"""Integration method that emulates by-hand techniques. This module also provides functionality to get the steps used to evaluate a particular integral, in the ``integral_steps`` function. This will return nested namedtuples representing the integration rules used. The ``manualintegrate`` function computes the integral using those steps given an integrand; given the steps, ``_manualintegrate`` will evaluate them. The integrator can be extended with new heuristics and evaluation techniques. To do so, write a function that accepts an ``IntegralInfo`` object and returns either a namedtuple representing a rule or ``None``. Then, write another function that accepts the namedtuple's fields and returns the antiderivative, and decorate it with ``@evaluates(namedtuple_type)``. If the new technique requires a new match, add the key and call to the antiderivative function to integral_steps. To enable simple substitutions, add the match to find_substitutions. """ from typing import Dict as tDict, Optional from collections import namedtuple, defaultdict from collections.abc import Mapping from functools import reduce import sympy from sympy.core.compatibility import iterable from sympy.core.containers import Dict from sympy.core.expr import Expr from sympy.core.logic import fuzzy_not from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.functions.special.polynomials import OrthogonalPolynomial from sympy.functions.elementary.piecewise import Piecewise from sympy.strategies.core import switch, do_one, null_safe, condition from sympy.core.relational import Eq, Ne from sympy.polys.polytools import degree from sympy.ntheory.factor_ import divisors from sympy.utilities.misc import debug ZERO = sympy.S.Zero def Rule(name, props=""): # GOTCHA: namedtuple class name not considered! def __eq__(self, other): return self.__class__ == other.__class__ and tuple.__eq__(self, other) __neq__ = lambda self, other: not __eq__(self, other) cls = namedtuple(name, props + " context symbol") cls.__eq__ = __eq__ cls.__ne__ = __neq__ return cls ConstantRule = Rule("ConstantRule", "constant") ConstantTimesRule = Rule("ConstantTimesRule", "constant other substep") PowerRule = Rule("PowerRule", "base exp") AddRule = Rule("AddRule", "substeps") URule = Rule("URule", "u_var u_func constant substep") PartsRule = Rule("PartsRule", "u dv v_step second_step") CyclicPartsRule = Rule("CyclicPartsRule", "parts_rules coefficient") TrigRule = Rule("TrigRule", "func arg") ExpRule = Rule("ExpRule", "base exp") ReciprocalRule = Rule("ReciprocalRule", "func") ArcsinRule = Rule("ArcsinRule") InverseHyperbolicRule = Rule("InverseHyperbolicRule", "func") AlternativeRule = Rule("AlternativeRule", "alternatives") DontKnowRule = Rule("DontKnowRule") DerivativeRule = Rule("DerivativeRule") RewriteRule = Rule("RewriteRule", "rewritten substep") PiecewiseRule = Rule("PiecewiseRule", "subfunctions") HeavisideRule = Rule("HeavisideRule", "harg ibnd substep") TrigSubstitutionRule = Rule("TrigSubstitutionRule", "theta func rewritten substep restriction") ArctanRule = Rule("ArctanRule", "a b c") ArccothRule = Rule("ArccothRule", "a b c") ArctanhRule = Rule("ArctanhRule", "a b c") JacobiRule = Rule("JacobiRule", "n a b") GegenbauerRule = Rule("GegenbauerRule", "n a") ChebyshevTRule = Rule("ChebyshevTRule", "n") ChebyshevURule = Rule("ChebyshevURule", "n") LegendreRule = Rule("LegendreRule", "n") HermiteRule = Rule("HermiteRule", "n") LaguerreRule = Rule("LaguerreRule", "n") AssocLaguerreRule = Rule("AssocLaguerreRule", "n a") CiRule = Rule("CiRule", "a b") ChiRule = Rule("ChiRule", "a b") EiRule = Rule("EiRule", "a b") SiRule = Rule("SiRule", "a b") ShiRule = Rule("ShiRule", "a b") ErfRule = Rule("ErfRule", "a b c") FresnelCRule = Rule("FresnelCRule", "a b c") FresnelSRule = Rule("FresnelSRule", "a b c") LiRule = Rule("LiRule", "a b") PolylogRule = Rule("PolylogRule", "a b") UpperGammaRule = Rule("UpperGammaRule", "a e") EllipticFRule = Rule("EllipticFRule", "a d") EllipticERule = Rule("EllipticERule", "a d") IntegralInfo = namedtuple('IntegralInfo', 'integrand symbol') evaluators = {} def evaluates(rule): def _evaluates(func): func.rule = rule evaluators[rule] = func return func return _evaluates def contains_dont_know(rule): if isinstance(rule, DontKnowRule): return True else: for val in rule: if isinstance(val, tuple): if contains_dont_know(val): return True elif isinstance(val, list): if any(contains_dont_know(i) for i in val): return True return False def manual_diff(f, symbol): """Derivative of f in form expected by find_substitutions SymPy's derivatives for some trig functions (like cot) aren't in a form that works well with finding substitutions; this replaces the derivatives for those particular forms with something that works better. """ if f.args: arg = f.args[0] if isinstance(f, sympy.tan): return arg.diff(symbol) * sympy.sec(arg)**2 elif isinstance(f, sympy.cot): return -arg.diff(symbol) * sympy.csc(arg)**2 elif isinstance(f, sympy.sec): return arg.diff(symbol) * sympy.sec(arg) * sympy.tan(arg) elif isinstance(f, sympy.csc): return -arg.diff(symbol) * sympy.csc(arg) * sympy.cot(arg) elif isinstance(f, sympy.Add): return sum([manual_diff(arg, symbol) for arg in f.args]) elif isinstance(f, sympy.Mul): if len(f.args) == 2 and isinstance(f.args[0], sympy.Number): return f.args[0] * manual_diff(f.args[1], symbol) return f.diff(symbol) def manual_subs(expr, *args): """ A wrapper for `expr.subs(*args)` with additional logic for substitution of invertible functions. """ if len(args) == 1: sequence = args[0] if isinstance(sequence, (Dict, Mapping)): sequence = sequence.items() elif not iterable(sequence): raise ValueError("Expected an iterable of (old, new) pairs") elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") new_subs = [] for old, new in sequence: if isinstance(old, sympy.log): # If log(x) = y, then exp(a*log(x)) = exp(a*y) # that is, x**a = exp(a*y). Replace nontrivial powers of x # before subs turns them into `exp(y)**a`, but # do not replace x itself yet, to avoid `log(exp(y))`. x0 = old.args[0] expr = expr.replace(lambda x: x.is_Pow and x.base == x0, lambda x: sympy.exp(x.exp*new)) new_subs.append((x0, sympy.exp(new))) return expr.subs(list(sequence) + new_subs) # Method based on that on SIN, described in "Symbolic Integration: The # Stormy Decade" inverse_trig_functions = (sympy.atan, sympy.asin, sympy.acos, sympy.acot, sympy.acsc, sympy.asec) def find_substitutions(integrand, symbol, u_var): results = [] def test_subterm(u, u_diff): if u_diff == 0: return False substituted = integrand / u_diff if symbol not in substituted.free_symbols: # replaced everything already return False debug("substituted: {}, u: {}, u_var: {}".format(substituted, u, u_var)) substituted = manual_subs(substituted, u, u_var).cancel() if symbol not in substituted.free_symbols: # avoid increasing the degree of a rational function if integrand.is_rational_function(symbol) and substituted.is_rational_function(u_var): deg_before = max([degree(t, symbol) for t in integrand.as_numer_denom()]) deg_after = max([degree(t, u_var) for t in substituted.as_numer_denom()]) if deg_after > deg_before: return False return substituted.as_independent(u_var, as_Add=False) # special treatment for substitutions u = (a*x+b)**(1/n) if (isinstance(u, sympy.Pow) and (1/u.exp).is_Integer and sympy.Abs(u.exp) < 1): a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) match = u.base.match(a*symbol + b) if match: a, b = [match.get(i, ZERO) for i in (a, b)] if a != 0 and b != 0: substituted = substituted.subs(symbol, (u_var**(1/u.exp) - b)/a) return substituted.as_independent(u_var, as_Add=False) return False def possible_subterms(term): if isinstance(term, (TrigonometricFunction, *inverse_trig_functions, sympy.exp, sympy.log, sympy.Heaviside)): return [term.args[0]] elif isinstance(term, (sympy.chebyshevt, sympy.chebyshevu, sympy.legendre, sympy.hermite, sympy.laguerre)): return [term.args[1]] elif isinstance(term, (sympy.gegenbauer, sympy.assoc_laguerre)): return [term.args[2]] elif isinstance(term, sympy.jacobi): return [term.args[3]] elif isinstance(term, sympy.Mul): r = [] for u in term.args: r.append(u) r.extend(possible_subterms(u)) return r elif isinstance(term, sympy.Pow): r = [] if term.args[1].is_constant(symbol): r.append(term.args[0]) elif term.args[0].is_constant(symbol): r.append(term.args[1]) if term.args[1].is_Integer: r.extend([term.args[0]**d for d in divisors(term.args[1]) if 1 < d < abs(term.args[1])]) if term.args[0].is_Add: r.extend([t for t in possible_subterms(term.args[0]) if t.is_Pow]) return r elif isinstance(term, sympy.Add): r = [] for arg in term.args: r.append(arg) r.extend(possible_subterms(arg)) return r return [] for u in possible_subterms(integrand): if u == symbol: continue u_diff = manual_diff(u, symbol) new_integrand = test_subterm(u, u_diff) if new_integrand is not False: constant, new_integrand = new_integrand if new_integrand == integrand.subs(symbol, u_var): continue substitution = (u, constant, new_integrand) if substitution not in results: results.append(substitution) return results def rewriter(condition, rewrite): """Strategy that rewrites an integrand.""" def _rewriter(integral): integrand, symbol = integral debug("Integral: {} is rewritten with {} on symbol: {}".format(integrand, rewrite, symbol)) if condition(*integral): rewritten = rewrite(*integral) if rewritten != integrand: substep = integral_steps(rewritten, symbol) if not isinstance(substep, DontKnowRule) and substep: return RewriteRule( rewritten, substep, integrand, symbol) return _rewriter def proxy_rewriter(condition, rewrite): """Strategy that rewrites an integrand based on some other criteria.""" def _proxy_rewriter(criteria): criteria, integral = criteria integrand, symbol = integral debug("Integral: {} is rewritten with {} on symbol: {} and criteria: {}".format(integrand, rewrite, symbol, criteria)) args = criteria + list(integral) if condition(*args): rewritten = rewrite(*args) if rewritten != integrand: return RewriteRule( rewritten, integral_steps(rewritten, symbol), integrand, symbol) return _proxy_rewriter def multiplexer(conditions): """Apply the rule that matches the condition, else None""" def multiplexer_rl(expr): for key, rule in conditions.items(): if key(expr): return rule(expr) return multiplexer_rl def alternatives(*rules): """Strategy that makes an AlternativeRule out of multiple possible results.""" def _alternatives(integral): alts = [] count = 0 debug("List of Alternative Rules") for rule in rules: count = count + 1 debug("Rule {}: {}".format(count, rule)) result = rule(integral) if (result and not isinstance(result, DontKnowRule) and result != integral and result not in alts): alts.append(result) if len(alts) == 1: return alts[0] elif alts: doable = [rule for rule in alts if not contains_dont_know(rule)] if doable: return AlternativeRule(doable, *integral) else: return AlternativeRule(alts, *integral) return _alternatives def constant_rule(integral): return ConstantRule(integral.integrand, *integral) def power_rule(integral): integrand, symbol = integral base, exp = integrand.as_base_exp() if symbol not in exp.free_symbols and isinstance(base, sympy.Symbol): if sympy.simplify(exp + 1) == 0: return ReciprocalRule(base, integrand, symbol) return PowerRule(base, exp, integrand, symbol) elif symbol not in base.free_symbols and isinstance(exp, sympy.Symbol): rule = ExpRule(base, exp, integrand, symbol) if fuzzy_not(sympy.log(base).is_zero): return rule elif sympy.log(base).is_zero: return ConstantRule(1, 1, symbol) return PiecewiseRule([ (rule, sympy.Ne(sympy.log(base), 0)), (ConstantRule(1, 1, symbol), True) ], integrand, symbol) def exp_rule(integral): integrand, symbol = integral if isinstance(integrand.args[0], sympy.Symbol): return ExpRule(sympy.E, integrand.args[0], integrand, symbol) def orthogonal_poly_rule(integral): orthogonal_poly_classes = { sympy.jacobi: JacobiRule, sympy.gegenbauer: GegenbauerRule, sympy.chebyshevt: ChebyshevTRule, sympy.chebyshevu: ChebyshevURule, sympy.legendre: LegendreRule, sympy.hermite: HermiteRule, sympy.laguerre: LaguerreRule, sympy.assoc_laguerre: AssocLaguerreRule } orthogonal_poly_var_index = { sympy.jacobi: 3, sympy.gegenbauer: 2, sympy.assoc_laguerre: 2 } integrand, symbol = integral for klass in orthogonal_poly_classes: if isinstance(integrand, klass): var_index = orthogonal_poly_var_index.get(klass, 1) if (integrand.args[var_index] is symbol and not any(v.has(symbol) for v in integrand.args[:var_index])): args = integrand.args[:var_index] + (integrand, symbol) return orthogonal_poly_classes[klass](*args) def special_function_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[symbol], properties=[lambda x: not x.is_zero]) b = sympy.Wild('b', exclude=[symbol]) c = sympy.Wild('c', exclude=[symbol]) d = sympy.Wild('d', exclude=[symbol], properties=[lambda x: not x.is_zero]) e = sympy.Wild('e', exclude=[symbol], properties=[ lambda x: not (x.is_nonnegative and x.is_integer)]) wilds = (a, b, c, d, e) # patterns consist of a SymPy class, a wildcard expr, an optional # condition coded as a lambda (when Wild properties are not enough), # followed by an applicable rule patterns = ( (sympy.Mul, sympy.exp(a*symbol + b)/symbol, None, EiRule), (sympy.Mul, sympy.cos(a*symbol + b)/symbol, None, CiRule), (sympy.Mul, sympy.cosh(a*symbol + b)/symbol, None, ChiRule), (sympy.Mul, sympy.sin(a*symbol + b)/symbol, None, SiRule), (sympy.Mul, sympy.sinh(a*symbol + b)/symbol, None, ShiRule), (sympy.Pow, 1/sympy.log(a*symbol + b), None, LiRule), (sympy.exp, sympy.exp(a*symbol**2 + b*symbol + c), None, ErfRule), (sympy.sin, sympy.sin(a*symbol**2 + b*symbol + c), None, FresnelSRule), (sympy.cos, sympy.cos(a*symbol**2 + b*symbol + c), None, FresnelCRule), (sympy.Mul, symbol**e*sympy.exp(a*symbol), None, UpperGammaRule), (sympy.Mul, sympy.polylog(b, a*symbol)/symbol, None, PolylogRule), (sympy.Pow, 1/sympy.sqrt(a - d*sympy.sin(symbol)**2), lambda a, d: a != d, EllipticFRule), (sympy.Pow, sympy.sqrt(a - d*sympy.sin(symbol)**2), lambda a, d: a != d, EllipticERule), ) for p in patterns: if isinstance(integrand, p[0]): match = integrand.match(p[1]) if match: wild_vals = tuple(match.get(w) for w in wilds if match.get(w) is not None) if p[2] is None or p[2](*wild_vals): args = wild_vals + (integrand, symbol) return p[3](*args) def inverse_trig_rule(integral): integrand, symbol = integral base, exp = integrand.as_base_exp() a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) match = base.match(a + b*symbol**2) if not match: return def negative(x): return x.is_negative or x.could_extract_minus_sign() def ArcsinhRule(integrand, symbol): return InverseHyperbolicRule(sympy.asinh, integrand, symbol) def ArccoshRule(integrand, symbol): return InverseHyperbolicRule(sympy.acosh, integrand, symbol) def make_inverse_trig(RuleClass, base_exp, a, sign_a, b, sign_b): u_var = sympy.Dummy("u") current_base = base current_symbol = symbol constant = u_func = u_constant = substep = None factored = integrand if a != 1: constant = a**base_exp current_base = sign_a + sign_b * (b/a) * current_symbol**2 factored = current_base ** base_exp if (b/a) != 1: u_func = sympy.sqrt(b/a) * symbol u_constant = sympy.sqrt(a/b) current_symbol = u_var current_base = sign_a + sign_b * current_symbol**2 substep = RuleClass(current_base ** base_exp, current_symbol) if u_func is not None: if u_constant != 1 and substep is not None: substep = ConstantTimesRule( u_constant, current_base ** base_exp, substep, u_constant * current_base ** base_exp, symbol) substep = URule(u_var, u_func, u_constant, substep, factored, symbol) if constant is not None and substep is not None: substep = ConstantTimesRule(constant, factored, substep, integrand, symbol) return substep a, b = [match.get(i, ZERO) for i in (a, b)] # list of (rule, base_exp, a, sign_a, b, sign_b, condition) possibilities = [] if sympy.simplify(2*exp + 1) == 0: possibilities.append((ArcsinRule, exp, a, 1, -b, -1, sympy.And(a > 0, b < 0))) possibilities.append((ArcsinhRule, exp, a, 1, b, 1, sympy.And(a > 0, b > 0))) possibilities.append((ArccoshRule, exp, -a, -1, b, 1, sympy.And(a < 0, b > 0))) possibilities = [p for p in possibilities if p[-1] is not sympy.false] if a.is_number and b.is_number: possibility = [p for p in possibilities if p[-1] is sympy.true] if len(possibility) == 1: return make_inverse_trig(*possibility[0][:-1]) elif possibilities: return PiecewiseRule( [(make_inverse_trig(*p[:-1]), p[-1]) for p in possibilities], integrand, symbol) def add_rule(integral): integrand, symbol = integral results = [integral_steps(g, symbol) for g in integrand.as_ordered_terms()] return None if None in results else AddRule(results, integrand, symbol) def mul_rule(integral): integrand, symbol = integral # Constant times function case coeff, f = integrand.as_independent(symbol) next_step = integral_steps(f, symbol) if coeff != 1 and next_step is not None: return ConstantTimesRule( coeff, f, next_step, integrand, symbol) def _parts_rule(integrand, symbol): # LIATE rule: # log, inverse trig, algebraic, trigonometric, exponential def pull_out_algebraic(integrand): integrand = integrand.cancel().together() # iterating over Piecewise args would not work here algebraic = ([] if isinstance(integrand, sympy.Piecewise) else [arg for arg in integrand.args if arg.is_algebraic_expr(symbol)]) if algebraic: u = sympy.Mul(*algebraic) dv = (integrand / u).cancel() return u, dv def pull_out_u(*functions): def pull_out_u_rl(integrand): if any([integrand.has(f) for f in functions]): args = [arg for arg in integrand.args if any(isinstance(arg, cls) for cls in functions)] if args: u = reduce(lambda a,b: a*b, args) dv = integrand / u return u, dv return pull_out_u_rl liate_rules = [pull_out_u(sympy.log), pull_out_u(*inverse_trig_functions), pull_out_algebraic, pull_out_u(sympy.sin, sympy.cos), pull_out_u(sympy.exp)] dummy = sympy.Dummy("temporary") # we can integrate log(x) and atan(x) by setting dv = 1 if isinstance(integrand, (sympy.log, *inverse_trig_functions)): integrand = dummy * integrand for index, rule in enumerate(liate_rules): result = rule(integrand) if result: u, dv = result # Don't pick u to be a constant if possible if symbol not in u.free_symbols and not u.has(dummy): return u = u.subs(dummy, 1) dv = dv.subs(dummy, 1) # Don't pick a non-polynomial algebraic to be differentiated if rule == pull_out_algebraic and not u.is_polynomial(symbol): return # Don't trade one logarithm for another if isinstance(u, sympy.log): rec_dv = 1/dv if (rec_dv.is_polynomial(symbol) and degree(rec_dv, symbol) == 1): return # Can integrate a polynomial times OrthogonalPolynomial if rule == pull_out_algebraic and isinstance(dv, OrthogonalPolynomial): v_step = integral_steps(dv, symbol) if contains_dont_know(v_step): return else: du = u.diff(symbol) v = _manualintegrate(v_step) return u, dv, v, du, v_step # make sure dv is amenable to integration accept = False if index < 2: # log and inverse trig are usually worth trying accept = True elif (rule == pull_out_algebraic and dv.args and all(isinstance(a, (sympy.sin, sympy.cos, sympy.exp)) for a in dv.args)): accept = True else: for rule in liate_rules[index + 1:]: r = rule(integrand) if r and r[0].subs(dummy, 1).equals(dv): accept = True break if accept: du = u.diff(symbol) v_step = integral_steps(sympy.simplify(dv), symbol) if not contains_dont_know(v_step): v = _manualintegrate(v_step) return u, dv, v, du, v_step def parts_rule(integral): integrand, symbol = integral constant, integrand = integrand.as_coeff_Mul() result = _parts_rule(integrand, symbol) steps = [] if result: u, dv, v, du, v_step = result debug("u : {}, dv : {}, v : {}, du : {}, v_step: {}".format(u, dv, v, du, v_step)) steps.append(result) if isinstance(v, sympy.Integral): return # Set a limit on the number of times u can be used if isinstance(u, (sympy.sin, sympy.cos, sympy.exp, sympy.sinh, sympy.cosh)): cachekey = u.xreplace({symbol: _cache_dummy}) if _parts_u_cache[cachekey] > 2: return _parts_u_cache[cachekey] += 1 # Try cyclic integration by parts a few times for _ in range(4): debug("Cyclic integration {} with v: {}, du: {}, integrand: {}".format(_, v, du, integrand)) coefficient = ((v * du) / integrand).cancel() if coefficient == 1: break if symbol not in coefficient.free_symbols: rule = CyclicPartsRule( [PartsRule(u, dv, v_step, None, None, None) for (u, dv, v, du, v_step) in steps], (-1) ** len(steps) * coefficient, integrand, symbol ) if (constant != 1) and rule: rule = ConstantTimesRule(constant, integrand, rule, constant * integrand, symbol) return rule # _parts_rule is sensitive to constants, factor it out next_constant, next_integrand = (v * du).as_coeff_Mul() result = _parts_rule(next_integrand, symbol) if result: u, dv, v, du, v_step = result u *= next_constant du *= next_constant steps.append((u, dv, v, du, v_step)) else: break def make_second_step(steps, integrand): if steps: u, dv, v, du, v_step = steps[0] return PartsRule(u, dv, v_step, make_second_step(steps[1:], v * du), integrand, symbol) else: steps = integral_steps(integrand, symbol) if steps: return steps else: return DontKnowRule(integrand, symbol) if steps: u, dv, v, du, v_step = steps[0] rule = PartsRule(u, dv, v_step, make_second_step(steps[1:], v * du), integrand, symbol) if (constant != 1) and rule: rule = ConstantTimesRule(constant, integrand, rule, constant * integrand, symbol) return rule def trig_rule(integral): integrand, symbol = integral if isinstance(integrand, sympy.sin) or isinstance(integrand, sympy.cos): arg = integrand.args[0] if not isinstance(arg, sympy.Symbol): return # perhaps a substitution can deal with it if isinstance(integrand, sympy.sin): func = 'sin' else: func = 'cos' return TrigRule(func, arg, integrand, symbol) if integrand == sympy.sec(symbol)**2: return TrigRule('sec**2', symbol, integrand, symbol) elif integrand == sympy.csc(symbol)**2: return TrigRule('csc**2', symbol, integrand, symbol) if isinstance(integrand, sympy.tan): rewritten = sympy.sin(*integrand.args) / sympy.cos(*integrand.args) elif isinstance(integrand, sympy.cot): rewritten = sympy.cos(*integrand.args) / sympy.sin(*integrand.args) elif isinstance(integrand, sympy.sec): arg = integrand.args[0] rewritten = ((sympy.sec(arg)**2 + sympy.tan(arg) * sympy.sec(arg)) / (sympy.sec(arg) + sympy.tan(arg))) elif isinstance(integrand, sympy.csc): arg = integrand.args[0] rewritten = ((sympy.csc(arg)**2 + sympy.cot(arg) * sympy.csc(arg)) / (sympy.csc(arg) + sympy.cot(arg))) else: return return RewriteRule( rewritten, integral_steps(rewritten, symbol), integrand, symbol ) def trig_product_rule(integral): integrand, symbol = integral sectan = sympy.sec(symbol) * sympy.tan(symbol) q = integrand / sectan if symbol not in q.free_symbols: rule = TrigRule('sec*tan', symbol, sectan, symbol) if q != 1 and rule: rule = ConstantTimesRule(q, sectan, rule, integrand, symbol) return rule csccot = -sympy.csc(symbol) * sympy.cot(symbol) q = integrand / csccot if symbol not in q.free_symbols: rule = TrigRule('csc*cot', symbol, csccot, symbol) if q != 1 and rule: rule = ConstantTimesRule(q, csccot, rule, integrand, symbol) return rule def quadratic_denom_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) c = sympy.Wild('c', exclude=[symbol]) match = integrand.match(a / (b * symbol ** 2 + c)) if match: a, b, c = match[a], match[b], match[c] if b.is_extended_real and c.is_extended_real: return PiecewiseRule([(ArctanRule(a, b, c, integrand, symbol), sympy.Gt(c / b, 0)), (ArccothRule(a, b, c, integrand, symbol), sympy.And(sympy.Gt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))), (ArctanhRule(a, b, c, integrand, symbol), sympy.And(sympy.Lt(symbol ** 2, -c / b), sympy.Lt(c / b, 0))), ], integrand, symbol) else: return ArctanRule(a, b, c, integrand, symbol) d = sympy.Wild('d', exclude=[symbol]) match2 = integrand.match(a / (b * symbol ** 2 + c * symbol + d)) if match2: b, c = match2[b], match2[c] if b.is_zero: return u = sympy.Dummy('u') u_func = symbol + c/(2*b) integrand2 = integrand.subs(symbol, u - c / (2*b)) next_step = integral_steps(integrand2, u) if next_step: return URule(u, u_func, None, next_step, integrand2, symbol) else: return e = sympy.Wild('e', exclude=[symbol]) match3 = integrand.match((a* symbol + b) / (c * symbol ** 2 + d * symbol + e)) if match3: a, b, c, d, e = match3[a], match3[b], match3[c], match3[d], match3[e] if c.is_zero: return denominator = c * symbol**2 + d * symbol + e const = a/(2*c) numer1 = (2*c*symbol+d) numer2 = - const*d + b u = sympy.Dummy('u') step1 = URule(u, denominator, const, integral_steps(u**(-1), u), integrand, symbol) if const != 1: step1 = ConstantTimesRule(const, numer1/denominator, step1, const*numer1/denominator, symbol) if numer2.is_zero: return step1 step2 = integral_steps(numer2/denominator, symbol) substeps = AddRule([step1, step2], integrand, symbol) rewriten = const*numer1/denominator+numer2/denominator return RewriteRule(rewriten, substeps, integrand, symbol) return def root_mul_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) c = sympy.Wild('c') match = integrand.match(sympy.sqrt(a * symbol + b) * c) if not match: return a, b, c = match[a], match[b], match[c] d = sympy.Wild('d', exclude=[symbol]) e = sympy.Wild('e', exclude=[symbol]) f = sympy.Wild('f') recursion_test = c.match(sympy.sqrt(d * symbol + e) * f) if recursion_test: return u = sympy.Dummy('u') u_func = sympy.sqrt(a * symbol + b) integrand = integrand.subs(u_func, u) integrand = integrand.subs(symbol, (u**2 - b) / a) integrand = integrand * 2 * u / a next_step = integral_steps(integrand, u) if next_step: return URule(u, u_func, None, next_step, integrand, symbol) @sympy.cacheit def make_wilds(symbol): a = sympy.Wild('a', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) m = sympy.Wild('m', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)]) n = sympy.Wild('n', exclude=[symbol], properties=[lambda n: isinstance(n, sympy.Integer)]) return a, b, m, n @sympy.cacheit def sincos_pattern(symbol): a, b, m, n = make_wilds(symbol) pattern = sympy.sin(a*symbol)**m * sympy.cos(b*symbol)**n return pattern, a, b, m, n @sympy.cacheit def tansec_pattern(symbol): a, b, m, n = make_wilds(symbol) pattern = sympy.tan(a*symbol)**m * sympy.sec(b*symbol)**n return pattern, a, b, m, n @sympy.cacheit def cotcsc_pattern(symbol): a, b, m, n = make_wilds(symbol) pattern = sympy.cot(a*symbol)**m * sympy.csc(b*symbol)**n return pattern, a, b, m, n @sympy.cacheit def heaviside_pattern(symbol): m = sympy.Wild('m', exclude=[symbol]) b = sympy.Wild('b', exclude=[symbol]) g = sympy.Wild('g') pattern = sympy.Heaviside(m*symbol + b) * g return pattern, m, b, g def uncurry(func): def uncurry_rl(args): return func(*args) return uncurry_rl def trig_rewriter(rewrite): def trig_rewriter_rl(args): a, b, m, n, integrand, symbol = args rewritten = rewrite(a, b, m, n, integrand, symbol) if rewritten != integrand: return RewriteRule( rewritten, integral_steps(rewritten, symbol), integrand, symbol) return trig_rewriter_rl sincos_botheven_condition = uncurry( lambda a, b, m, n, i, s: m.is_even and n.is_even and m.is_nonnegative and n.is_nonnegative) sincos_botheven = trig_rewriter( lambda a, b, m, n, i, symbol: ( (((1 - sympy.cos(2*a*symbol)) / 2) ** (m / 2)) * (((1 + sympy.cos(2*b*symbol)) / 2) ** (n / 2)) )) sincos_sinodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd and m >= 3) sincos_sinodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 - sympy.cos(a*symbol)**2)**((m - 1) / 2) * sympy.sin(a*symbol) * sympy.cos(b*symbol) ** n)) sincos_cosodd_condition = uncurry(lambda a, b, m, n, i, s: n.is_odd and n >= 3) sincos_cosodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 - sympy.sin(b*symbol)**2)**((n - 1) / 2) * sympy.cos(b*symbol) * sympy.sin(a*symbol) ** m)) tansec_seceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4) tansec_seceven = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 + sympy.tan(b*symbol)**2) ** (n/2 - 1) * sympy.sec(b*symbol)**2 * sympy.tan(a*symbol) ** m )) tansec_tanodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd) tansec_tanodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (sympy.sec(a*symbol)**2 - 1) ** ((m - 1) / 2) * sympy.tan(a*symbol) * sympy.sec(b*symbol) ** n )) tan_tansquared_condition = uncurry(lambda a, b, m, n, i, s: m == 2 and n == 0) tan_tansquared = trig_rewriter( lambda a, b, m, n, i, symbol: ( sympy.sec(a*symbol)**2 - 1)) cotcsc_csceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4) cotcsc_csceven = trig_rewriter( lambda a, b, m, n, i, symbol: ( (1 + sympy.cot(b*symbol)**2) ** (n/2 - 1) * sympy.csc(b*symbol)**2 * sympy.cot(a*symbol) ** m )) cotcsc_cotodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd) cotcsc_cotodd = trig_rewriter( lambda a, b, m, n, i, symbol: ( (sympy.csc(a*symbol)**2 - 1) ** ((m - 1) / 2) * sympy.cot(a*symbol) * sympy.csc(b*symbol) ** n )) def trig_sincos_rule(integral): integrand, symbol = integral if any(integrand.has(f) for f in (sympy.sin, sympy.cos)): pattern, a, b, m, n = sincos_pattern(symbol) match = integrand.match(pattern) if not match: return return multiplexer({ sincos_botheven_condition: sincos_botheven, sincos_sinodd_condition: sincos_sinodd, sincos_cosodd_condition: sincos_cosodd })(tuple( [match.get(i, ZERO) for i in (a, b, m, n)] + [integrand, symbol])) def trig_tansec_rule(integral): integrand, symbol = integral integrand = integrand.subs({ 1 / sympy.cos(symbol): sympy.sec(symbol) }) if any(integrand.has(f) for f in (sympy.tan, sympy.sec)): pattern, a, b, m, n = tansec_pattern(symbol) match = integrand.match(pattern) if not match: return return multiplexer({ tansec_tanodd_condition: tansec_tanodd, tansec_seceven_condition: tansec_seceven, tan_tansquared_condition: tan_tansquared })(tuple( [match.get(i, ZERO) for i in (a, b, m, n)] + [integrand, symbol])) def trig_cotcsc_rule(integral): integrand, symbol = integral integrand = integrand.subs({ 1 / sympy.sin(symbol): sympy.csc(symbol), 1 / sympy.tan(symbol): sympy.cot(symbol), sympy.cos(symbol) / sympy.tan(symbol): sympy.cot(symbol) }) if any(integrand.has(f) for f in (sympy.cot, sympy.csc)): pattern, a, b, m, n = cotcsc_pattern(symbol) match = integrand.match(pattern) if not match: return return multiplexer({ cotcsc_cotodd_condition: cotcsc_cotodd, cotcsc_csceven_condition: cotcsc_csceven })(tuple( [match.get(i, ZERO) for i in (a, b, m, n)] + [integrand, symbol])) def trig_sindouble_rule(integral): integrand, symbol = integral a = sympy.Wild('a', exclude=[sympy.sin(2*symbol)]) match = integrand.match(sympy.sin(2*symbol)*a) if match: sin_double = 2*sympy.sin(symbol)*sympy.cos(symbol)/sympy.sin(2*symbol) return integral_steps(integrand * sin_double, symbol) def trig_powers_products_rule(integral): return do_one(null_safe(trig_sincos_rule), null_safe(trig_tansec_rule), null_safe(trig_cotcsc_rule), null_safe(trig_sindouble_rule))(integral) def trig_substitution_rule(integral): integrand, symbol = integral A = sympy.Wild('a', exclude=[0, symbol]) B = sympy.Wild('b', exclude=[0, symbol]) theta = sympy.Dummy("theta") target_pattern = A + B*symbol**2 matches = integrand.find(target_pattern) for expr in matches: match = expr.match(target_pattern) a = match.get(A, ZERO) b = match.get(B, ZERO) a_positive = ((a.is_number and a > 0) or a.is_positive) b_positive = ((b.is_number and b > 0) or b.is_positive) a_negative = ((a.is_number and a < 0) or a.is_negative) b_negative = ((b.is_number and b < 0) or b.is_negative) x_func = None if a_positive and b_positive: # a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2 x_func = (sympy.sqrt(a)/sympy.sqrt(b)) * sympy.tan(theta) # Do not restrict the domain: tan(theta) takes on any real # value on the interval -pi/2 < theta < pi/2 so x takes on # any value restriction = True elif a_positive and b_negative: # a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2 constant = sympy.sqrt(a)/sympy.sqrt(-b) x_func = constant * sympy.sin(theta) restriction = sympy.And(symbol > -constant, symbol < constant) elif a_negative and b_positive: # b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi constant = sympy.sqrt(-a)/sympy.sqrt(b) x_func = constant * sympy.sec(theta) restriction = sympy.And(symbol > -constant, symbol < constant) if x_func: # Manually simplify sqrt(trig(theta)**2) to trig(theta) # Valid due to assumed domain restriction substitutions = {} for f in [sympy.sin, sympy.cos, sympy.tan, sympy.sec, sympy.csc, sympy.cot]: substitutions[sympy.sqrt(f(theta)**2)] = f(theta) substitutions[sympy.sqrt(f(theta)**(-2))] = 1/f(theta) replaced = integrand.subs(symbol, x_func).trigsimp() replaced = manual_subs(replaced, substitutions) if not replaced.has(symbol): replaced *= manual_diff(x_func, theta) replaced = replaced.trigsimp() secants = replaced.find(1/sympy.cos(theta)) if secants: replaced = replaced.xreplace({ 1/sympy.cos(theta): sympy.sec(theta) }) substep = integral_steps(replaced, theta) if not contains_dont_know(substep): return TrigSubstitutionRule( theta, x_func, replaced, substep, restriction, integrand, symbol) def heaviside_rule(integral): integrand, symbol = integral pattern, m, b, g = heaviside_pattern(symbol) match = integrand.match(pattern) if match and 0 != match[g]: # f = Heaviside(m*x + b)*g v_step = integral_steps(match[g], symbol) result = _manualintegrate(v_step) m, b = match[m], match[b] return HeavisideRule(m*symbol + b, -b/m, result, integrand, symbol) def substitution_rule(integral): integrand, symbol = integral u_var = sympy.Dummy("u") substitutions = find_substitutions(integrand, symbol, u_var) count = 0 if substitutions: debug("List of Substitution Rules") ways = [] for u_func, c, substituted in substitutions: subrule = integral_steps(substituted, u_var) count = count + 1 debug("Rule {}: {}".format(count, subrule)) if contains_dont_know(subrule): continue if sympy.simplify(c - 1) != 0: _, denom = c.as_numer_denom() if subrule: subrule = ConstantTimesRule(c, substituted, subrule, substituted, u_var) if denom.free_symbols: piecewise = [] could_be_zero = [] if isinstance(denom, sympy.Mul): could_be_zero = denom.args else: could_be_zero.append(denom) for expr in could_be_zero: if not fuzzy_not(expr.is_zero): substep = integral_steps(manual_subs(integrand, expr, 0), symbol) if substep: piecewise.append(( substep, sympy.Eq(expr, 0) )) piecewise.append((subrule, True)) subrule = PiecewiseRule(piecewise, substituted, symbol) ways.append(URule(u_var, u_func, c, subrule, integrand, symbol)) if len(ways) > 1: return AlternativeRule(ways, integrand, symbol) elif ways: return ways[0] elif integrand.has(sympy.exp): u_func = sympy.exp(symbol) c = 1 substituted = integrand / u_func.diff(symbol) substituted = substituted.subs(u_func, u_var) if symbol not in substituted.free_symbols: return URule(u_var, u_func, c, integral_steps(substituted, u_var), integrand, symbol) partial_fractions_rule = rewriter( lambda integrand, symbol: integrand.is_rational_function(), lambda integrand, symbol: integrand.apart(symbol)) cancel_rule = rewriter( # lambda integrand, symbol: integrand.is_algebraic_expr(), # lambda integrand, symbol: isinstance(integrand, sympy.Mul), lambda integrand, symbol: True, lambda integrand, symbol: integrand.cancel()) distribute_expand_rule = rewriter( lambda integrand, symbol: ( all(arg.is_Pow or arg.is_polynomial(symbol) for arg in integrand.args) or isinstance(integrand, sympy.Pow) or isinstance(integrand, sympy.Mul)), lambda integrand, symbol: integrand.expand()) trig_expand_rule = rewriter( # If there are trig functions with different arguments, expand them lambda integrand, symbol: ( len({a.args[0] for a in integrand.atoms(TrigonometricFunction)}) > 1), lambda integrand, symbol: integrand.expand(trig=True)) def derivative_rule(integral): integrand = integral[0] diff_variables = integrand.variables undifferentiated_function = integrand.expr integrand_variables = undifferentiated_function.free_symbols if integral.symbol in integrand_variables: if integral.symbol in diff_variables: return DerivativeRule(*integral) else: return DontKnowRule(integrand, integral.symbol) else: return ConstantRule(integral.integrand, *integral) def rewrites_rule(integral): integrand, symbol = integral if integrand.match(1/sympy.cos(symbol)): rewritten = integrand.subs(1/sympy.cos(symbol), sympy.sec(symbol)) return RewriteRule(rewritten, integral_steps(rewritten, symbol), integrand, symbol) def fallback_rule(integral): return DontKnowRule(*integral) # Cache is used to break cyclic integrals. # Need to use the same dummy variable in cached expressions for them to match. # Also record "u" of integration by parts, to avoid infinite repetition. _integral_cache = {} # type: tDict[Expr, Optional[Expr]] _parts_u_cache = defaultdict(int) # type: tDict[Expr, int] _cache_dummy = sympy.Dummy("z") def integral_steps(integrand, symbol, **options): """Returns the steps needed to compute an integral. Explanation =========== This function attempts to mirror what a student would do by hand as closely as possible. SymPy Gamma uses this to provide a step-by-step explanation of an integral. The code it uses to format the results of this function can be found at https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py. Examples ======== >>> from sympy import exp, sin >>> from sympy.integrals.manualintegrate import integral_steps >>> from sympy.abc import x >>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \ # doctest: +NORMALIZE_WHITESPACE URule(u_var=_u, u_func=exp(x), constant=1, substep=PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), True), (ArccothRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False), (ArctanhRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u), False)], context=1/(_u**2 + 1), symbol=_u), context=exp(x)/(exp(2*x) + 1), symbol=x) >>> print(repr(integral_steps(sin(x), x))) \ # doctest: +NORMALIZE_WHITESPACE TrigRule(func='sin', arg=x, context=sin(x), symbol=x) >>> print(repr(integral_steps((x**2 + 3)**2 , x))) \ # doctest: +NORMALIZE_WHITESPACE RewriteRule(rewritten=x**4 + 6*x**2 + 9, substep=AddRule(substeps=[PowerRule(base=x, exp=4, context=x**4, symbol=x), ConstantTimesRule(constant=6, other=x**2, substep=PowerRule(base=x, exp=2, context=x**2, symbol=x), context=6*x**2, symbol=x), ConstantRule(constant=9, context=9, symbol=x)], context=x**4 + 6*x**2 + 9, symbol=x), context=(x**2 + 3)**2, symbol=x) Returns ======= rule : namedtuple The first step; most rules have substeps that must also be considered. These substeps can be evaluated using ``manualintegrate`` to obtain a result. """ cachekey = integrand.xreplace({symbol: _cache_dummy}) if cachekey in _integral_cache: if _integral_cache[cachekey] is None: # Stop this attempt, because it leads around in a loop return DontKnowRule(integrand, symbol) else: # TODO: This is for future development, as currently # _integral_cache gets no values other than None return (_integral_cache[cachekey].xreplace(_cache_dummy, symbol), symbol) else: _integral_cache[cachekey] = None integral = IntegralInfo(integrand, symbol) def key(integral): integrand = integral.integrand if isinstance(integrand, TrigonometricFunction): return TrigonometricFunction elif isinstance(integrand, sympy.Derivative): return sympy.Derivative elif symbol not in integrand.free_symbols: return sympy.Number else: for cls in (sympy.Pow, sympy.Symbol, sympy.exp, sympy.log, sympy.Add, sympy.Mul, *inverse_trig_functions, sympy.Heaviside, OrthogonalPolynomial): if isinstance(integrand, cls): return cls def integral_is_subclass(*klasses): def _integral_is_subclass(integral): k = key(integral) return k and issubclass(k, klasses) return _integral_is_subclass result = do_one( null_safe(special_function_rule), null_safe(switch(key, { sympy.Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule), \ null_safe(quadratic_denom_rule)), sympy.Symbol: power_rule, sympy.exp: exp_rule, sympy.Add: add_rule, sympy.Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule), \ null_safe(heaviside_rule), null_safe(quadratic_denom_rule), \ null_safe(root_mul_rule)), sympy.Derivative: derivative_rule, TrigonometricFunction: trig_rule, sympy.Heaviside: heaviside_rule, OrthogonalPolynomial: orthogonal_poly_rule, sympy.Number: constant_rule })), do_one( null_safe(trig_rule), null_safe(alternatives( rewrites_rule, substitution_rule, condition( integral_is_subclass(sympy.Mul, sympy.Pow), partial_fractions_rule), condition( integral_is_subclass(sympy.Mul, sympy.Pow), cancel_rule), condition( integral_is_subclass(sympy.Mul, sympy.log, *inverse_trig_functions), parts_rule), condition( integral_is_subclass(sympy.Mul, sympy.Pow), distribute_expand_rule), trig_powers_products_rule, trig_expand_rule )), null_safe(trig_substitution_rule) ), fallback_rule)(integral) del _integral_cache[cachekey] return result @evaluates(ConstantRule) def eval_constant(constant, integrand, symbol): return constant * symbol @evaluates(ConstantTimesRule) def eval_constanttimes(constant, other, substep, integrand, symbol): return constant * _manualintegrate(substep) @evaluates(PowerRule) def eval_power(base, exp, integrand, symbol): return sympy.Piecewise( ((base**(exp + 1))/(exp + 1), sympy.Ne(exp, -1)), (sympy.log(base), True), ) @evaluates(ExpRule) def eval_exp(base, exp, integrand, symbol): return integrand / sympy.ln(base) @evaluates(AddRule) def eval_add(substeps, integrand, symbol): return sum(map(_manualintegrate, substeps)) @evaluates(URule) def eval_u(u_var, u_func, constant, substep, integrand, symbol): result = _manualintegrate(substep) if u_func.is_Pow and u_func.exp == -1: # avoid needless -log(1/x) from substitution result = result.subs(sympy.log(u_var), -sympy.log(u_func.base)) return result.subs(u_var, u_func) @evaluates(PartsRule) def eval_parts(u, dv, v_step, second_step, integrand, symbol): v = _manualintegrate(v_step) return u * v - _manualintegrate(second_step) @evaluates(CyclicPartsRule) def eval_cyclicparts(parts_rules, coefficient, integrand, symbol): coefficient = 1 - coefficient result = [] sign = 1 for rule in parts_rules: result.append(sign * rule.u * _manualintegrate(rule.v_step)) sign *= -1 return sympy.Add(*result) / coefficient @evaluates(TrigRule) def eval_trig(func, arg, integrand, symbol): if func == 'sin': return -sympy.cos(arg) elif func == 'cos': return sympy.sin(arg) elif func == 'sec*tan': return sympy.sec(arg) elif func == 'csc*cot': return sympy.csc(arg) elif func == 'sec**2': return sympy.tan(arg) elif func == 'csc**2': return -sympy.cot(arg) @evaluates(ArctanRule) def eval_arctan(a, b, c, integrand, symbol): return a / b * 1 / sympy.sqrt(c / b) * sympy.atan(symbol / sympy.sqrt(c / b)) @evaluates(ArccothRule) def eval_arccoth(a, b, c, integrand, symbol): return - a / b * 1 / sympy.sqrt(-c / b) * sympy.acoth(symbol / sympy.sqrt(-c / b)) @evaluates(ArctanhRule) def eval_arctanh(a, b, c, integrand, symbol): return - a / b * 1 / sympy.sqrt(-c / b) * sympy.atanh(symbol / sympy.sqrt(-c / b)) @evaluates(ReciprocalRule) def eval_reciprocal(func, integrand, symbol): return sympy.ln(func) @evaluates(ArcsinRule) def eval_arcsin(integrand, symbol): return sympy.asin(symbol) @evaluates(InverseHyperbolicRule) def eval_inversehyperbolic(func, integrand, symbol): return func(symbol) @evaluates(AlternativeRule) def eval_alternative(alternatives, integrand, symbol): return _manualintegrate(alternatives[0]) @evaluates(RewriteRule) def eval_rewrite(rewritten, substep, integrand, symbol): return _manualintegrate(substep) @evaluates(PiecewiseRule) def eval_piecewise(substeps, integrand, symbol): return sympy.Piecewise(*[(_manualintegrate(substep), cond) for substep, cond in substeps]) @evaluates(TrigSubstitutionRule) def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol): func = func.subs(sympy.sec(theta), 1/sympy.cos(theta)) func = func.subs(sympy.csc(theta), 1/sympy.sin(theta)) func = func.subs(sympy.cot(theta), 1/sympy.tan(theta)) trig_function = list(func.find(TrigonometricFunction)) assert len(trig_function) == 1 trig_function = trig_function[0] relation = sympy.solve(symbol - func, trig_function) assert len(relation) == 1 numer, denom = sympy.fraction(relation[0]) if isinstance(trig_function, sympy.sin): opposite = numer hypotenuse = denom adjacent = sympy.sqrt(denom**2 - numer**2) inverse = sympy.asin(relation[0]) elif isinstance(trig_function, sympy.cos): adjacent = numer hypotenuse = denom opposite = sympy.sqrt(denom**2 - numer**2) inverse = sympy.acos(relation[0]) elif isinstance(trig_function, sympy.tan): opposite = numer adjacent = denom hypotenuse = sympy.sqrt(denom**2 + numer**2) inverse = sympy.atan(relation[0]) substitution = [ (sympy.sin(theta), opposite/hypotenuse), (sympy.cos(theta), adjacent/hypotenuse), (sympy.tan(theta), opposite/adjacent), (theta, inverse) ] return sympy.Piecewise( (_manualintegrate(substep).subs(substitution).trigsimp(), restriction) ) @evaluates(DerivativeRule) def eval_derivativerule(integrand, symbol): # isinstance(integrand, Derivative) should be True variable_count = list(integrand.variable_count) for i, (var, count) in enumerate(variable_count): if var == symbol: variable_count[i] = (var, count-1) break return sympy.Derivative(integrand.expr, *variable_count) @evaluates(HeavisideRule) def eval_heaviside(harg, ibnd, substep, integrand, symbol): # If we are integrating over x and the integrand has the form # Heaviside(m*x+b)*g(x) == Heaviside(harg)*g(symbol) # then there needs to be continuity at -b/m == ibnd, # so we subtract the appropriate term. return sympy.Heaviside(harg)*(substep - substep.subs(symbol, ibnd)) @evaluates(JacobiRule) def eval_jacobi(n, a, b, integrand, symbol): return Piecewise( (2*sympy.jacobi(n + 1, a - 1, b - 1, symbol)/(n + a + b), Ne(n + a + b, 0)), (symbol, Eq(n, 0)), ((a + b + 2)*symbol**2/4 + (a - b)*symbol/2, Eq(n, 1))) @evaluates(GegenbauerRule) def eval_gegenbauer(n, a, integrand, symbol): return Piecewise( (sympy.gegenbauer(n + 1, a - 1, symbol)/(2*(a - 1)), Ne(a, 1)), (sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)), (sympy.S.Zero, True)) @evaluates(ChebyshevTRule) def eval_chebyshevt(n, integrand, symbol): return Piecewise(((sympy.chebyshevt(n + 1, symbol)/(n + 1) - sympy.chebyshevt(n - 1, symbol)/(n - 1))/2, Ne(sympy.Abs(n), 1)), (symbol**2/2, True)) @evaluates(ChebyshevURule) def eval_chebyshevu(n, integrand, symbol): return Piecewise( (sympy.chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)), (sympy.S.Zero, True)) @evaluates(LegendreRule) def eval_legendre(n, integrand, symbol): return (sympy.legendre(n + 1, symbol) - sympy.legendre(n - 1, symbol))/(2*n + 1) @evaluates(HermiteRule) def eval_hermite(n, integrand, symbol): return sympy.hermite(n + 1, symbol)/(2*(n + 1)) @evaluates(LaguerreRule) def eval_laguerre(n, integrand, symbol): return sympy.laguerre(n, symbol) - sympy.laguerre(n + 1, symbol) @evaluates(AssocLaguerreRule) def eval_assoclaguerre(n, a, integrand, symbol): return -sympy.assoc_laguerre(n + 1, a - 1, symbol) @evaluates(CiRule) def eval_ci(a, b, integrand, symbol): return sympy.cos(b)*sympy.Ci(a*symbol) - sympy.sin(b)*sympy.Si(a*symbol) @evaluates(ChiRule) def eval_chi(a, b, integrand, symbol): return sympy.cosh(b)*sympy.Chi(a*symbol) + sympy.sinh(b)*sympy.Shi(a*symbol) @evaluates(EiRule) def eval_ei(a, b, integrand, symbol): return sympy.exp(b)*sympy.Ei(a*symbol) @evaluates(SiRule) def eval_si(a, b, integrand, symbol): return sympy.sin(b)*sympy.Ci(a*symbol) + sympy.cos(b)*sympy.Si(a*symbol) @evaluates(ShiRule) def eval_shi(a, b, integrand, symbol): return sympy.sinh(b)*sympy.Chi(a*symbol) + sympy.cosh(b)*sympy.Shi(a*symbol) @evaluates(ErfRule) def eval_erf(a, b, c, integrand, symbol): if a.is_extended_real: return Piecewise( (sympy.sqrt(sympy.pi/(-a))/2 * sympy.exp(c - b**2/(4*a)) * sympy.erf((-2*a*symbol - b)/(2*sympy.sqrt(-a))), a < 0), (sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) * sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a))), True)) else: return sympy.sqrt(sympy.pi/a)/2 * sympy.exp(c - b**2/(4*a)) * \ sympy.erfi((2*a*symbol + b)/(2*sympy.sqrt(a))) @evaluates(FresnelCRule) def eval_fresnelc(a, b, c, integrand, symbol): return sympy.sqrt(sympy.pi/(2*a)) * ( sympy.cos(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) + sympy.sin(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi))) @evaluates(FresnelSRule) def eval_fresnels(a, b, c, integrand, symbol): return sympy.sqrt(sympy.pi/(2*a)) * ( sympy.cos(b**2/(4*a) - c)*sympy.fresnels((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi)) - sympy.sin(b**2/(4*a) - c)*sympy.fresnelc((2*a*symbol + b)/sympy.sqrt(2*a*sympy.pi))) @evaluates(LiRule) def eval_li(a, b, integrand, symbol): return sympy.li(a*symbol + b)/a @evaluates(PolylogRule) def eval_polylog(a, b, integrand, symbol): return sympy.polylog(b + 1, a*symbol) @evaluates(UpperGammaRule) def eval_uppergamma(a, e, integrand, symbol): return symbol**e * (-a*symbol)**(-e) * sympy.uppergamma(e + 1, -a*symbol)/a @evaluates(EllipticFRule) def eval_elliptic_f(a, d, integrand, symbol): return sympy.elliptic_f(symbol, d/a)/sympy.sqrt(a) @evaluates(EllipticERule) def eval_elliptic_e(a, d, integrand, symbol): return sympy.elliptic_e(symbol, d/a)*sympy.sqrt(a) @evaluates(DontKnowRule) def eval_dontknowrule(integrand, symbol): return sympy.Integral(integrand, symbol) def _manualintegrate(rule): evaluator = evaluators.get(rule.__class__) if not evaluator: raise ValueError("Cannot evaluate rule %s" % repr(rule)) return evaluator(*rule) def manualintegrate(f, var): """manualintegrate(f, var) Explanation =========== Compute indefinite integral of a single variable using an algorithm that resembles what a student would do by hand. Unlike :func:`~.integrate`, var can only be a single symbol. Examples ======== >>> from sympy import sin, cos, tan, exp, log, integrate >>> from sympy.integrals.manualintegrate import manualintegrate >>> from sympy.abc import x >>> manualintegrate(1 / x, x) log(x) >>> integrate(1/x) log(x) >>> manualintegrate(log(x), x) x*log(x) - x >>> integrate(log(x)) x*log(x) - x >>> manualintegrate(exp(x) / (1 + exp(2 * x)), x) atan(exp(x)) >>> integrate(exp(x) / (1 + exp(2 * x))) RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x)))) >>> manualintegrate(cos(x)**4 * sin(x), x) -cos(x)**5/5 >>> integrate(cos(x)**4 * sin(x), x) -cos(x)**5/5 >>> manualintegrate(cos(x)**4 * sin(x)**3, x) cos(x)**7/7 - cos(x)**5/5 >>> integrate(cos(x)**4 * sin(x)**3, x) cos(x)**7/7 - cos(x)**5/5 >>> manualintegrate(tan(x), x) -log(cos(x)) >>> integrate(tan(x), x) -log(cos(x)) See Also ======== sympy.integrals.integrals.integrate sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral """ result = _manualintegrate(integral_steps(f, var)) # Clear the cache of u-parts _parts_u_cache.clear() # If we got Piecewise with two parts, put generic first if isinstance(result, Piecewise) and len(result.args) == 2: cond = result.args[0][1] if isinstance(cond, Eq) and result.args[1][1] == True: result = result.func( (result.args[1][0], sympy.Ne(*cond.args)), (result.args[0][0], True)) return result