from sympy.core import S, pi, Rational from sympy.functions import hermite, sqrt, exp, factorial, Abs from sympy.physics.quantum.constants import hbar def psi_n(n, x, m, omega): """ Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. Parameters ========== ``n`` : the "nodal" quantum number. Corresponds to the number of nodes in the wavefunction. ``n >= 0`` ``x`` : x coordinate. ``m`` : Mass of the particle. ``omega`` : Angular frequency of the oscillator. Examples ======== >>> from sympy.physics.qho_1d import psi_n >>> from sympy.abc import m, x, omega >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4)) """ # sympify arguments n, x, m, omega = map(S, [n, x, m, omega]) nu = m * omega / hbar # normalization coefficient C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n))) return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x) def E_n(n, omega): """ Returns the Energy of the One-dimensional harmonic oscillator. Parameters ========== ``n`` : The "nodal" quantum number. ``omega`` : The harmonic oscillator angular frequency. Notes ===== The unit of the returned value matches the unit of hw, since the energy is calculated as: E_n = hbar * omega*(n + 1/2) Examples ======== >>> from sympy.physics.qho_1d import E_n >>> from sympy.abc import x, omega >>> E_n(x, omega) hbar*omega*(x + 1/2) """ return hbar * omega * (n + S.Half) def coherent_state(n, alpha): """ Returns for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states Parameters ========== ``n`` : The "nodal" quantum number. ``alpha`` : The eigen value of annihilation operator. """ return exp(- Abs(alpha)**2/2)*(alpha**n)/sqrt(factorial(n))