from .utilities import _iszero def _columnspace(M, simplify=False): """Returns a list of vectors (Matrix objects) that span columnspace of ``M`` Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> M Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> M.columnspace() [Matrix([ [ 1], [-2], [ 3]]), Matrix([ [0], [0], [6]])] See Also ======== nullspace rowspace """ reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True) return [M.col(i) for i in pivots] def _nullspace(M, simplify=False, iszerofunc=_iszero): """Returns list of vectors (Matrix objects) that span nullspace of ``M`` Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> M Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> M.nullspace() [Matrix([ [-3], [ 1], [ 0]])] See Also ======== columnspace rowspace """ reduced, pivots = M.rref(iszerofunc=iszerofunc, simplify=simplify) free_vars = [i for i in range(M.cols) if i not in pivots] basis = [] for free_var in free_vars: # for each free variable, we will set it to 1 and all others # to 0. Then, we will use back substitution to solve the system vec = [M.zero] * M.cols vec[free_var] = M.one for piv_row, piv_col in enumerate(pivots): vec[piv_col] -= reduced[piv_row, free_var] basis.append(vec) return [M._new(M.cols, 1, b) for b in basis] def _rowspace(M, simplify=False): """Returns a list of vectors that span the row space of ``M``. Examples ======== >>> from sympy import Matrix >>> M = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> M Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> M.rowspace() [Matrix([[1, 3, 0]]), Matrix([[0, 0, 6]])] """ reduced, pivots = M.echelon_form(simplify=simplify, with_pivots=True) return [reduced.row(i) for i in range(len(pivots))] def _orthogonalize(cls, *vecs, normalize=False, rankcheck=False): """Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in ``vecs``. Parameters ========== vecs vectors to be made orthogonal normalize : bool If ``True``, return an orthonormal basis. rankcheck : bool If ``True``, the computation does not stop when encountering linearly dependent vectors. If ``False``, it will raise ``ValueError`` when any zero or linearly dependent vectors are found. Returns ======= list List of orthogonal (or orthonormal) basis vectors. Examples ======== >>> from sympy import I, Matrix >>> v = [Matrix([1, I]), Matrix([1, -I])] >>> Matrix.orthogonalize(*v) [Matrix([ [1], [I]]), Matrix([ [ 1], [-I]])] See Also ======== MatrixBase.QRdecomposition References ========== .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process """ from .decompositions import _QRdecomposition_optional if not vecs: return [] all_row_vecs = (vecs[0].rows == 1) vecs = [x.vec() for x in vecs] M = cls.hstack(*vecs) Q, R = _QRdecomposition_optional(M, normalize=normalize) if rankcheck and Q.cols < len(vecs): raise ValueError("GramSchmidt: vector set not linearly independent") ret = [] for i in range(Q.cols): if all_row_vecs: col = cls(Q[:, i].T) else: col = cls(Q[:, i]) ret.append(col) return ret