from sympy.core.backend import sympify from sympy.physics.vector import Point from sympy.utilities.exceptions import SymPyDeprecationWarning __all__ = ['Particle'] class Particle: """A particle. Explanation =========== Particles have a non-zero mass and lack spatial extension; they take up no space. Values need to be supplied on initialization, but can be changed later. Parameters ========== name : str Name of particle point : Point A physics/mechanics Point which represents the position, velocity, and acceleration of this Particle mass : sympifyable A SymPy expression representing the Particle's mass Examples ======== >>> from sympy.physics.mechanics import Particle, Point >>> from sympy import Symbol >>> po = Point('po') >>> m = Symbol('m') >>> pa = Particle('pa', po, m) >>> # Or you could change these later >>> pa.mass = m >>> pa.point = po """ def __init__(self, name, point, mass): if not isinstance(name, str): raise TypeError('Supply a valid name.') self._name = name self.mass = mass self.point = point self.potential_energy = 0 def __str__(self): return self._name def __repr__(self): return self.__str__() @property def mass(self): """Mass of the particle.""" return self._mass @mass.setter def mass(self, value): self._mass = sympify(value) @property def point(self): """Point of the particle.""" return self._point @point.setter def point(self, p): if not isinstance(p, Point): raise TypeError("Particle point attribute must be a Point object.") self._point = p def linear_momentum(self, frame): """Linear momentum of the particle. Explanation =========== The linear momentum L, of a particle P, with respect to frame N is given by L = m * v where m is the mass of the particle, and v is the velocity of the particle in the frame N. Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame >>> from sympy.physics.mechanics import dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> m, v = dynamicsymbols('m v') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> A = Particle('A', P, m) >>> P.set_vel(N, v * N.x) >>> A.linear_momentum(N) m*v*N.x """ return self.mass * self.point.vel(frame) def angular_momentum(self, point, frame): """Angular momentum of the particle about the point. Explanation =========== The angular momentum H, about some point O of a particle, P, is given by: H = r x m * v where r is the position vector from point O to the particle P, m is the mass of the particle, and v is the velocity of the particle in the inertial frame, N. Parameters ========== point : Point The point about which angular momentum of the particle is desired. frame : ReferenceFrame The frame in which angular momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame >>> from sympy.physics.mechanics import dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> m, v, r = dynamicsymbols('m v r') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> A = O.locatenew('A', r * N.x) >>> P = Particle('P', A, m) >>> P.point.set_vel(N, v * N.y) >>> P.angular_momentum(O, N) m*r*v*N.z """ return self.point.pos_from(point) ^ (self.mass * self.point.vel(frame)) def kinetic_energy(self, frame): """Kinetic energy of the particle. Explanation =========== The kinetic energy, T, of a particle, P, is given by 'T = 1/2 m v^2' where m is the mass of particle P, and v is the velocity of the particle in the supplied ReferenceFrame. Parameters ========== frame : ReferenceFrame The Particle's velocity is typically defined with respect to an inertial frame but any relevant frame in which the velocity is known can be supplied. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame >>> from sympy import symbols >>> m, v, r = symbols('m v r') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> P = Particle('P', O, m) >>> P.point.set_vel(N, v * N.y) >>> P.kinetic_energy(N) m*v**2/2 """ return (self.mass / sympify(2) * self.point.vel(frame) & self.point.vel(frame)) @property def potential_energy(self): """The potential energy of the Particle. Examples ======== >>> from sympy.physics.mechanics import Particle, Point >>> from sympy import symbols >>> m, g, h = symbols('m g h') >>> O = Point('O') >>> P = Particle('P', O, m) >>> P.potential_energy = m * g * h >>> P.potential_energy g*h*m """ return self._pe @potential_energy.setter def potential_energy(self, scalar): """Used to set the potential energy of the Particle. Parameters ========== scalar : Sympifyable The potential energy (a scalar) of the Particle. Examples ======== >>> from sympy.physics.mechanics import Particle, Point >>> from sympy import symbols >>> m, g, h = symbols('m g h') >>> O = Point('O') >>> P = Particle('P', O, m) >>> P.potential_energy = m * g * h """ self._pe = sympify(scalar) def set_potential_energy(self, scalar): SymPyDeprecationWarning( feature="Method sympy.physics.mechanics." + "Particle.set_potential_energy(self, scalar)", useinstead="property sympy.physics.mechanics." + "Particle.potential_energy", deprecated_since_version="1.5", issue=9800).warn() self.potential_energy = scalar def parallel_axis(self, point, frame): """Returns an inertia dyadic of the particle with respect to another point and frame. Parameters ========== point : sympy.physics.vector.Point The point to express the inertia dyadic about. frame : sympy.physics.vector.ReferenceFrame The reference frame used to construct the dyadic. Returns ======= inertia : sympy.physics.vector.Dyadic The inertia dyadic of the particle expressed about the provided point and frame. """ # circular import issue from sympy.physics.mechanics import inertia_of_point_mass return inertia_of_point_mass(self.mass, self.point.pos_from(point), frame)