() == 0:
|
||
|
bet = 0
|
||
|
v[0, 0] = 1
|
||
|
else:
|
||
|
if v_plus.norm() <= v_minus.norm():
|
||
|
v = v_plus
|
||
|
else:
|
||
|
v = v_minus
|
||
|
v = v / v[0]
|
||
|
bet = 2 / (v.norm() ** 2)
|
||
|
return v, bet
|
||
|
|
||
|
|
||
|
def _bidiagonal_decmp_hholder(M):
|
||
|
m = M.rows
|
||
|
n = M.cols
|
||
|
A = M.as_mutable()
|
||
|
U, V = A.eye(m), A.eye(n)
|
||
|
for i in range(min(m, n)):
|
||
|
v, bet = _householder_vector(A[i:, i])
|
||
|
hh_mat = A.eye(m - i) - bet * v * v.H
|
||
|
A[i:, i:] = hh_mat * A[i:, i:]
|
||
|
temp = A.eye(m)
|
||
|
temp[i:, i:] = hh_mat
|
||
|
U = U * temp
|
||
|
if i + 1 <= n - 2:
|
||
|
v, bet = _householder_vector(A[i, i+1:].T)
|
||
|
hh_mat = A.eye(n - i - 1) - bet * v * v.H
|
||
|
A[i:, i+1:] = A[i:, i+1:] * hh_mat
|
||
|
temp = A.eye(n)
|
||
|
temp[i+1:, i+1:] = hh_mat
|
||
|
V = temp * V
|
||
|
return U, A, V
|
||
|
|
||
|
|
||
|
def _eval_bidiag_hholder(M):
|
||
|
m = M.rows
|
||
|
n = M.cols
|
||
|
A = M.as_mutable()
|
||
|
for i in range(min(m, n)):
|
||
|
v, bet = _householder_vector(A[i:, i])
|
||
|
hh_mat = A.eye(m-i) - bet * v * v.H
|
||
|
A[i:, i:] = hh_mat * A[i:, i:]
|
||
|
if i + 1 <= n - 2:
|
||
|
v, bet = _householder_vector(A[i, i+1:].T)
|
||
|
hh_mat = A.eye(n - i - 1) - bet * v * v.H
|
||
|
A[i:, i+1:] = A[i:, i+1:] * hh_mat
|
||
|
return A
|
||
|
|
||
|
|
||
|
def _bidiagonal_decomposition(M, upper=True):
|
||
|
"""
|
||
|
Returns (U,B,V.H)
|
||
|
|
||
|
$A = UBV^{H}$
|
||
|
|
||
|
where A is the input matrix, and B is its Bidiagonalized form
|
||
|
|
||
|
Note: Bidiagonal Computation can hang for symbolic matrices.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
upper : bool. Whether to do upper bidiagnalization or lower.
|
||
|
True for upper and False for lower.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
|
||
|
2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
|
||
|
|
||
|
"""
|
||
|
|
||
|
if type(upper) is not bool:
|
||
|
raise ValueError("upper must be a boolean")
|
||
|
|
||
|
if not upper:
|
||
|
X = _bidiagonal_decmp_hholder(M.H)
|
||
|
return X[2].H, X[1].H, X[0].H
|
||
|
|
||
|
return _bidiagonal_decmp_hholder(M)
|
||
|
|
||
|
|
||
|
def _bidiagonalize(M, upper=True):
|
||
|
"""
|
||
|
Returns $B$, the Bidiagonalized form of the input matrix.
|
||
|
|
||
|
Note: Bidiagonal Computation can hang for symbolic matrices.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
upper : bool. Whether to do upper bidiagnalization or lower.
|
||
|
True for upper and False for lower.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
|
||
|
2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
|
||
|
|
||
|
"""
|
||
|
|
||
|
if type(upper) is not bool:
|
||
|
raise ValueError("upper must be a boolean")
|
||
|
|
||
|
if not upper:
|
||
|
return _eval_bidiag_hholder(M.H).H
|
||
|
|
||
|
return _eval_bidiag_hholder(M)
|
||
|
|
||
|
|
||
|
def _diagonalize(M, reals_only=False, sort=False, normalize=False):
|
||
|
"""
|
||
|
Return (P, D), where D is diagonal and
|
||
|
|
||
|
D = P^-1 * M * P
|
||
|
|
||
|
where M is current matrix.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
reals_only : bool. Whether to throw an error if complex numbers are need
|
||
|
to diagonalize. (Default: False)
|
||
|
|
||
|
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
|
||
|
|
||
|
normalize : bool. If True, normalize the columns of P. (Default: False)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices import Matrix
|
||
|
>>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
|
||
|
>>> M
|
||
|
Matrix([
|
||
|
[1, 2, 0],
|
||
|
[0, 3, 0],
|
||
|
[2, -4, 2]])
|
||
|
>>> (P, D) = M.diagonalize()
|
||
|
>>> D
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 2, 0],
|
||
|
[0, 0, 3]])
|
||
|
>>> P
|
||
|
Matrix([
|
||
|
[-1, 0, -1],
|
||
|
[ 0, 0, -1],
|
||
|
[ 2, 1, 2]])
|
||
|
>>> P.inv() * M * P
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 2, 0],
|
||
|
[0, 0, 3]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_diagonal
|
||
|
is_diagonalizable
|
||
|
"""
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError()
|
||
|
|
||
|
is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
|
||
|
reals_only=reals_only)
|
||
|
|
||
|
if not is_diagonalizable:
|
||
|
raise MatrixError("Matrix is not diagonalizable")
|
||
|
|
||
|
if sort:
|
||
|
eigenvecs = sorted(eigenvecs, key=default_sort_key)
|
||
|
|
||
|
p_cols, diag = [], []
|
||
|
|
||
|
for val, mult, basis in eigenvecs:
|
||
|
diag += [val] * mult
|
||
|
p_cols += basis
|
||
|
|
||
|
if normalize:
|
||
|
p_cols = [v / v.norm() for v in p_cols]
|
||
|
|
||
|
return M.hstack(*p_cols), M.diag(*diag)
|
||
|
|
||
|
|
||
|
def _fuzzy_positive_definite(M):
|
||
|
positive_diagonals = M._has_positive_diagonals()
|
||
|
if positive_diagonals is False:
|
||
|
return False
|
||
|
|
||
|
if positive_diagonals and M.is_strongly_diagonally_dominant:
|
||
|
return True
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _fuzzy_positive_semidefinite(M):
|
||
|
nonnegative_diagonals = M._has_nonnegative_diagonals()
|
||
|
if nonnegative_diagonals is False:
|
||
|
return False
|
||
|
|
||
|
if nonnegative_diagonals and M.is_weakly_diagonally_dominant:
|
||
|
return True
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _is_positive_definite(M):
|
||
|
if not M.is_hermitian:
|
||
|
if not M.is_square:
|
||
|
return False
|
||
|
M = M + M.H
|
||
|
|
||
|
fuzzy = _fuzzy_positive_definite(M)
|
||
|
if fuzzy is not None:
|
||
|
return fuzzy
|
||
|
|
||
|
return _is_positive_definite_GE(M)
|
||
|
|
||
|
|
||
|
def _is_positive_semidefinite(M):
|
||
|
if not M.is_hermitian:
|
||
|
if not M.is_square:
|
||
|
return False
|
||
|
M = M + M.H
|
||
|
|
||
|
fuzzy = _fuzzy_positive_semidefinite(M)
|
||
|
if fuzzy is not None:
|
||
|
return fuzzy
|
||
|
|
||
|
return _is_positive_semidefinite_cholesky(M)
|
||
|
|
||
|
|
||
|
def _is_negative_definite(M):
|
||
|
return _is_positive_definite(-M)
|
||
|
|
||
|
|
||
|
def _is_negative_semidefinite(M):
|
||
|
return _is_positive_semidefinite(-M)
|
||
|
|
||
|
|
||
|
def _is_indefinite(M):
|
||
|
if M.is_hermitian:
|
||
|
eigen = M.eigenvals()
|
||
|
args1 = [x.is_positive for x in eigen.keys()]
|
||
|
any_positive = fuzzy_or(args1)
|
||
|
args2 = [x.is_negative for x in eigen.keys()]
|
||
|
any_negative = fuzzy_or(args2)
|
||
|
|
||
|
return fuzzy_and([any_positive, any_negative])
|
||
|
|
||
|
elif M.is_square:
|
||
|
return (M + M.H).is_indefinite
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _is_positive_definite_GE(M):
|
||
|
"""A division-free gaussian elimination method for testing
|
||
|
positive-definiteness."""
|
||
|
M = M.as_mutable()
|
||
|
size = M.rows
|
||
|
|
||
|
for i in range(size):
|
||
|
is_positive = M[i, i].is_positive
|
||
|
if is_positive is not True:
|
||
|
return is_positive
|
||
|
for j in range(i+1, size):
|
||
|
M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:]
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _is_positive_semidefinite_cholesky(M):
|
||
|
"""Uses Cholesky factorization with complete pivoting
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf
|
||
|
|
||
|
.. [2] https://www.value-at-risk.net/cholesky-factorization/
|
||
|
"""
|
||
|
M = M.as_mutable()
|
||
|
for k in range(M.rows):
|
||
|
diags = [M[i, i] for i in range(k, M.rows)]
|
||
|
pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags)
|
||
|
|
||
|
if nonzero:
|
||
|
return None
|
||
|
|
||
|
if pivot is None:
|
||
|
for i in range(k+1, M.rows):
|
||
|
for j in range(k, M.cols):
|
||
|
iszero = M[i, j].is_zero
|
||
|
if iszero is None:
|
||
|
return None
|
||
|
elif iszero is False:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
if M[k, k].is_negative or pivot_val.is_negative:
|
||
|
return False
|
||
|
elif not (M[k, k].is_nonnegative and pivot_val.is_nonnegative):
|
||
|
return None
|
||
|
|
||
|
if pivot > 0:
|
||
|
M.col_swap(k, k+pivot)
|
||
|
M.row_swap(k, k+pivot)
|
||
|
|
||
|
M[k, k] = sqrt(M[k, k])
|
||
|
M[k, k+1:] /= M[k, k]
|
||
|
M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:]
|
||
|
|
||
|
return M[-1, -1].is_nonnegative
|
||
|
|
||
|
|
||
|
_doc_positive_definite = \
|
||
|
r"""Finds out the definiteness of a matrix.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A square real matrix $A$ is:
|
||
|
|
||
|
- A positive definite matrix if $x^T A x > 0$
|
||
|
for all non-zero real vectors $x$.
|
||
|
- A positive semidefinite matrix if $x^T A x \geq 0$
|
||
|
for all non-zero real vectors $x$.
|
||
|
- A negative definite matrix if $x^T A x < 0$
|
||
|
for all non-zero real vectors $x$.
|
||
|
- A negative semidefinite matrix if $x^T A x \leq 0$
|
||
|
for all non-zero real vectors $x$.
|
||
|
- An indefinite matrix if there exists non-zero real vectors
|
||
|
$x, y$ with $x^T A x > 0 > y^T A y$.
|
||
|
|
||
|
A square complex matrix $A$ is:
|
||
|
|
||
|
- A positive definite matrix if $\text{re}(x^H A x) > 0$
|
||
|
for all non-zero complex vectors $x$.
|
||
|
- A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$
|
||
|
for all non-zero complex vectors $x$.
|
||
|
- A negative definite matrix if $\text{re}(x^H A x) < 0$
|
||
|
for all non-zero complex vectors $x$.
|
||
|
- A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$
|
||
|
for all non-zero complex vectors $x$.
|
||
|
- An indefinite matrix if there exists non-zero complex vectors
|
||
|
$x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.
|
||
|
|
||
|
A matrix need not be symmetric or hermitian to be positive definite.
|
||
|
|
||
|
- A real non-symmetric matrix is positive definite if and only if
|
||
|
$\frac{A + A^T}{2}$ is positive definite.
|
||
|
- A complex non-hermitian matrix is positive definite if and only if
|
||
|
$\frac{A + A^H}{2}$ is positive definite.
|
||
|
|
||
|
And this extension can apply for all the definitions above.
|
||
|
|
||
|
However, for complex cases, you can restrict the definition of
|
||
|
$\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix
|
||
|
to be hermitian.
|
||
|
But we do not present this restriction for computation because you
|
||
|
can check ``M.is_hermitian`` independently with this and use
|
||
|
the same procedure.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
An example of symmetric positive definite matrix:
|
||
|
|
||
|
.. plot::
|
||
|
:context: reset
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import Matrix, symbols
|
||
|
>>> from sympy.plotting import plot3d
|
||
|
>>> a, b = symbols('a b')
|
||
|
>>> x = Matrix([a, b])
|
||
|
|
||
|
>>> A = Matrix([[1, 0], [0, 1]])
|
||
|
>>> A.is_positive_definite
|
||
|
True
|
||
|
>>> A.is_positive_semidefinite
|
||
|
True
|
||
|
|
||
|
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
|
||
|
|
||
|
An example of symmetric positive semidefinite matrix:
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> A = Matrix([[1, -1], [-1, 1]])
|
||
|
>>> A.is_positive_definite
|
||
|
False
|
||
|
>>> A.is_positive_semidefinite
|
||
|
True
|
||
|
|
||
|
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
|
||
|
|
||
|
An example of symmetric negative definite matrix:
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> A = Matrix([[-1, 0], [0, -1]])
|
||
|
>>> A.is_negative_definite
|
||
|
True
|
||
|
>>> A.is_negative_semidefinite
|
||
|
True
|
||
|
>>> A.is_indefinite
|
||
|
False
|
||
|
|
||
|
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
|
||
|
|
||
|
An example of symmetric indefinite matrix:
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> A = Matrix([[1, 2], [2, -1]])
|
||
|
>>> A.is_indefinite
|
||
|
True
|
||
|
|
||
|
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
|
||
|
|
||
|
An example of non-symmetric positive definite matrix.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> A = Matrix([[1, 2], [-2, 1]])
|
||
|
>>> A.is_positive_definite
|
||
|
True
|
||
|
>>> A.is_positive_semidefinite
|
||
|
True
|
||
|
|
||
|
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Although some people trivialize the definition of positive definite
|
||
|
matrices only for symmetric or hermitian matrices, this restriction
|
||
|
is not correct because it does not classify all instances of
|
||
|
positive definite matrices from the definition $x^T A x > 0$ or
|
||
|
$\text{re}(x^H A x) > 0$.
|
||
|
|
||
|
For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in
|
||
|
the example above is an example of real positive definite matrix
|
||
|
that is not symmetric.
|
||
|
|
||
|
However, since the following formula holds true;
|
||
|
|
||
|
.. math::
|
||
|
\text{re}(x^H A x) > 0 \iff
|
||
|
\text{re}(x^H \frac{A + A^H}{2} x) > 0
|
||
|
|
||
|
We can classify all positive definite matrices that may or may not
|
||
|
be symmetric or hermitian by transforming the matrix to
|
||
|
$\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$
|
||
|
(which is guaranteed to be always real symmetric or complex
|
||
|
hermitian) and we can defer most of the studies to symmetric or
|
||
|
hermitian positive definite matrices.
|
||
|
|
||
|
But it is a different problem for the existance of Cholesky
|
||
|
decomposition. Because even though a non symmetric or a non
|
||
|
hermitian matrix can be positive definite, Cholesky or LDL
|
||
|
decomposition does not exist because the decompositions require the
|
||
|
matrix to be symmetric or hermitian.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues
|
||
|
|
||
|
.. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
|
||
|
|
||
|
.. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
|
||
|
Math. Monthly 77, 259-264 1970.
|
||
|
"""
|
||
|
|
||
|
_is_positive_definite.__doc__ = _doc_positive_definite
|
||
|
_is_positive_semidefinite.__doc__ = _doc_positive_definite
|
||
|
_is_negative_definite.__doc__ = _doc_positive_definite
|
||
|
_is_negative_semidefinite.__doc__ = _doc_positive_definite
|
||
|
_is_indefinite.__doc__ = _doc_positive_definite
|
||
|
|
||
|
|
||
|
def _jordan_form(M, calc_transform=True, *, chop=False):
|
||
|
"""Return $(P, J)$ where $J$ is a Jordan block
|
||
|
matrix and $P$ is a matrix such that $M = P J P^{-1}$
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
calc_transform : bool
|
||
|
If ``False``, then only $J$ is returned.
|
||
|
|
||
|
chop : bool
|
||
|
All matrices are converted to exact types when computing
|
||
|
eigenvalues and eigenvectors. As a result, there may be
|
||
|
approximation errors. If ``chop==True``, these errors
|
||
|
will be truncated.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices import Matrix
|
||
|
>>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
|
||
|
>>> P, J = M.jordan_form()
|
||
|
>>> J
|
||
|
Matrix([
|
||
|
[2, 1, 0, 0],
|
||
|
[0, 2, 0, 0],
|
||
|
[0, 0, 2, 1],
|
||
|
[0, 0, 0, 2]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
jordan_block
|
||
|
"""
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("Only square matrices have Jordan forms")
|
||
|
|
||
|
mat = M
|
||
|
has_floats = M.has(Float)
|
||
|
|
||
|
if has_floats:
|
||
|
try:
|
||
|
max_prec = max(term._prec for term in M.values() if isinstance(term, Float))
|
||
|
except ValueError:
|
||
|
# if no term in the matrix is explicitly a Float calling max()
|
||
|
# will throw a error so setting max_prec to default value of 53
|
||
|
max_prec = 53
|
||
|
|
||
|
# setting minimum max_dps to 15 to prevent loss of precision in
|
||
|
# matrix containing non evaluated expressions
|
||
|
max_dps = max(prec_to_dps(max_prec), 15)
|
||
|
|
||
|
def restore_floats(*args):
|
||
|
"""If ``has_floats`` is `True`, cast all ``args`` as
|
||
|
matrices of floats."""
|
||
|
|
||
|
if has_floats:
|
||
|
args = [m.evalf(n=max_dps, chop=chop) for m in args]
|
||
|
if len(args) == 1:
|
||
|
return args[0]
|
||
|
|
||
|
return args
|
||
|
|
||
|
# cache calculations for some speedup
|
||
|
mat_cache = {}
|
||
|
|
||
|
def eig_mat(val, pow):
|
||
|
"""Cache computations of ``(M - val*I)**pow`` for quick
|
||
|
retrieval"""
|
||
|
|
||
|
if (val, pow) in mat_cache:
|
||
|
return mat_cache[(val, pow)]
|
||
|
|
||
|
if (val, pow - 1) in mat_cache:
|
||
|
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply(
|
||
|
mat_cache[(val, 1)], dotprodsimp=None)
|
||
|
else:
|
||
|
mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow)
|
||
|
|
||
|
return mat_cache[(val, pow)]
|
||
|
|
||
|
# helper functions
|
||
|
def nullity_chain(val, algebraic_multiplicity):
|
||
|
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
|
||
|
until it is constant where ``E = M - val*I``"""
|
||
|
|
||
|
# mat.rank() is faster than computing the null space,
|
||
|
# so use the rank-nullity theorem
|
||
|
cols = M.cols
|
||
|
ret = [0]
|
||
|
nullity = cols - eig_mat(val, 1).rank()
|
||
|
i = 2
|
||
|
|
||
|
while nullity != ret[-1]:
|
||
|
ret.append(nullity)
|
||
|
|
||
|
if nullity == algebraic_multiplicity:
|
||
|
break
|
||
|
|
||
|
nullity = cols - eig_mat(val, i).rank()
|
||
|
i += 1
|
||
|
|
||
|
# Due to issues like #7146 and #15872, SymPy sometimes
|
||
|
# gives the wrong rank. In this case, raise an error
|
||
|
# instead of returning an incorrect matrix
|
||
|
if nullity < ret[-1] or nullity > algebraic_multiplicity:
|
||
|
raise MatrixError(
|
||
|
"SymPy had encountered an inconsistent "
|
||
|
"result while computing Jordan block: "
|
||
|
"{}".format(M))
|
||
|
|
||
|
return ret
|
||
|
|
||
|
def blocks_from_nullity_chain(d):
|
||
|
"""Return a list of the size of each Jordan block.
|
||
|
If d_n is the nullity of E**n, then the number
|
||
|
of Jordan blocks of size n is
|
||
|
|
||
|
2*d_n - d_(n-1) - d_(n+1)"""
|
||
|
|
||
|
# d[0] is always the number of columns, so skip past it
|
||
|
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
|
||
|
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
|
||
|
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
|
||
|
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
|
||
|
|
||
|
return mid + end
|
||
|
|
||
|
def pick_vec(small_basis, big_basis):
|
||
|
"""Picks a vector from big_basis that isn't in
|
||
|
the subspace spanned by small_basis"""
|
||
|
|
||
|
if len(small_basis) == 0:
|
||
|
return big_basis[0]
|
||
|
|
||
|
for v in big_basis:
|
||
|
_, pivots = M.hstack(*(small_basis + [v])).echelon_form(
|
||
|
with_pivots=True)
|
||
|
|
||
|
if pivots[-1] == len(small_basis):
|
||
|
return v
|
||
|
|
||
|
# roots doesn't like Floats, so replace them with Rationals
|
||
|
if has_floats:
|
||
|
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
|
||
|
|
||
|
# first calculate the jordan block structure
|
||
|
eigs = mat.eigenvals()
|
||
|
|
||
|
# Make sure that we have all roots in radical form
|
||
|
for x in eigs:
|
||
|
if x.has(CRootOf):
|
||
|
raise MatrixError(
|
||
|
"Jordan normal form is not implemented if the matrix have "
|
||
|
"eigenvalues in CRootOf form")
|
||
|
|
||
|
# most matrices have distinct eigenvalues
|
||
|
# and so are diagonalizable. In this case, don't
|
||
|
# do extra work!
|
||
|
if len(eigs.keys()) == mat.cols:
|
||
|
blocks = list(sorted(eigs.keys(), key=default_sort_key))
|
||
|
jordan_mat = mat.diag(*blocks)
|
||
|
|
||
|
if not calc_transform:
|
||
|
return restore_floats(jordan_mat)
|
||
|
|
||
|
jordan_basis = [eig_mat(eig, 1).nullspace()[0]
|
||
|
for eig in blocks]
|
||
|
basis_mat = mat.hstack(*jordan_basis)
|
||
|
|
||
|
return restore_floats(basis_mat, jordan_mat)
|
||
|
|
||
|
block_structure = []
|
||
|
|
||
|
for eig in sorted(eigs.keys(), key=default_sort_key):
|
||
|
algebraic_multiplicity = eigs[eig]
|
||
|
chain = nullity_chain(eig, algebraic_multiplicity)
|
||
|
block_sizes = blocks_from_nullity_chain(chain)
|
||
|
|
||
|
# if block_sizes = = [a, b, c, ...], then the number of
|
||
|
# Jordan blocks of size 1 is a, of size 2 is b, etc.
|
||
|
# create an array that has (eig, block_size) with one
|
||
|
# entry for each block
|
||
|
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
|
||
|
|
||
|
# we expect larger Jordan blocks to come earlier
|
||
|
size_nums.reverse()
|
||
|
|
||
|
block_structure.extend(
|
||
|
(eig, size) for size, num in size_nums for _ in range(num))
|
||
|
|
||
|
jordan_form_size = sum(size for eig, size in block_structure)
|
||
|
|
||
|
if jordan_form_size != M.rows:
|
||
|
raise MatrixError(
|
||
|
"SymPy had encountered an inconsistent result while "
|
||
|
"computing Jordan block. : {}".format(M))
|
||
|
|
||
|
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
|
||
|
jordan_mat = mat.diag(*blocks)
|
||
|
|
||
|
if not calc_transform:
|
||
|
return restore_floats(jordan_mat)
|
||
|
|
||
|
# For each generalized eigenspace, calculate a basis.
|
||
|
# We start by looking for a vector in null( (A - eig*I)**n )
|
||
|
# which isn't in null( (A - eig*I)**(n-1) ) where n is
|
||
|
# the size of the Jordan block
|
||
|
#
|
||
|
# Ideally we'd just loop through block_structure and
|
||
|
# compute each generalized eigenspace. However, this
|
||
|
# causes a lot of unneeded computation. Instead, we
|
||
|
# go through the eigenvalues separately, since we know
|
||
|
# their generalized eigenspaces must have bases that
|
||
|
# are linearly independent.
|
||
|
jordan_basis = []
|
||
|
|
||
|
for eig in sorted(eigs.keys(), key=default_sort_key):
|
||
|
eig_basis = []
|
||
|
|
||
|
for block_eig, size in block_structure:
|
||
|
if block_eig != eig:
|
||
|
continue
|
||
|
|
||
|
null_big = (eig_mat(eig, size)).nullspace()
|
||
|
null_small = (eig_mat(eig, size - 1)).nullspace()
|
||
|
|
||
|
# we want to pick something that is in the big basis
|
||
|
# and not the small, but also something that is independent
|
||
|
# of any other generalized eigenvectors from a different
|
||
|
# generalized eigenspace sharing the same eigenvalue.
|
||
|
vec = pick_vec(null_small + eig_basis, null_big)
|
||
|
new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None)
|
||
|
for i in range(size)]
|
||
|
|
||
|
eig_basis.extend(new_vecs)
|
||
|
jordan_basis.extend(reversed(new_vecs))
|
||
|
|
||
|
basis_mat = mat.hstack(*jordan_basis)
|
||
|
|
||
|
return restore_floats(basis_mat, jordan_mat)
|
||
|
|
||
|
|
||
|
def _left_eigenvects(M, **flags):
|
||
|
"""Returns left eigenvectors and eigenvalues.
|
||
|
|
||
|
This function returns the list of triples (eigenval, multiplicity,
|
||
|
basis) for the left eigenvectors. Options are the same as for
|
||
|
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
|
||
|
eigenvects().
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices import Matrix
|
||
|
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
|
||
|
>>> M.eigenvects()
|
||
|
[(-1, 1, [Matrix([
|
||
|
[-1],
|
||
|
[ 1],
|
||
|
[ 0]])]), (0, 1, [Matrix([
|
||
|
[ 0],
|
||
|
[-1],
|
||
|
[ 1]])]), (2, 1, [Matrix([
|
||
|
[2/3],
|
||
|
[1/3],
|
||
|
[ 1]])])]
|
||
|
>>> M.left_eigenvects()
|
||
|
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
|
||
|
1, [Matrix([[1, 1, 1]])])]
|
||
|
|
||
|
"""
|
||
|
|
||
|
eigs = M.transpose().eigenvects(**flags)
|
||
|
|
||
|
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
|
||
|
|
||
|
|
||
|
def _singular_values(M):
|
||
|
"""Compute the singular values of a Matrix
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix, Symbol
|
||
|
>>> x = Symbol('x', real=True)
|
||
|
>>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
|
||
|
>>> M.singular_values()
|
||
|
[sqrt(x**2 + 1), 1, 0]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
condition_number
|
||
|
"""
|
||
|
|
||
|
if M.rows >= M.cols:
|
||
|
valmultpairs = M.H.multiply(M).eigenvals()
|
||
|
else:
|
||
|
valmultpairs = M.multiply(M.H).eigenvals()
|
||
|
|
||
|
# Expands result from eigenvals into a simple list
|
||
|
vals = []
|
||
|
|
||
|
for k, v in valmultpairs.items():
|
||
|
vals += [sqrt(k)] * v # dangerous! same k in several spots!
|
||
|
|
||
|
# Pad with zeros if singular values are computed in reverse way,
|
||
|
# to give consistent format.
|
||
|
if len(vals) < M.cols:
|
||
|
vals += [M.zero] * (M.cols - len(vals))
|
||
|
|
||
|
# sort them in descending order
|
||
|
vals.sort(reverse=True, key=default_sort_key)
|
||
|
|
||
|
return vals
|